require(ggplot2)
## Loading required package: ggplot2
require(dplyr)
## Loading required package: dplyr
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
require(data.table)
## Loading required package: data.table
## 
## Attaching package: 'data.table'
## The following objects are masked from 'package:dplyr':
## 
##     between, first, last
require(scales)
## Loading required package: scales
library(tidytext)
library(jiebaR)
## Loading required package: jiebaRD
library(gutenbergr)
library(stringr)
library(wordcloud2)
library(wordcloud)
## Loading required package: RColorBrewer
library(ggplot2)
library(tidyr)
library(scales)
library(data.table)
library(readr)
## 
## Attaching package: 'readr'
## The following object is masked from 'package:scales':
## 
##     col_factor
library(reshape2)
## 
## Attaching package: 'reshape2'
## The following object is masked from 'package:tidyr':
## 
##     smiths
## The following objects are masked from 'package:data.table':
## 
##     dcast, melt
library(tidytext)
library(igraph)
## 
## Attaching package: 'igraph'
## The following object is masked from 'package:tidyr':
## 
##     crossing
## The following objects are masked from 'package:dplyr':
## 
##     as_data_frame, groups, union
## The following objects are masked from 'package:stats':
## 
##     decompose, spectrum
## The following object is masked from 'package:base':
## 
##     union
library(topicmodels)
library(readr)
library(tm)
## Loading required package: NLP
## 
## Attaching package: 'NLP'
## The following object is masked from 'package:ggplot2':
## 
##     annotate
library(widyr)
library(ggraph)
setwd("C:/learning/mid")
bh <- fread("booking_hotels.csv")
booking<- fread("booking_reviews.csv")
bhs<-(booking[grepl("宿|村|子|屋|墅|巷|舍|園|棧|house|home", booking$HotelName),])

自訂user word及停用字並用結巴斷詞

jieba_tokenizer <- worker(stop_word ="stop_words.txt",user="user_words.txt")

book_tokenizer <- function(t) {
  lapply(t, function(x) {
    tokens <- segment(x, jieba_tokenizer)
    tokens <- tokens[nchar(tokens)>1]
    return(tokens)
  })
}

資料分群分析

對booking做民宿分類,並斷詞

tidybook = booking %>% unnest_tokens(word,Review,token= book_tokenizer) %>%
  mutate(Id = group_indices(., HotelName))  %>%  select(HotelName,word,Id)
str(tidybook)
## 'data.frame':    22625 obs. of  3 variables:
##  $ HotelName: chr  "雅霖大飯店" "雅霖大飯店" "雅霖大飯店" "雅霖大飯店" ...
##  $ word     : chr  "服務" "人員" "態度" "傑出" ...
##  $ Id       : int  172 172 172 172 172 172 172 172 172 172 ...
head(tidybook)
bhs$Review=as.character(bhs$Review)
tidybookbhs = bhs %>% unnest_tokens(word,Review,token= book_tokenizer) %>%
  mutate(Id = group_indices(., HotelName))  %>%  select(HotelName,word,Id)

str(tidybookbhs)
## 'data.frame':    12582 obs. of  3 variables:
##  $ HotelName: chr  "天空格子商旅" "天空格子商旅" "天空格子商旅" "天空格子商旅" ...
##  $ word     : chr  "hen" "棒棒" "乾淨" "新穎" ...
##  $ Id       : int  18 18 18 18 18 18 18 18 18 18 ...
head(tidybookbhs)

計算評語之間的Co-occurrence:

node_name=fread(file = "c:/learning/mid/word.txt", encoding='UTF-8',header=F)

將民宿分三群

bhs1 <- (bhs[grepl("10", bhs$Rate),])
bhs2 <- filter(bhs, Rate > 8.8 & Rate <10)
bhs3 <- filter(bhs, Rate <= 8.8)

評價10的民宿

bhs1$Review=as.character(bhs1$Review)
tidybookbhs1 = bhs1 %>% unnest_tokens(word,Review,token= book_tokenizer) %>%
  mutate(Id = group_indices(., HotelName))  %>%  select(HotelName,word,Id)

str(tidybookbhs1)
## 'data.frame':    6478 obs. of  3 variables:
##  $ HotelName: chr  "天空格子商旅" "天空格子商旅" "天空格子商旅" "天空格子商旅" ...
##  $ word     : chr  "hen" "棒棒" "傑出" "傑出" ...
##  $ Id       : int  17 17 17 17 17 17 17 17 17 17 ...
head(tidybookbhs1)

