t= ("/Users/locnguyen/Documents/R Console/Datasets for practice/obesity data.csv")
ob=read.csv(t)
head(ob)
## id gender height weight bmi age bmc bmd fat lean pcfat
## 1 1 F 150 49 21.8 53 1312 0.88 17802 28600 37.3
## 2 2 M 165 52 19.1 65 1309 0.84 8381 40229 16.8
## 3 3 F 157 57 23.1 64 1230 0.84 19221 36057 34.0
## 4 4 F 156 53 21.8 56 1171 0.80 17472 33094 33.8
## 5 5 M 160 51 19.9 54 1681 0.98 7336 40621 14.8
## 6 6 F 153 47 20.1 52 1358 0.91 14904 30068 32.2
#ve bieu do so sanh Pcfat voi gender
library(ggplot2)
## Registered S3 methods overwritten by 'ggplot2':
## method from
## [.quosures rlang
## c.quosures rlang
## print.quosures rlang
p= ggplot(data=ob, aes(x=pcfat, fill=gender, col=gender))
ob$obesity [ob$bmi<18.5]= "underweight"
ob$obesity [ob$bmi>=18.5 & ob$bmi<25]= "normal"
ob$obesity [ob$bmi>=25 & ob$bmi<30]= "overweight"
ob$obesity [ob$bmi>300]= "obese"
head(ob, 3)
## id gender height weight bmi age bmc bmd fat lean pcfat obesity
## 1 1 F 150 49 21.8 53 1312 0.88 17802 28600 37.3 normal
## 2 2 M 165 52 19.1 65 1309 0.84 8381 40229 16.8 normal
## 3 3 F 157 57 23.1 64 1230 0.84 19221 36057 34.0 normal
ggplot(data=ob, aes(x=pcfat, fill=obesity, col= obesity)) + geom_density(alpha=0.1)
# ve bieu do hop
p= ggplot(data=ob, aes(x=gender, y=pcfat, color=gender))
p + geom_boxplot()
p1=p+geom_boxplot()+ geom_jitter(alpha=0.05)
#histogram
library(ggplot2)
p= ggplot(data=ob, aes( x = pcfat, fill = obesity, col=obesity))
p2= p+ geom_density(alpha=0.1)
library(gridExtra)
grid.arrange(p1, p2, ncol=2)
#ve bieu do tuong quan - scatter plot
library(ggplot2)
p= ggplot(data=ob, aes(x=bmi, y=pcfat))
p + geom_point()
#ve bieu do theo nhom gender
p= ggplot(data=ob, aes(x=bmi, y=pcfat, fill=gender, col=gender))
p + geom_point()
# ve bieu do theo nhom gender va liner model
p= ggplot(data=ob, aes(x=bmi, y=pcfat, fill=gender, col=gender))
p + geom_point() + geom_smooth(method="lm", formula = y~x+I(x^2)) + xlab("body mass index")+ ylab("percent body fat")
library(ggthemes)
p3= p + geom_point() + geom_smooth(method="lm", formula = y~x+I(x^2)) + xlab("body mass index")+ ylab("percent body fat")
p3+ theme_economist()+ggtitle("this is tittle")