library(knitr)
opts_chunk$set(echo = T, message = F, warning = F,
error = F, cache = F, tidy = F)
library(tidyverse)
library(data.table)
library(broom)
library(langcog)
theme_set(theme_classic(base_size = 10))wordstosurvey <- read_csv("words_to_survey.csv") %>%
select(-1) %>%
janitor::clean_names() %>%
select(word, type) %>%
distinct()
DT::datatable(wordstosurvey)t_values <- read_csv("/Users/mollylewis/Documents/research/Projects/1_in_progress/VOCAB_SEEDS/analyses/9_t_value_interpolation/data/word_coeffs_log_mtld_diff_24_30.csv")
#t_values <- read_csv("/Users/mollylewis/Documents/research/Projects/1_in_progress/VOCAB_SEEDS/analyses/9_t_value_interpolation/data/word_coeffs_cdi_24_30.csv")
target_ts <- t_values %>%
right_join(wordstosurvey)
target_ts %>%
filter(!is.na(t))%>%
count(type)## # A tibble: 2 x 2
## type n
## <chr> <int>
## 1 control 101
## 2 seed 37
## # A tibble: 2 x 4
## # Groups: type [2]
## type ci_lower ci_upper mean
## <chr> <dbl> <dbl> <dbl>
## 1 control 0.175 0.403 0.296
## 2 seed -0.162 0.303 0.0741