Load Packages

library(psych)
library(readr)
library(tidyverse)
## Registered S3 methods overwritten by 'ggplot2':
##   method         from 
##   [.quosures     rlang
##   c.quosures     rlang
##   print.quosures rlang
## Registered S3 method overwritten by 'rvest':
##   method            from
##   read_xml.response xml2
## ── Attaching packages ───────────────────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
## ✔ ggplot2 3.1.1       ✔ purrr   0.3.2  
## ✔ tibble  2.1.1       ✔ dplyr   0.8.0.1
## ✔ tidyr   0.8.3       ✔ stringr 1.4.0  
## ✔ ggplot2 3.1.1       ✔ forcats 0.4.0
## ── Conflicts ──────────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ ggplot2::%+%()   masks psych::%+%()
## ✖ ggplot2::alpha() masks psych::alpha()
## ✖ dplyr::filter()  masks stats::filter()
## ✖ dplyr::lag()     masks stats::lag()
library(lme4)
## Loading required package: Matrix
## 
## Attaching package: 'Matrix'
## The following object is masked from 'package:tidyr':
## 
##     expand
library(Matrix)
library(contrast)
## Loading required package: rms
## Loading required package: Hmisc
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## 
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:dplyr':
## 
##     src, summarize
## The following object is masked from 'package:psych':
## 
##     describe
## The following objects are masked from 'package:base':
## 
##     format.pval, units
## Loading required package: SparseM
## 
## Attaching package: 'SparseM'
## The following object is masked from 'package:base':
## 
##     backsolve
library(car)
## Loading required package: carData
## Registered S3 methods overwritten by 'car':
##   method                          from
##   influence.merMod                lme4
##   cooks.distance.influence.merMod lme4
##   dfbeta.influence.merMod         lme4
##   dfbetas.influence.merMod        lme4
## 
## Attaching package: 'car'
## The following objects are masked from 'package:rms':
## 
##     Predict, vif
## The following object is masked from 'package:dplyr':
## 
##     recode
## The following object is masked from 'package:purrr':
## 
##     some
## The following object is masked from 'package:psych':
## 
##     logit
library(lmerTest)
## 
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
## 
##     lmer
## The following object is masked from 'package:stats':
## 
##     step
library(languageR)
library(corrplot)
## corrplot 0.84 loaded
library(effects)
## Use the command
##     lattice::trellis.par.set(effectsTheme())
##   to customize lattice options for effects plots.
## See ?effectsTheme for details.
library(sjPlot)
## Learn more about sjPlot with 'browseVignettes("sjPlot")'.
library(sjstats)
## 
## Attaching package: 'sjstats'
## The following object is masked from 'package:Hmisc':
## 
##     deff
## The following objects are masked from 'package:psych':
## 
##     pca, phi
library(lattice)
library(simr)
## 
## Attaching package: 'simr'
## The following object is masked from 'package:stringr':
## 
##     fixed
library(longpower)
## Loading required package: nlme
## 
## Attaching package: 'nlme'
## The following objects are masked from 'package:simr':
## 
##     coef<-, getData
## The following object is masked from 'package:lme4':
## 
##     lmList
## The following object is masked from 'package:dplyr':
## 
##     collapse
library(pwr)

Set WD

#setwd("~/Desktop/Desktop - Yrian’s Macbook Pro/School/Projects/Motivated Sampling Project/Political Study Results/")

Load in the data

personality.master.data.Dem <- read.csv("2019.personality.master.data.Democrat.csv")
personality.master.data.Rep <- read_csv("2019.personality.master.data.Republican.csv")
## Warning: Missing column names filled in: 'X1' [1]
## Parsed with column specification:
## cols(
##   .default = col_double(),
##   Tot.Mturk.Studies = col_character(),
##   Tot.Econ.Studies = col_character(),
##   Tot.Psych.Studies = col_character(),
##   Delete.This = col_character(),
##   Q1945 = col_character(),
##   Val = col_character()
## )
## See spec(...) for full column specifications.
personality.master.data.Dem <- personality.master.data.Dem[,-c(1)]
personality.master.data.Rep <- personality.master.data.Rep[,-c(1)]
personality.master.data.Rep$Condition[personality.master.data.Rep$Condition == 1] <- 1
personality.master.data.Rep$Condition[personality.master.data.Rep$Condition == -1] <- 2
personality.master.data.Rep$Condition[personality.master.data.Rep$Condition == 0] <- 3

Adding a variable for dem.est and rep.est + status to in and out group estimates.

personality.master.data.Dem$In.Est <- personality.master.data.Dem$Dem.Est
personality.master.data.Dem$Out.Est <- personality.master.data.Dem$Rep.Est
personality.master.data.Rep$In.Est <- personality.master.data.Rep$Rep.Est
personality.master.data.Rep$Out.Est <- personality.master.data.Rep$Dem.Est

personality.master.data.Dem$In.status <- personality.master.data.Dem$Status.Dem
personality.master.data.Dem$Out.status <- personality.master.data.Dem$Status.Rep
personality.master.data.Rep$In.status <- personality.master.data.Rep$Status.Rep
personality.master.data.Rep$Out.status <- personality.master.data.Rep$Status.Dem

Adding a variable for groups

Set First Sample, Participant and Group as factors as factors

Subsetting collapsed data frame to make a correlation matrix with only the pertinent variables

personality.master.data.Dem$Group <- "Dem"
personality.master.data.Rep$Group <- "Rep"
master.personality.Both <- rbind(personality.master.data.Dem, personality.master.data.Rep)
master.personality.Both <- as.data.frame(master.personality.Both)
master.personality.Both$First.Sample <- factor(master.personality.Both$First.Sample)
master.personality.Both$Participant <- factor(master.personality.Both$Participant)

Subsetting collapsed data frame to make a correlation matrix with only the pertinent variables

mydata <- master.personality.Both[, c(9, 10, 11, 12, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 36, 37, 38, 39)]
mydata$Val <- as.numeric(mydata$Val)
mydata$Val[mydata$Val == "pos"] <- 1
mydata$Val[mydata$Val == "neg"] <- 0

Correlation Matrix

m <- cor(mydata, use="pairwise.complete.obs")
#compute p.values for m to put in graph later. 
pval <- psych::corr.test(m, adjust="none")$p

#make a correlation matrix that has p.values and titles. 
corrplot(cor(m),insig="p-value")

#corrplot(cor(m), type="upper", p.mat=pval, insig="p-value", 
#         tl.pos="n", sig.level=0)
#corrplot(cor(m), type="lower", add=T, tl.pos="d", cl.pos="n")

Attention Checks

#Count of attention checks. 0 is none, 1 is one and 2 is 2. 
table(master.personality.Both$Att)
## 
##   0   1   2 
## 267 259  14
hist(master.personality.Both$Att)

Ceating long format data set for sampling behavior

sampled.in.out <- data.frame(rep(master.personality.Both$Participant,2), rep(master.personality.Both$Condition,2),
                            c(master.personality.Both$in_samples, master.personality.Both$out_samples), factor(rep(c(1,2), each=540), labels = c("In", "Out")),
                            rep(master.personality.Both$Val, 2), rep(master.personality.Both$Group, 2), 
                            rep(master.personality.Both$SDO, 2))

names(sampled.in.out) <- c("Participant", "Condition", "n_trials", "Samp_Group", "Valence", "Group", "SDO")
##Making sampled group into character so that it can be effects coded
sampled.in.out$Samp_GroupString <- as.character(sampled.in.out$Samp_Group)
sampled.in.out$GroupString <- as.character(sampled.in.out$Group)
sampled.in.out$ValenceString <- as.character(sampled.in.out$Valence)

Creating long format data set for point-estimates

#####Ceating a long format data set to look at Point-Estimates (DV) from the master data (both rep and dem)
Evaluation.in.out <- data.frame(rep(master.personality.Both$Participant,2), rep(master.personality.Both$Condition,2),
                               c(master.personality.Both$In.Est, master.personality.Both$Out.Est), factor(rep(c(1,2), each=540), labels = c("In", "Out")),
                                rep(master.personality.Both$Val, 2), rep(master.personality.Both$Group, 2), rep(master.personality.Both$Status.Dem, 2),
                               rep(master.personality.Both$Status.Rep, 2), rep(master.personality.Both$SE_Importance, 2), rep(master.personality.Both$SE_Mem,2),
                               rep(master.personality.Both$SE_Private, 2), rep(master.personality.Both$SE_Public, 2), rep(master.personality.Both$SDO, 2))

##Ranaming the variables 
names(Evaluation.in.out) <- c("Participant", "Condition", "P.Estimates", "Evaluated.Group", "Valence", "Group", "Dem.Status", "Rep.Estimate", 
                              "SE.Importance", "SE.Mem", "SE.Private", "SE.Public", "SDO")