計算評語之間的Co-occurrence:

term_cooccurrence_m1=tidybookbhs1 %>%
  filter(word  %in% node_name$V1) %>%   
  pairwise_count(word, Id, sort = TRUE,diag=F)



term_cooccurrence_m1=as.data.frame(term_cooccurrence_m1)

移除重複的pairwise

for (i in 1:nrow(term_cooccurrence_m1)){
    term_cooccurrence_m1[i, ] = sort(term_cooccurrence_m1[i,])
}

term_cooccurrence_m1=term_cooccurrence_m1[!duplicated(term_cooccurrence_m1),]
names(term_cooccurrence_m1)=c('weight','item1','item2')
term_cooccurrence_m1=term_cooccurrence_m1 %>%  select(item1,item2,weight)
term_cooccurrence_m1$weight=as.numeric(term_cooccurrence_m1$weight)

畫出Co-occurrence網路圖

g=term_cooccurrence_m1 %>% graph_from_data_frame(directed = F) 
 # set labels and degrees of vertices
V(g)$label <- V(g)$name
V(g)$degree <- degree(g)
node_name$V2=NA
node_name$V2[1:7]='#00DD00'
node_name$V2[8:15]='#FFAA33'
node_name$V2[16:23]='#EEEE00'
node_name$V2[24:30]='#ff00dd'

V(g)$color=sapply(names(V(g)), function(v){
  node_name$V2[node_name$V1==v]
})
set.seed(0525)
layout11 <- layout.fruchterman.reingold(g)
plot(g, layout=layout11, pt.cex=1, cex=.8)

以Degree作為頂點大小

degree(g, mode="all")
##   民宿   老闆   傑出   乾淨   下次   房間   住宿   推薦   很棒   舒適 
##     27     27     27     26     27     26     26     26     27     26 
##   值得   服務 老闆娘   澎湖   親切   入住   行程   地點   舒服   早餐 
##     25     27     26     26     26     27     26     25     26     25 
##   貼心   方便   熱心   感覺   不錯   令人 好極了   環境 
##     27     26     26     26     25     21     10     27
deg <- degree(g, mode="all")

plot(g, vertex.size=deg*1.2)
legend("bottomright", c('hs1','hs2','hs3'), pch=21,
col="#777777", pt.bg=c("#FFAA33","#00DD00","#EEEE00"), pt.cex=1, cex=.8)

以Closeness作為頂點大小

closeness(g, mode="all", weights=NA, normalized=T)
##      民宿      老闆      傑出      乾淨      下次      房間      住宿 
## 1.0000000 1.0000000 1.0000000 0.9642857 1.0000000 0.9642857 0.9642857 
##      推薦      很棒      舒適      值得      服務    老闆娘      澎湖 
## 0.9642857 1.0000000 0.9642857 0.9310345 1.0000000 0.9642857 0.9642857 
##      親切      入住      行程      地點      舒服      早餐      貼心 
## 0.9642857 1.0000000 0.9642857 0.9310345 0.9642857 0.9310345 1.0000000 
##      方便      熱心      感覺      不錯      令人    好極了      環境 
## 0.9642857 0.9642857 0.9642857 0.9310345 0.8181818 0.6136364 1.0000000
deg <- closeness(g, mode="all" , weights=NA, normalized=T)

plot(g, vertex.size=deg*20)

legend("bottomright", c('hs1','hs2','hs3'), pch=21,
col="#777777", pt.bg=c("#FFAA33","#00DD00","#EEEE00"), pt.cex=1, cex=.8)

以betweenness作為頂點大小

betweenness(g, directed=F, weights=NA, normalized = T)
##        民宿        老闆        傑出        乾淨        下次        房間 
## 0.005553294 0.005553294 0.005553294 0.000678334 0.005553294 0.000678334 
##        住宿        推薦        很棒        舒適        值得        服務 
## 0.000678334 0.004558405 0.005553294 0.000678334 0.000000000 0.005553294 
##      老闆娘        澎湖        親切        入住        行程        地點 
## 0.000678334 0.000678334 0.000678334 0.005553294 0.000678334 0.000000000 
##        舒服        早餐        貼心        方便        熱心        感覺 
## 0.000678334 0.000000000 0.005553294 0.000678334 0.000678334 0.000678334 
##        不錯        令人      好極了        環境 
## 0.000000000 0.000000000 0.000000000 0.005553294
deg <- betweenness(g, directed=F, weights=NA, normalized = T)

plot(g, vertex.size=deg*1000)

legend("bottomright", c('hs1','hs2','hs3'), pch=21,
col="#777777", pt.bg=c("#FFAA33","#00DD00","#EEEE00"), pt.cex=1, cex=.8)