##Making sampled group into character so that it can be effects coded
Evaluation.in.out$Evaluated.GroupString <- as.character(Evaluation.in.out$Evaluated.Group)
Evaluation.in.out$GroupString <- as.character(Evaluation.in.out$Group)
Evaluation.in.out$ValenceString <- as.character(Evaluation.in.out $Valence)

Plotting Sampling behavior

SEFunctionForggplot <- function(vector) {
  y <- mean(vector, na.rm = TRUE)
  ymin <- y - sd(vector, na.rm = TRUE) / sqrt(length(vector))
  ymax <- y + sd(vector, na.rm = TRUE) / sqrt(length(vector))
  return(data.frame(y = y, ymin = ymin, ymax = ymax))
}

####For political sampling behavior
# tiff("example.tiff", more arguments)
ggplot(sampled.in.out, aes(as.factor(Condition), n_trials,
                           color = paste(as.factor(Valence), as.factor(Samp_Group)))) +
  stat_summary(fun.y = mean, geom = "point", position = position_dodge(.4), 
               size = 3) +
  stat_summary(fun.data = SEFunctionForggplot, geom = "errorbar",
               position = position_dodge(.4), width = .3, size = 1) +
  scale_x_discrete(labels = c("Worse", "Same", "Better"),
                   name = "Condition") +
  scale_y_continuous(name = "Trials (N)") + 
  scale_color_manual(name = "Valence,  \nSampling Group", 
                     labels = c("\nNegative, \nIn-group\n", 
                                "\nNegative, \nOut-Group\n", 
                                "\nPositive, \nIn-group\n", 
                                "\nPositive, \nOut-Group\n"), 
                     values = c("darkgoldenrod1", "darkorange3", 
                                "steelblue1", "steelblue4")) + 
  theme(panel.grid.minor = element_blank(),
        panel.grid.major.x = element_blank())

# dev.off()

Plotting Point-estimates

ggplot(Evaluation.in.out, aes(as.factor(Condition), P.Estimates,
                           color = paste(as.factor(Valence), as.factor(Evaluated.Group)))) +
  stat_summary(fun.y = mean, geom = "point", position = position_dodge(.4), 
               size = 3) +
  stat_summary(fun.data = SEFunctionForggplot, geom = "errorbar",
               position = position_dodge(.4), width = .3, size = 1) +
  scale_x_discrete(labels = c("worse", "Same", "Better"),
                   name = "Condition") +
  scale_y_continuous(name = "Point.Estimate") + 
  scale_color_manual(name = "Valence,  \nSampling Group", 
                     labels = c("\nNegative, \nIn-group\n", 
                                "\nNegative, \nOut-Group\n", 
                                "\nPositive, \nIn-group\n", 
                                "\nPositive, \nOut-Group\n"), 
                     values = c("steelblue4", "darkorange3", 
                                "steelblue1", "darkgoldenrod1")) + 
  theme(panel.grid.minor = element_blank(),
        panel.grid.major.x = element_blank())

Effects and Dummy coding categorical predictors for the sampling models

#Because it gets more complex to calculate the throw away group when you effects code, I am essentially making all iterations

#Change conditions to 1 2 3 for clarity
sampled.in.out$Condition[sampled.in.out$Condition == 1] <- "Worse"
sampled.in.out$Condition[sampled.in.out$Condition == 2] <- "Same"
sampled.in.out$Condition[sampled.in.out$Condition == 3] <- "Better"

#Effects + dummy coding for. call it _a. 
sampled.in.out$Condition_a[sampled.in.out$Condition == "Worse"] <- -1
sampled.in.out$Condition_a[sampled.in.out$Condition == "Same"] <- 1
sampled.in.out$Condition_a[sampled.in.out$Condition == "Better"] <- 0
sampled.in.out$Condition_a_eff <- factor(sampled.in.out$Condition_a)
sampled.in.out$Condition_a_dum <- factor(sampled.in.out$Condition, 
                                         levels = c("Worse", "Better", "Same"))

#Effects + dummy coding, let's call it _c.
sampled.in.out$Condition_c[sampled.in.out$Condition == "Worse"] <- -1
sampled.in.out$Condition_c[sampled.in.out$Condition == "Same"] <- 0
sampled.in.out$Condition_c[sampled.in.out$Condition == "Better"] <- 1
sampled.in.out$Condition_c_eff <- factor(sampled.in.out$Condition_c)
sampled.in.out$Condition_c_dum <- factor(sampled.in.out$Condition,
                                         levels = c("Worse", "Same", "Better"))

#Effects + dummy coding, let's call it _d. 
sampled.in.out$Condition_d[sampled.in.out$Condition == "Worse"] <- 1
sampled.in.out$Condition_d[sampled.in.out$Condition == "Same"] <- 0
sampled.in.out$Condition_d[sampled.in.out$Condition == "Better"] <- -1
sampled.in.out$Condition_d_eff <- factor(sampled.in.out$Condition_d)
sampled.in.out$Condition_d_dum <- factor(sampled.in.out$Condition, 
                                         levels = c("Same", "Better", "Worse"))

##contrast coding where we collapse better and worse condition and compare to same group
sampled.in.out$Condition_contr[sampled.in.out$Condition == "Worse"] <- 0
sampled.in.out$Condition_contr[sampled.in.out$Condition== "Same"] <- 1
sampled.in.out$Condition_contr[sampled.in.out$Condition == "Better"] <- 0
sampled.in.out$Condition_contr[sampled.in.out$Condition_contr == 0] <- "Other"
sampled.in.out$Condition_contr[sampled.in.out$Condition_contr == 1] <- "Same"
sampled.in.out$Condition_contr_dum <- factor(sampled.in.out$Condition_contr, 
                                            levels = c("Same","Other")) 
sampled.in.out$Condition_contr_eff <- factor(sampled.in.out$Condition_contr, 
                                            levels = c("Same","Other")) 

#effects + dummy coding In and Out group with out as thro-away (Samp_Group)
sampled.in.out$Samp_GroupB_eff <- sampled.in.out$Samp_GroupString
sampled.in.out$Samp_GroupB_dum <- sampled.in.out$Samp_GroupString
sampled.in.out$Samp_GroupB_eff <- as.factor(sampled.in.out$Samp_GroupB_eff)
sampled.in.out$Samp_GroupB_dum <- as.factor(sampled.in.out$Samp_GroupB_dum)
sampled.in.out$Samp_GroupB_eff <- factor(sampled.in.out$Samp_GroupB_eff, 
                                       levels = c("In", "Out"))
sampled.in.out$Samp_GroupB_dum <- factor(sampled.in.out$Samp_GroupB_dum, 
                                         levels = c("In", "Out"))

#effects + dummy coding In and Out group with in as throw-away (Samp_Group1)
sampled.in.out$Samp_GroupB_eff1 <- sampled.in.out$Samp_GroupString
sampled.in.out$Samp_GroupB_dum1 <- sampled.in.out$Samp_GroupString
sampled.in.out$Samp_GroupB_eff1 <- as.factor(sampled.in.out$Samp_GroupB_eff1)
sampled.in.out$Samp_GroupB_dum1 <- as.factor(sampled.in.out$Samp_GroupB_dum1)
sampled.in.out$Samp_GroupB_eff1 <- factor(sampled.in.out$Samp_GroupB_eff1, 
                                         levels = c("Out", "In"))
sampled.in.out$Samp_GroupB_dum1 <- factor(sampled.in.out$Samp_GroupB_dum1, 
                                         levels = c("Out", "In"))

#effects + dummy coding group so that Rep is throw-away (Group)
sampled.in.out$Group_eff <- sampled.in.out$Group
sampled.in.out$Group_dum <- sampled.in.out$Group
sampled.in.out$Group_eff <- as.factor(sampled.in.out$Group_eff)
sampled.in.out$Group_dum <- as.factor(sampled.in.out$Group_dum)
sampled.in.out$Group_eff <- factor(sampled.in.out$Group_eff,
                                     levels = c("Dem", "Rep"))
sampled.in.out$Group_dum <- factor(sampled.in.out$Group_dum, 
                                     levels = c("Dem", "Rep"))

#effects + dummy coding group so that Dem is reference (Group1)
sampled.in.out$Group_eff1 <- sampled.in.out$Group
sampled.in.out$Group_dum1 <- sampled.in.out$Group
sampled.in.out$Group_eff1 <- as.factor(sampled.in.out$Group_eff1)
sampled.in.out$Group_dum1 <- as.factor(sampled.in.out$Group_dum1)
sampled.in.out$Group_eff1 <- factor(sampled.in.out$Group_eff1,
                                   levels = c("Rep", "Dem"))
sampled.in.out$Group_dum1 <- factor(sampled.in.out$Group_dum1, 
                                   levels = c("Rep", "Dem"))

#coding valence
sampled.in.out$Valence_eff <- sampled.in.out$ValenceString
sampled.in.out$Valence_dum <- sampled.in.out$ValenceString

sampled.in.out$Valence_eff <- as.factor(sampled.in.out$Valence_eff) 
sampled.in.out$Valence_dum <- as.factor(sampled.in.out$Valence_dum) 

sampled.in.out$Valence_eff1[sampled.in.out$ValenceString == "pos"] <- "pos"
sampled.in.out$Valence_eff1[sampled.in.out$ValenceString == "neg"] <- "shitty"
sampled.in.out$Valence_dum1 <- sampled.in.out$Valence_eff1
#sorry about the naming convention here. I needed a name with a letter lower in the alphabet. 

sampled.in.out$Valence_eff1 <- as.factor(sampled.in.out$Valence_eff1) 
sampled.in.out$Valence_dum1 <- as.factor(sampled.in.out$Valence_dum1) 

Applying the contr functions for sampling models.

##Making the contrasts with dummy alternatives
contrasts(sampled.in.out$Condition_a_eff) <-contr.sum(3)
contrasts(sampled.in.out$Condition_a_dum) <-contr.sum(3)
contrasts(sampled.in.out$Condition_a_dum) <- contr.treatment(3, base = 3)
colnames(contrasts(sampled.in.out$Condition_a_eff)) = c("Worse", "Better")
colnames(contrasts(sampled.in.out$Condition_a_dum)) = c("Worse", "Better")

contrasts(sampled.in.out$Condition_c_eff) <-contr.sum(3)
contrasts(sampled.in.out$Condition_c_dum) <-contr.sum(3)
contrasts(sampled.in.out$Condition_c_dum) <- contr.treatment(3, base = 3)
colnames(contrasts(sampled.in.out$Condition_c_eff)) = c("Worse", "Same")
colnames(contrasts(sampled.in.out$Condition_c_dum)) = c("Worse", "Same")
  
contrasts(sampled.in.out$Condition_d_eff) <-contr.sum(3)
contrasts(sampled.in.out$Condition_d_dum) <-contr.sum(3)
contrasts(sampled.in.out$Condition_d_dum) <- contr.treatment(3, base = 3)
colnames(contrasts(sampled.in.out$Condition_d_eff)) = c("Better", "Same")
colnames(contrasts(sampled.in.out$Condition_d_dum)) = c("Same", "Better")

contrasts(sampled.in.out$Condition_contr_eff) <-contr.sum(2)
contrasts(sampled.in.out$Condition_contr_dum) <- contr.treatment(2, base = 2)
colnames(contrasts(sampled.in.out$Condition_contr_eff)) = c("Same")
colnames(contrasts(sampled.in.out$Condition_contr_dum)) = c("Same")

contrasts(sampled.in.out$Samp_GroupB_eff) <-contr.sum(2)
contrasts(sampled.in.out$Samp_GroupB_dum) <-contr.sum(2)
contrasts(sampled.in.out$Samp_GroupB_dum) <- contr.treatment(2, base = 2)
colnames(contrasts(sampled.in.out$Samp_GroupB_eff)) = c("In.Group")
colnames(contrasts(sampled.in.out$Samp_GroupB_dum)) = c("In.Group")

contrasts(sampled.in.out$Samp_GroupB_eff1) <-contr.sum(2)
contrasts(sampled.in.out$Samp_GroupB_dum1) <-contr.sum(2)
contrasts(sampled.in.out$Samp_GroupB_dum1) <- contr.treatment(2, base = 2)
colnames(contrasts(sampled.in.out$Samp_GroupB_eff1)) = c("Out.Group")
colnames(contrasts(sampled.in.out$Samp_GroupB_dum1)) = c("Out.Group")

contrasts(sampled.in.out$Group_eff) <-contr.sum(2)
contrasts(sampled.in.out$Group_dum) <-contr.sum(2)
contrasts(sampled.in.out$Group_eff) <- contr.treatment(2, base = 2)
colnames(contrasts(sampled.in.out$Group_eff)) = c("Dem")
colnames(contrasts(sampled.in.out$Group_dum)) = c("Dem")

contrasts(sampled.in.out$Group_eff1) <-contr.sum(2)
contrasts(sampled.in.out$Group_dum1) <-contr.sum(2)
contrasts(sampled.in.out$Group_eff1) <- contr.treatment(2, base = 2)
colnames(contrasts(sampled.in.out$Group_eff1)) = c("Rep")
colnames(contrasts(sampled.in.out$Group_dum1)) = c("Rep")

contrasts(sampled.in.out$Valence_eff) <-contr.sum(2)
contrasts(sampled.in.out$Valence_dum) <-contr.sum(2)
contrasts(sampled.in.out$Valence_dum) <- contr.treatment(2, base = 2)
colnames(contrasts(sampled.in.out$Valence_eff)) = c("Neg")
colnames(contrasts(sampled.in.out$Valence_dum)) = c("Neg")

contrasts(sampled.in.out$Valence_eff1) <-contr.sum(2)
contrasts(sampled.in.out$Valence_dum1) <-contr.sum(2)
contrasts(sampled.in.out$Valence_dum1) <- contr.treatment(2, base = 2)
colnames(contrasts(sampled.in.out$Valence_eff1)) = c("Pos")
colnames(contrasts(sampled.in.out$Valence_dum1)) = c("Pos")

Effects and Dummy coding categorical predictors for the point-estimate models.

#same deal as above but for the PE data set
#Change conditions to 1 2 3 for clarity
Evaluation.in.out$Condition[Evaluation.in.out$Condition == 1] <- "Worse"
Evaluation.in.out$Condition[Evaluation.in.out$Condition == 2] <- "Same"
Evaluation.in.out$Condition[Evaluation.in.out$Condition == 3] <- "Better"


Evaluation.in.out$Condition_a[Evaluation.in.out$Condition == "Worse"] <- -1
Evaluation.in.out$Condition_a[Evaluation.in.out$Condition == "Same"] <- 1
Evaluation.in.out$Condition_a[Evaluation.in.out$Condition == "Better"] <- 0
Evaluation.in.out$Condition_a_eff <- factor(Evaluation.in.out$Condition_a)
Evaluation.in.out$Condition_a_dum <- factor(Evaluation.in.out$Condition, 
                                         levels = c("Worse", "Better", "Same"))

Evaluation.in.out$Condition_c[Evaluation.in.out$Condition == "Worse"] <- -1
Evaluation.in.out$Condition_c[Evaluation.in.out$Condition == "Same"] <- 0
Evaluation.in.out$Condition_c[Evaluation.in.out$Condition == "Better"] <- 1
Evaluation.in.out$Condition_c_eff <- factor(Evaluation.in.out$Condition_c)
Evaluation.in.out$Condition_c_dum <- factor(Evaluation.in.out$Condition,
                                         levels = c("Worse", "Same", "Better"))

Evaluation.in.out$Condition_d[Evaluation.in.out$Condition == "Worse"] <- 1
Evaluation.in.out$Condition_d[Evaluation.in.out$Condition == "Same"] <- 0
Evaluation.in.out$Condition_d[Evaluation.in.out$Condition == "Better"] <- -1
Evaluation.in.out$Condition_d_eff <- factor(Evaluation.in.out$Condition_d)
Evaluation.in.out$Condition_d_dum <- factor(Evaluation.in.out$Condition, 
                                         levels = c("Same", "Better", "Worse"))

Evaluation.in.out$Evaluated.Group_eff <- Evaluation.in.out$Evaluated.GroupString
Evaluation.in.out$Evaluated.Group_dum <- Evaluation.in.out$Evaluated.GroupString
Evaluation.in.out$Evaluated.Group_eff <- as.factor(Evaluation.in.out$Evaluated.Group_eff)
Evaluation.in.out$Evaluated.Group_dum <- as.factor(Evaluation.in.out$Evaluated.Group_dum)
Evaluation.in.out$Evaluated.Group_eff <- factor(Evaluation.in.out$Evaluated.Group_eff, 
                                         levels = c("In", "Out"))
Evaluation.in.out$Evaluated.Group_dum <- factor(Evaluation.in.out$Evaluated.Group_dum, 
                                         levels = c("In", "Out"))

Evaluation.in.out$Evaluated.Group_eff1 <- Evaluation.in.out$Evaluated.GroupString
Evaluation.in.out$Evaluated.Group_dum1 <- Evaluation.in.out$Evaluated.GroupString
Evaluation.in.out$Evaluated.Group_eff1 <- as.factor(Evaluation.in.out$Evaluated.Group_eff)
Evaluation.in.out$Evaluated.Group_dum1 <- as.factor(Evaluation.in.out$Evaluated.Group_dum)
Evaluation.in.out$Evaluated.Group_eff1 <- factor(Evaluation.in.out$Evaluated.Group_eff1, 
                                                levels = c("Out", "In"))
Evaluation.in.out$Evaluated.Group_dum1 <- factor(Evaluation.in.out$Evaluated.Group_dum1, 
                                                levels = c("Out", "In"))

Evaluation.in.out$Group_eff <- Evaluation.in.out$Group
Evaluation.in.out$Group_dum <- Evaluation.in.out$Group
Evaluation.in.out$Group_eff <- as.factor(Evaluation.in.out$Group_eff)
Evaluation.in.out$Group_dum <- as.factor(Evaluation.in.out$Group_dum)
Evaluation.in.out$Group_eff <- factor(Evaluation.in.out$Group_eff,
                                   levels = c("Rep", "Dem"))
Evaluation.in.out$Group_dum <- factor(Evaluation.in.out$Group_dum, 
                                   levels = c("Rep", "Dem"))

Evaluation.in.out$Group_eff1 <- Evaluation.in.out$Group
Evaluation.in.out$Group_dum1 <- Evaluation.in.out$Group
Evaluation.in.out$Group_eff1 <- as.factor(Evaluation.in.out$Group_eff)
Evaluation.in.out$Group_dum1 <- as.factor(Evaluation.in.out$Group_dum)
Evaluation.in.out$Group_eff1 <- factor(Evaluation.in.out$Group_eff1,
                                      levels = c("Dem", "Rep"))
Evaluation.in.out$Group_dum1 <- factor(Evaluation.in.out$Group_dum1, 
                                      levels = c("Dem", "Rep"))

Evaluation.in.out$Valence_eff <- Evaluation.in.out$ValenceString
Evaluation.in.out$Valence_dum <- Evaluation.in.out$ValenceString

Evaluation.in.out$Valence_eff <- as.factor(Evaluation.in.out$Valence_eff) 
Evaluation.in.out$Valence_dum <- as.factor(Evaluation.in.out$Valence_dum) 

Evaluation.in.out$Valence_eff1[Evaluation.in.out$ValenceString == "pos"] <- "pos"
Evaluation.in.out$Valence_eff1[Evaluation.in.out$ValenceString == "neg"] <- "shitty"

Evaluation.in.out$Valence_dum1 <- Evaluation.in.out$Valence_eff1
Evaluation.in.out$Valence_eff1 <- as.factor(Evaluation.in.out$Valence_eff1) 
Evaluation.in.out$Valence_dum1 <- as.factor(Evaluation.in.out$Valence_dum1)

Applying the contr functions for sampling models.

##Making the contrasts with dummy alternatives
contrasts(Evaluation.in.out$Condition_a_eff) <-contr.sum(3)
contrasts(Evaluation.in.out$Condition_a_dum) <-contr.sum(3)
contrasts(Evaluation.in.out$Condition_a_dum) <- contr.treatment(3, base = 3)
colnames(contrasts(Evaluation.in.out$Condition_a_eff)) = c("Worse", "Better")
colnames(contrasts(Evaluation.in.out$Condition_a_dum)) = c("Worse", "Better")

contrasts(Evaluation.in.out$Condition_c_eff) <-contr.sum(3)
contrasts(Evaluation.in.out$Condition_c_dum) <-contr.sum(3)
contrasts(Evaluation.in.out$Condition_c_dum) <- contr.treatment(3, base = 3)
colnames(contrasts(Evaluation.in.out$Condition_c_eff)) = c("Worse", "Same")
colnames(contrasts(Evaluation.in.out$Condition_c_dum)) = c("Worse", "Same")

contrasts(Evaluation.in.out$Condition_d_eff) <-contr.sum(3)
contrasts(Evaluation.in.out$Condition_d_dum) <-contr.sum(3)
contrasts(Evaluation.in.out$Condition_d_dum) <- contr.treatment(3, base = 3)
colnames(contrasts(Evaluation.in.out$Condition_d_eff)) = c("Better", "Same")
colnames(contrasts(Evaluation.in.out$Condition_d_dum)) = c("Same", "Better")

contrasts(Evaluation.in.out$Evaluated.Group_eff) <-contr.sum(2)
contrasts(Evaluation.in.out$Evaluated.Group_dum) <-contr.sum(2)
contrasts(Evaluation.in.out$Evaluated.Group_dum) <- contr.treatment(2, base = 2)
colnames(contrasts(Evaluation.in.out$Evaluated.Group_eff)) = c("In.Group")
colnames(contrasts(Evaluation.in.out$Evaluated.Group_dum)) = c("In.Group")

contrasts(Evaluation.in.out$Evaluated.Group_eff1) <-contr.sum(2)
contrasts(Evaluation.in.out$Evaluated.Group_dum1) <-contr.sum(2)
contrasts(Evaluation.in.out$Evaluated.Group_dum1) <- contr.treatment(2, base = 2)
colnames(contrasts(Evaluation.in.out$Evaluated.Group_eff1)) = c("Out.Group")
colnames(contrasts(Evaluation.in.out$Evaluated.Group_dum1)) = c("Out.Group")

contrasts(Evaluation.in.out$Group_eff) <-contr.sum(2)
contrasts(Evaluation.in.out$Group_dum) <-contr.sum(2)
contrasts(Evaluation.in.out$Group_dum) <- contr.treatment(2, base = 2)
colnames(contrasts(Evaluation.in.out$Group_eff)) = c("Rep")
colnames(contrasts(Evaluation.in.out$Group_dum)) = c("Rep")

contrasts(Evaluation.in.out$Group_eff1) <-contr.sum(2)
contrasts(Evaluation.in.out$Group_dum1) <-contr.sum(2)
contrasts(Evaluation.in.out$Group_dum1) <- contr.treatment(2, base = 2)
colnames(contrasts(Evaluation.in.out$Group_eff1)) = c("Dem")
colnames(contrasts(Evaluation.in.out$Group_dum1)) = c("Dem")

contrasts(Evaluation.in.out$Valence_eff) <-contr.sum(2)
contrasts(Evaluation.in.out$Valence_dum) <-contr.sum(2)
contrasts(Evaluation.in.out$Valence_dum) <- contr.treatment(2, base = 2)
colnames(contrasts(Evaluation.in.out$Valence_eff)) = c("Neg")
colnames(contrasts(Evaluation.in.out$Valence_dum)) = c("Neg")

contrasts(Evaluation.in.out$Valence_eff1) <-contr.sum(2)
contrasts(Evaluation.in.out$Valence_dum1) <-contr.sum(2)
contrasts(Evaluation.in.out$Valence_dum1) <- contr.treatment(2, base = 2)
colnames(contrasts(Evaluation.in.out$Valence_eff1)) = c("Pos")
colnames(contrasts(Evaluation.in.out$Valence_dum1)) = c("Pos")

Generalized mixed models for Sampling Behavior

Histogram for DV

###Histogram for dv 
hist(sampled.in.out$n_trials)

Model 1[sampling]: More in group sampling than outgroup – collapsing across condition and first sample

#here we are dummy coding group with out group as the reference group and effects coding both condition and valence. 
collapsed.sampling.1 <- glmer(n_trials~Samp_GroupB_dum*Valence_eff*Condition_c_eff+ (1|Participant), data = sampled.in.out, family = 'poisson',
                              control=glmerControl(optimizer="bobyqa"))
summary(collapsed.sampling.1)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: poisson  ( log )
## Formula: n_trials ~ Samp_GroupB_dum * Valence_eff * Condition_c_eff +  
##     (1 | Participant)
##    Data: sampled.in.out
## Control: glmerControl(optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##   5504.5   5569.3  -2739.3   5478.5     1067 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5430 -0.3192 -0.0143  0.2435  5.4074 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  Participant (Intercept) 0.3101   0.5568  
## Number of obs: 1080, groups:  Participant, 540
## 
## Fixed effects:
##                                                               Estimate
## (Intercept)                                                  1.6800320
## Samp_GroupB_dumIn.Group                                      0.0453533
## Valence_effNeg                                               0.0002077
## Condition_c_effWorse                                        -0.0572763
## Condition_c_effSame                                          0.0909362
## Samp_GroupB_dumIn.Group:Valence_effNeg                      -0.0217248
## Samp_GroupB_dumIn.Group:Condition_c_effWorse                 0.0494602
## Samp_GroupB_dumIn.Group:Condition_c_effSame                 -0.0519302
## Valence_effNeg:Condition_c_effWorse                          0.0875519
## Valence_effNeg:Condition_c_effSame                          -0.0703728
## Samp_GroupB_dumIn.Group:Valence_effNeg:Condition_c_effWorse -0.0277120
## Samp_GroupB_dumIn.Group:Valence_effNeg:Condition_c_effSame  -0.0188083
##                                                             Std. Error
## (Intercept)                                                  0.0304008
## Samp_GroupB_dumIn.Group                                      0.0239009
## Valence_effNeg                                               0.0300155
## Condition_c_effWorse                                         0.0433094
## Condition_c_effSame                                          0.0425531
## Samp_GroupB_dumIn.Group:Valence_effNeg                       0.0239009
## Samp_GroupB_dumIn.Group:Condition_c_effWorse                 0.0347300
## Samp_GroupB_dumIn.Group:Condition_c_effSame                  0.0336198
## Valence_effNeg:Condition_c_effWorse                          0.0433092
## Valence_effNeg:Condition_c_effSame                           0.0425532
## Samp_GroupB_dumIn.Group:Valence_effNeg:Condition_c_effWorse  0.0347300
## Samp_GroupB_dumIn.Group:Valence_effNeg:Condition_c_effSame   0.0336198
##                                                             z value
## (Intercept)                                                  55.263
## Samp_GroupB_dumIn.Group                                       1.898
## Valence_effNeg                                                0.007
## Condition_c_effWorse                                         -1.322
## Condition_c_effSame                                           2.137
## Samp_GroupB_dumIn.Group:Valence_effNeg                       -0.909
## Samp_GroupB_dumIn.Group:Condition_c_effWorse                  1.424
## Samp_GroupB_dumIn.Group:Condition_c_effSame                  -1.545
## Valence_effNeg:Condition_c_effWorse                           2.022
## Valence_effNeg:Condition_c_effSame                           -1.654
## Samp_GroupB_dumIn.Group:Valence_effNeg:Condition_c_effWorse  -0.798
## Samp_GroupB_dumIn.Group:Valence_effNeg:Condition_c_effSame   -0.559
##                                                             Pr(>|z|)    
## (Intercept)                                                   <2e-16 ***
## Samp_GroupB_dumIn.Group                                       0.0578 .  
## Valence_effNeg                                                0.9945    
## Condition_c_effWorse                                          0.1860    
## Condition_c_effSame                                           0.0326 *  
## Samp_GroupB_dumIn.Group:Valence_effNeg                        0.3634    
## Samp_GroupB_dumIn.Group:Condition_c_effWorse                  0.1544    
## Samp_GroupB_dumIn.Group:Condition_c_effSame                   0.1224    
## Valence_effNeg:Condition_c_effWorse                           0.0432 *  
## Valence_effNeg:Condition_c_effSame                            0.0982 .  
## Samp_GroupB_dumIn.Group:Valence_effNeg:Condition_c_effWorse   0.4249    
## Samp_GroupB_dumIn.Group:Valence_effNeg:Condition_c_effSame    0.5759    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##                   (Intr) Sm_GB_I.G Vlnc_N Cnd__W Cnd__S Sm_GB_I.G:V_N
## Smp_GrB_I.G       -0.402                                             
## Valenc_ffNg       -0.002  0.006                                      
## Cndtn_c_ffW        0.055 -0.039     0.002                            
## Cndtn_c_ffS        0.006  0.014     0.009 -0.534                     
## Sm_GB_I.G:V_N      0.006 -0.002    -0.408  0.013 -0.014              
## S_GB_I.G:C__W     -0.038  0.077     0.013 -0.416  0.216 -0.021       
## S_GB_I.G:C__S      0.014 -0.015    -0.014  0.219 -0.399  0.041       
## Vlnc_N:C__W        0.000  0.013     0.057 -0.002 -0.006 -0.039       
## Vlnc_N:C__S        0.010 -0.014     0.007 -0.006  0.003  0.014       
## S_GB_I.G:V_N:C__W  0.013 -0.021    -0.039  0.015 -0.002  0.077       
## S_GB_I.G:V_N:C__S -0.014  0.041     0.014 -0.002 -0.004 -0.015       
##                   S_GB_I.G:C__W S_GB_I.G:C__S V_N:C__W V_N:C__S
## Smp_GrB_I.G                                                    
## Valenc_ffNg                                                    
## Cndtn_c_ffW                                                    
## Cndtn_c_ffS                                                    
## Sm_GB_I.G:V_N                                                  
## S_GB_I.G:C__W                                                  
## S_GB_I.G:C__S     -0.533                                       
## Vlnc_N:C__W        0.015        -0.002                         
## Vlnc_N:C__S       -0.002        -0.004        -0.534           
## S_GB_I.G:V_N:C__W -0.017        -0.012        -0.416    0.216  
## S_GB_I.G:V_N:C__S -0.012         0.027         0.219   -0.399  
##                   S_GB_I.G:V_N:C__W
## Smp_GrB_I.G                        
## Valenc_ffNg                        
## Cndtn_c_ffW                        
## Cndtn_c_ffS                        
## Sm_GB_I.G:V_N                      
## S_GB_I.G:C__W                      
## S_GB_I.G:C__S                      
## Vlnc_N:C__W                        
## Vlnc_N:C__S                        
## S_GB_I.G:V_N:C__W                  
## S_GB_I.G:V_N:C__S -0.533

Model 2[sampling]: More in group sampling with positive first sample – collapsing across condition

#here we are dummy coding valence and group with negative first sample and out group as the reference group and effects coding condition. 
collapsed.sampling.2 <- glmer(n_trials~Samp_GroupB_dum*Valence_dum1*Condition_c_eff+ (1|Participant), data = sampled.in.out, family = 'poisson',
                              control=glmerControl(optimizer="bobyqa"))

summary(collapsed.sampling.1)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: poisson  ( log )
## Formula: n_trials ~ Samp_GroupB_dum * Valence_eff * Condition_c_eff +  
##     (1 | Participant)
##    Data: sampled.in.out
## Control: glmerControl(optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##   5504.5   5569.3  -2739.3   5478.5     1067 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5430 -0.3192 -0.0143  0.2435  5.4074 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  Participant (Intercept) 0.3101   0.5568  
## Number of obs: 1080, groups:  Participant, 540
## 
## Fixed effects:
##                                                               Estimate
## (Intercept)                                                  1.6800320
## Samp_GroupB_dumIn.Group                                      0.0453533
## Valence_effNeg                                               0.0002077
## Condition_c_effWorse                                        -0.0572763
## Condition_c_effSame                                          0.0909362
## Samp_GroupB_dumIn.Group:Valence_effNeg                      -0.0217248
## Samp_GroupB_dumIn.Group:Condition_c_effWorse                 0.0494602
## Samp_GroupB_dumIn.Group:Condition_c_effSame                 -0.0519302
## Valence_effNeg:Condition_c_effWorse                          0.0875519
## Valence_effNeg:Condition_c_effSame                          -0.0703728
## Samp_GroupB_dumIn.Group:Valence_effNeg:Condition_c_effWorse -0.0277120
## Samp_GroupB_dumIn.Group:Valence_effNeg:Condition_c_effSame  -0.0188083
##                                                             Std. Error
## (Intercept)                                                  0.0304008
## Samp_GroupB_dumIn.Group                                      0.0239009
## Valence_effNeg                                               0.0300155
## Condition_c_effWorse                                         0.0433094
## Condition_c_effSame                                          0.0425531
## Samp_GroupB_dumIn.Group:Valence_effNeg                       0.0239009
## Samp_GroupB_dumIn.Group:Condition_c_effWorse                 0.0347300
## Samp_GroupB_dumIn.Group:Condition_c_effSame                  0.0336198
## Valence_effNeg:Condition_c_effWorse                          0.0433092
## Valence_effNeg:Condition_c_effSame                           0.0425532
## Samp_GroupB_dumIn.Group:Valence_effNeg:Condition_c_effWorse  0.0347300
## Samp_GroupB_dumIn.Group:Valence_effNeg:Condition_c_effSame   0.0336198
##                                                             z value
## (Intercept)                                                  55.263
## Samp_GroupB_dumIn.Group                                       1.898
## Valence_effNeg                                                0.007
## Condition_c_effWorse                                         -1.322
## Condition_c_effSame                                           2.137
## Samp_GroupB_dumIn.Group:Valence_effNeg                       -0.909
## Samp_GroupB_dumIn.Group:Condition_c_effWorse                  1.424
## Samp_GroupB_dumIn.Group:Condition_c_effSame                  -1.545
## Valence_effNeg:Condition_c_effWorse                           2.022
## Valence_effNeg:Condition_c_effSame                           -1.654
## Samp_GroupB_dumIn.Group:Valence_effNeg:Condition_c_effWorse  -0.798
## Samp_GroupB_dumIn.Group:Valence_effNeg:Condition_c_effSame   -0.559
##                                                             Pr(>|z|)    
## (Intercept)                                                   <2e-16 ***
## Samp_GroupB_dumIn.Group                                       0.0578 .  
## Valence_effNeg                                                0.9945    
## Condition_c_effWorse                                          0.1860    
## Condition_c_effSame                                           0.0326 *  
## Samp_GroupB_dumIn.Group:Valence_effNeg                        0.3634    
## Samp_GroupB_dumIn.Group:Condition_c_effWorse                  0.1544    
## Samp_GroupB_dumIn.Group:Condition_c_effSame                   0.1224    
## Valence_effNeg:Condition_c_effWorse                           0.0432 *  
## Valence_effNeg:Condition_c_effSame                            0.0982 .  
## Samp_GroupB_dumIn.Group:Valence_effNeg:Condition_c_effWorse   0.4249    
## Samp_GroupB_dumIn.Group:Valence_effNeg:Condition_c_effSame    0.5759    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##                   (Intr) Sm_GB_I.G Vlnc_N Cnd__W Cnd__S Sm_GB_I.G:V_N
## Smp_GrB_I.G       -0.402                                             
## Valenc_ffNg       -0.002  0.006                                      
## Cndtn_c_ffW        0.055 -0.039     0.002                            
## Cndtn_c_ffS        0.006  0.014     0.009 -0.534                     
## Sm_GB_I.G:V_N      0.006 -0.002    -0.408  0.013 -0.014              
## S_GB_I.G:C__W     -0.038  0.077     0.013 -0.416  0.216 -0.021       
## S_GB_I.G:C__S      0.014 -0.015    -0.014  0.219 -0.399  0.041       
## Vlnc_N:C__W        0.000  0.013     0.057 -0.002 -0.006 -0.039       
## Vlnc_N:C__S        0.010 -0.014     0.007 -0.006  0.003  0.014       
## S_GB_I.G:V_N:C__W  0.013 -0.021    -0.039  0.015 -0.002  0.077       
## S_GB_I.G:V_N:C__S -0.014  0.041     0.014 -0.002 -0.004 -0.015       
##                   S_GB_I.G:C__W S_GB_I.G:C__S V_N:C__W V_N:C__S
## Smp_GrB_I.G                                                    
## Valenc_ffNg                                                    
## Cndtn_c_ffW                                                    
## Cndtn_c_ffS                                                    
## Sm_GB_I.G:V_N                                                  
## S_GB_I.G:C__W                                                  
## S_GB_I.G:C__S     -0.533                                       
## Vlnc_N:C__W        0.015        -0.002                         
## Vlnc_N:C__S       -0.002        -0.004        -0.534           
## S_GB_I.G:V_N:C__W -0.017        -0.012        -0.416    0.216  
## S_GB_I.G:V_N:C__S -0.012         0.027         0.219   -0.399  
##                   S_GB_I.G:V_N:C__W
## Smp_GrB_I.G                        
## Valenc_ffNg                        
## Cndtn_c_ffW                        
## Cndtn_c_ffS                        
## Sm_GB_I.G:V_N                      
## S_GB_I.G:C__W                      
## S_GB_I.G:C__S                      
## Vlnc_N:C__W                        
## Vlnc_N:C__S                        
## S_GB_I.G:V_N:C__W                  
## S_GB_I.G:V_N:C__S -0.533

Model 3[sampling]: Positive first samples – holding Samp group (in/out) and condition constant?

#here we effects code group and condition and dummy code valence
collapsed.sampling.3 <- glmer(n_trials~Samp_GroupB_eff*Condition_c_eff*Valence_dum+ (1|Participant), data = sampled.in.out, family = 'poisson',
                              control=glmerControl(optimizer="bobyqa"))
summary(collapsed.sampling.3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: poisson  ( log )
## Formula: n_trials ~ Samp_GroupB_eff * Condition_c_eff * Valence_dum +  
##     (1 | Participant)
##    Data: sampled.in.out
## Control: glmerControl(optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##   5504.5   5569.3  -2739.3   5478.5     1067 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5430 -0.3192 -0.0143  0.2435  5.4074 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  Participant (Intercept) 0.3101   0.5568  
## Number of obs: 1080, groups:  Participant, 540
## 
## Fixed effects:
##                                                             Estimate
## (Intercept)                                                  1.71336
## Samp_GroupB_effIn.Group                                      0.03354
## Condition_c_effWorse                                        -0.10624
## Condition_c_effSame                                          0.14475
## Valence_dumNeg                                              -0.02131
## Samp_GroupB_effIn.Group:Condition_c_effWorse                 0.03859
## Samp_GroupB_effIn.Group:Condition_c_effSame                 -0.01656
## Samp_GroupB_effIn.Group:Valence_dumNeg                      -0.02172
## Condition_c_effWorse:Valence_dumNeg                          0.14739
## Condition_c_effSame:Valence_dumNeg                          -0.15955
## Samp_GroupB_effIn.Group:Condition_c_effWorse:Valence_dumNeg -0.02771
## Samp_GroupB_effIn.Group:Condition_c_effSame:Valence_dumNeg  -0.01881
##                                                             Std. Error
## (Intercept)                                                    0.03901
## Samp_GroupB_effIn.Group                                        0.01692
## Condition_c_effWorse                                           0.05547
## Condition_c_effSame                                            0.05505
## Valence_dumNeg                                                 0.05482
## Samp_GroupB_effIn.Group:Condition_c_effWorse                   0.02476
## Samp_GroupB_effIn.Group:Condition_c_effSame                    0.02345
## Samp_GroupB_effIn.Group:Valence_dumNeg                         0.02390
## Condition_c_effWorse:Valence_dumNeg                            0.07880
## Condition_c_effSame:Valence_dumNeg                             0.07804
## Samp_GroupB_effIn.Group:Condition_c_effWorse:Valence_dumNeg    0.03473
## Samp_GroupB_effIn.Group:Condition_c_effSame:Valence_dumNeg     0.03362
##                                                             z value
## (Intercept)                                                  43.917
## Samp_GroupB_effIn.Group                                       1.983
## Condition_c_effWorse                                         -1.915
## Condition_c_effSame                                           2.629
## Valence_dumNeg                                               -0.389
## Samp_GroupB_effIn.Group:Condition_c_effWorse                  1.558
## Samp_GroupB_effIn.Group:Condition_c_effSame                  -0.706
## Samp_GroupB_effIn.Group:Valence_dumNeg                       -0.909
## Condition_c_effWorse:Valence_dumNeg                           1.871
## Condition_c_effSame:Valence_dumNeg                           -2.044
## Samp_GroupB_effIn.Group:Condition_c_effWorse:Valence_dumNeg  -0.798
## Samp_GroupB_effIn.Group:Condition_c_effSame:Valence_dumNeg   -0.559
##                                                             Pr(>|z|)    
## (Intercept)                                                  < 2e-16 ***
## Samp_GroupB_effIn.Group                                      0.04742 *  
## Condition_c_effWorse                                         0.05547 .  
## Condition_c_effSame                                          0.00856 ** 
## Valence_dumNeg                                               0.69752    
## Samp_GroupB_effIn.Group:Condition_c_effWorse                 0.11915    
## Samp_GroupB_effIn.Group:Condition_c_effSame                  0.48008    
## Samp_GroupB_effIn.Group:Valence_dumNeg                       0.36338    
## Condition_c_effWorse:Valence_dumNeg                          0.06140 .  
## Condition_c_effSame:Valence_dumNeg                           0.04091 *  
## Samp_GroupB_effIn.Group:Condition_c_effWorse:Valence_dumNeg  0.42490    
## Samp_GroupB_effIn.Group:Condition_c_effSame:Valence_dumNeg   0.57587    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##                (Intr) Sm_GB_I.G Cnd__W Cnd__S Vlnc_N Sm_GB_I.G:C__W
## Smp_GrB_I.G    -0.016                                              
## Cndtn_c_ffW     0.035 -0.014                                       
## Cndtn_c_ffS     0.012  0.006    -0.526                             
## Valenc_dmNg    -0.701  0.011    -0.025 -0.010                      
## Sm_GB_I.G:C__W -0.014  0.097    -0.025  0.013  0.010               
## Sm_GB_I.G:C__S  0.006 -0.056     0.014 -0.011 -0.005 -0.524        
## S_GB_I.G:V_     0.011 -0.708     0.010 -0.004 -0.010 -0.069        
## Cndt__W:V_N    -0.026  0.010    -0.704  0.370  0.046  0.017        
## Cndt__S:V_N    -0.009 -0.004     0.371 -0.705  0.019 -0.009        
## S_GB_I.G:C__W:  0.010 -0.069     0.018 -0.009 -0.009 -0.713        
## S_GB_I.G:C__S: -0.004  0.039    -0.009  0.008  0.009  0.366        
##                Sm_GB_I.G:C__S S_GB_I.G:V C__W:V C__S:V S_GB_I.G:C__W:
## Smp_GrB_I.G                                                          
## Cndtn_c_ffW                                                          
## Cndtn_c_ffS                                                          
## Valenc_dmNg                                                          
## Sm_GB_I.G:C__W                                                       
## Sm_GB_I.G:C__S                                                       
## S_GB_I.G:V_     0.040                                                
## Cndt__W:V_N    -0.010         -0.009                                 
## Cndt__S:V_N     0.008          0.009     -0.534                      
## S_GB_I.G:C__W:  0.374          0.077     -0.016  0.005               
## S_GB_I.G:C__S: -0.698         -0.015      0.006 -0.004 -0.533

Model 4[sampling]: Contrast coding. Better/Worse = 0; Same = 1

collapsed.sampling.4 <- glmer(n_trials~Samp_GroupB_dum*Condition_contr_dum+ (1|Participant), data = sampled.in.out, family = 'poisson',
                              control=glmerControl(optimizer="bobyqa"))
summary(collapsed.sampling.4)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: poisson  ( log )
## Formula: 
## n_trials ~ Samp_GroupB_dum * Condition_contr_dum + (1 | Participant)
##    Data: sampled.in.out
## Control: glmerControl(optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##   5496.8   5521.7  -2743.4   5486.8     1075 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.6144 -0.3092 -0.0194  0.2335  5.5153 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  Participant (Intercept) 0.3137   0.5601  
## Number of obs: 1080, groups:  Participant, 540
## 
## Fixed effects:
##                                                 Estimate Std. Error
## (Intercept)                                      1.63483    0.03699
## Samp_GroupB_dumIn.Group                          0.06875    0.02926
## Condition_contr_dumSame                          0.13512    0.06398
## Samp_GroupB_dumIn.Group:Condition_contr_dumSame -0.07302    0.05027
##                                                 z value Pr(>|z|)    
## (Intercept)                                      44.192   <2e-16 ***
## Samp_GroupB_dumIn.Group                           2.350   0.0188 *  
## Condition_contr_dumSame                           2.112   0.0347 *  
## Samp_GroupB_dumIn.Group:Condition_contr_dumSame  -1.453   0.1463    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Sm_GB_I.G Cnd__S
## Smp_GrB_I.G -0.409                 
## Cndtn_cnt_S -0.569  0.237          
## S_GB_I.G:C_  0.238 -0.582    -0.397

Model 5[sampling]: What is happening in the better condition?

collapsed.sampling.5 <- glmer(n_trials~Samp_GroupB_eff*Condition_d_dum*Valence_eff+ (1|Participant), data = sampled.in.out, family = 'poisson',
                              control=glmerControl(optimizer="bobyqa"))
summary(collapsed.sampling.5)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: poisson  ( log )
## Formula: n_trials ~ Samp_GroupB_eff * Condition_d_dum * Valence_eff +  
##     (1 | Participant)
##    Data: sampled.in.out
## Control: glmerControl(optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##   5504.5   5569.3  -2739.3   5478.5     1067 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5430 -0.3192 -0.0143  0.2435  5.4074 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  Participant (Intercept) 0.3101   0.5568  
## Number of obs: 1080, groups:  Participant, 540
## 
## Fixed effects:
##                                                                Estimate
## (Intercept)                                                   1.6701613
## Samp_GroupB_effIn.Group                                       0.0474067
## Condition_d_dumSame                                           0.0975190
## Condition_d_dumBetter                                         0.0001231
## Valence_effNeg                                                0.0630417
## Samp_GroupB_effIn.Group:Condition_d_dumSame                  -0.0506953
## Samp_GroupB_effIn.Group:Condition_d_dumBetter                -0.0234951
## Samp_GroupB_effIn.Group:Valence_effNeg                       -0.0247179
## Condition_d_dumSame:Valence_effNeg                           -0.1534728
## Condition_d_dumBetter:Valence_effNeg                         -0.0676161
## Samp_GroupB_effIn.Group:Condition_d_dumSame:Valence_effNeg    0.0044511
## Samp_GroupB_effIn.Group:Condition_d_dumBetter:Valence_effNeg  0.0371157
##                                                              Std. Error
## (Intercept)                                                   0.0492085
## Samp_GroupB_effIn.Group                                       0.0218217
## Condition_d_dumSame                                           0.0686716
## Condition_d_dumBetter                                         0.0667061
## Valence_effNeg                                                0.0490103
## Samp_GroupB_effIn.Group:Condition_d_dumSame                   0.0299243
## Samp_GroupB_effIn.Group:Condition_d_dumBetter                 0.0294287
## Samp_GroupB_effIn.Group:Valence_effNeg                        0.0218217
## Condition_d_dumSame:Valence_effNeg                            0.0686753
## Condition_d_dumBetter:Valence_effNeg                          0.0666979
## Samp_GroupB_effIn.Group:Condition_d_dumSame:Valence_effNeg    0.0299243
## Samp_GroupB_effIn.Group:Condition_d_dumBetter:Valence_effNeg  0.0294287
##                                                              z value
## (Intercept)                                                   33.941
## Samp_GroupB_effIn.Group                                        2.172
## Condition_d_dumSame                                            1.420
## Condition_d_dumBetter                                          0.002
## Valence_effNeg                                                 1.286
## Samp_GroupB_effIn.Group:Condition_d_dumSame                   -1.694
## Samp_GroupB_effIn.Group:Condition_d_dumBetter                 -0.798
## Samp_GroupB_effIn.Group:Valence_effNeg                        -1.133
## Condition_d_dumSame:Valence_effNeg                            -2.235
## Condition_d_dumBetter:Valence_effNeg                          -1.014
## Samp_GroupB_effIn.Group:Condition_d_dumSame:Valence_effNeg     0.149
## Samp_GroupB_effIn.Group:Condition_d_dumBetter:Valence_effNeg   1.261
##                                                              Pr(>|z|)    
## (Intercept)                                                    <2e-16 ***
## Samp_GroupB_effIn.Group                                        0.0298 *  
## Condition_d_dumSame                                            0.1556    
## Condition_d_dumBetter                                          0.9985    
## Valence_effNeg                                                 0.1983    
## Samp_GroupB_effIn.Group:Condition_d_dumSame                    0.0902 .  
## Samp_GroupB_effIn.Group:Condition_d_dumBetter                  0.4247    
## Samp_GroupB_effIn.Group:Valence_effNeg                         0.2573    
## Condition_d_dumSame:Valence_effNeg                             0.0254 *  
## Condition_d_dumBetter:Valence_effNeg                           0.3107    
## Samp_GroupB_effIn.Group:Condition_d_dumSame:Valence_effNeg     0.8818    
## Samp_GroupB_effIn.Group:Condition_d_dumBetter:Valence_effNeg   0.2072    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##                (Intr) Sm_GB_I.G Cnd__S Cnd__B Vlnc_N Sm_GB_I.G:C__S
## Smp_GrB_I.G    -0.021                                              
## Cndtn_d_dmS    -0.711  0.015                                       
## Cndtn_d_dmB    -0.730  0.016     0.524                             
## Valenc_ffNg     0.015  0.012    -0.011 -0.011                      
## Sm_GB_I.G:C__S  0.016 -0.729    -0.010 -0.011 -0.008               
## Sm_GB_I.G:C__B  0.016 -0.742    -0.011 -0.016 -0.009  0.541        
## S_GB_I.G:V_     0.012 -0.030    -0.008 -0.009 -0.021  0.022        
## Cndt__S:V_N    -0.010 -0.008     0.012  0.008 -0.714  0.010        
## Cndt__B:V_N    -0.011 -0.009     0.008 -0.002 -0.735  0.006        
## S_GB_I.G:C__S: -0.008  0.022     0.010  0.006  0.016  0.011        
## S_GB_I.G:C__B: -0.009  0.022     0.006  0.004  0.016 -0.016        
##                Sm_GB_I.G:C__B S_GB_I.G:V C__S:V C__B:V S_GB_I.G:C__S:
## Smp_GrB_I.G                                                          
## Cndtn_d_dmS                                                          
## Cndtn_d_dmB                                                          
## Valenc_ffNg                                                          
## Sm_GB_I.G:C__S                                                       
## Sm_GB_I.G:C__B                                                       
## S_GB_I.G:V_     0.022                                                
## Cndt__S:V_N     0.006          0.015                                 
## Cndt__B:V_N     0.004          0.016      0.524                      
## S_GB_I.G:C__S: -0.016         -0.729     -0.010 -0.011               
## S_GB_I.G:C__B: -0.030         -0.742     -0.011 -0.016  0.541

Linear mixed models for for point-estimates

Histogram for DV

hist(Evaluation.in.out$P.Estimates)

Model 1[point-estimates]: In group biases holding valence and condition constant.

#
collapsed.evaluation.1 <- lmer(P.Estimates~Evaluated.Group_dum*Condition_c_eff*Valence_eff*+ (1|Participant), data = Evaluation.in.out)
summary(collapsed.evaluation.1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## P.Estimates ~ Evaluated.Group_dum * Condition_c_eff * Valence_eff *  
##     +(1 | Participant)
##    Data: Evaluation.in.out
## 
## REML criterion at convergence: 7650.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -7.3484 -0.4843  0.0722  0.4964  3.9430 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  Participant (Intercept)  0.8512  0.9226  
##  Residual                69.8962  8.3604  
## Number of obs: 1080, groups:  Participant, 540
## 
## Fixed effects:
##                                                                  Estimate
## (Intercept)                                                       62.7440
## Evaluated.Group_dumIn.Group                                        3.0476
## Condition_c_effWorse                                               1.2830
## Condition_c_effSame                                                0.3925
## Valence_effNeg                                                    -0.8837
## Evaluated.Group_dumIn.Group:Condition_c_effWorse                  -3.0052
## Evaluated.Group_dumIn.Group:Condition_c_effSame                   -0.6501
## Evaluated.Group_dumIn.Group:Valence_effNeg                        -1.5783
## Condition_c_effWorse:Valence_effNeg                               -1.2042
## Condition_c_effSame:Valence_effNeg                                 0.6438
## Evaluated.Group_dumIn.Group:Condition_c_effWorse:Valence_effNeg    1.0115
## Evaluated.Group_dumIn.Group:Condition_c_effSame:Valence_effNeg    -0.6124
##                                                                 Std. Error
## (Intercept)                                                         0.3630
## Evaluated.Group_dumIn.Group                                         0.5103
## Condition_c_effWorse                                                0.5210
## Condition_c_effSame                                                 0.5186
## Valence_effNeg                                                      0.3630
## Evaluated.Group_dumIn.Group:Condition_c_effWorse                    0.7324
## Evaluated.Group_dumIn.Group:Condition_c_effSame                     0.7289
## Evaluated.Group_dumIn.Group:Valence_effNeg                          0.5103
## Condition_c_effWorse:Valence_effNeg                                 0.5210
## Condition_c_effSame:Valence_effNeg                                  0.5186
## Evaluated.Group_dumIn.Group:Condition_c_effWorse:Valence_effNeg     0.7324
## Evaluated.Group_dumIn.Group:Condition_c_effSame:Valence_effNeg      0.7289
##                                                                        df
## (Intercept)                                                     1067.8454
## Evaluated.Group_dumIn.Group                                      534.0398
## Condition_c_effWorse                                            1067.8454
## Condition_c_effSame                                             1067.8454
## Valence_effNeg                                                  1067.8454
## Evaluated.Group_dumIn.Group:Condition_c_effWorse                 534.0398
## Evaluated.Group_dumIn.Group:Condition_c_effSame                  534.0398
## Evaluated.Group_dumIn.Group:Valence_effNeg                       534.0398
## Condition_c_effWorse:Valence_effNeg                             1067.8454
## Condition_c_effSame:Valence_effNeg                              1067.8454
## Evaluated.Group_dumIn.Group:Condition_c_effWorse:Valence_effNeg  534.0398
## Evaluated.Group_dumIn.Group:Condition_c_effSame:Valence_effNeg   534.0398
##                                                                 t value
## (Intercept)                                                     172.835
## Evaluated.Group_dumIn.Group                                       5.972
## Condition_c_effWorse                                              2.463
## Condition_c_effSame                                               0.757
## Valence_effNeg                                                   -2.434
## Evaluated.Group_dumIn.Group:Condition_c_effWorse                 -4.103
## Evaluated.Group_dumIn.Group:Condition_c_effSame                  -0.892
## Evaluated.Group_dumIn.Group:Valence_effNeg                       -3.093
## Condition_c_effWorse:Valence_effNeg                              -2.311
## Condition_c_effSame:Valence_effNeg                                1.241
## Evaluated.Group_dumIn.Group:Condition_c_effWorse:Valence_effNeg   1.381
## Evaluated.Group_dumIn.Group:Condition_c_effSame:Valence_effNeg   -0.840
##                                                                 Pr(>|t|)
## (Intercept)                                                      < 2e-16
## Evaluated.Group_dumIn.Group                                     4.27e-09
## Condition_c_effWorse                                             0.01395
## Condition_c_effSame                                              0.44924
## Valence_effNeg                                                   0.01508
## Evaluated.Group_dumIn.Group:Condition_c_effWorse                4.71e-05
## Evaluated.Group_dumIn.Group:Condition_c_effSame                  0.37290
## Evaluated.Group_dumIn.Group:Valence_effNeg                       0.00209
## Condition_c_effWorse:Valence_effNeg                              0.02101
## Condition_c_effSame:Valence_effNeg                               0.21471
## Evaluated.Group_dumIn.Group:Condition_c_effWorse:Valence_effNeg  0.16781
## Evaluated.Group_dumIn.Group:Condition_c_effSame:Valence_effNeg   0.40125
##                                                                    
## (Intercept)                                                     ***
## Evaluated.Group_dumIn.Group                                     ***
## Condition_c_effWorse                                            *  
## Condition_c_effSame                                                
## Valence_effNeg                                                  *  
## Evaluated.Group_dumIn.Group:Condition_c_effWorse                ***
## Evaluated.Group_dumIn.Group:Condition_c_effSame                    
## Evaluated.Group_dumIn.Group:Valence_effNeg                      ** 
## Condition_c_effWorse:Valence_effNeg                             *  
## Condition_c_effSame:Valence_effNeg                                 
## Evaluated.Group_dumIn.Group:Condition_c_effWorse:Valence_effNeg    
## Evaluated.Group_dumIn.Group:Condition_c_effSame:Valence_effNeg     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##               (Intr) Ev.G_I.G Cnd__W Cnd__S Vlnc_N Ev.G_I.G:C__W
## Evltd.G_I.G   -0.703                                            
## Cndtn_c_ffW    0.042 -0.029                                     
## Cndtn_c_ffS    0.028 -0.020   -0.537                            
## Valenc_ffNg   -0.001  0.001    0.023 -0.008                     
## Ev.G_I.G:C__W -0.029  0.042   -0.703  0.377 -0.016              
## Ev.G_I.G:C__S -0.020  0.028    0.377 -0.703  0.005 -0.537       
## E.G_I.G:V_N    0.001 -0.001   -0.016  0.005 -0.703  0.023       
## Cndt__W:V_N    0.023 -0.016    0.015 -0.010  0.042 -0.010       
## Cndt__S:V_N   -0.008  0.005   -0.010 -0.006  0.028  0.007       
## E.G_I.G:C__W: -0.016  0.023   -0.010  0.007 -0.029  0.015       
## E.G_I.G:C__S:  0.005 -0.008    0.007  0.005 -0.020 -0.010       
##               Ev.G_I.G:C__S E.G_I.G:V C__W:V C__S:V E.G_I.G:C__W:
## Evltd.G_I.G                                                      
## Cndtn_c_ffW                                                      
## Cndtn_c_ffS                                                      
## Valenc_ffNg                                                      
## Ev.G_I.G:C__W                                                    
## Ev.G_I.G:C__S                                                    
## E.G_I.G:V_N   -0.008                                             
## Cndt__W:V_N    0.007        -0.029                               
## Cndt__S:V_N    0.005        -0.020    -0.537                     
## E.G_I.G:C__W: -0.010         0.042    -0.703  0.377              
## E.G_I.G:C__S: -0.006         0.028     0.377 -0.703 -0.537

Model 2[point-estimates]: Effect if furst sample valence holding group and condition constant

collapsed.evaluation.2 <- lmer(P.Estimates~Valence_dum1*Condition_c_eff*Evaluated.Group_eff+ (1|Participant), data = Evaluation.in.out)
summary(collapsed.evaluation.2)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## P.Estimates ~ Valence_dum1 * Condition_c_eff * Evaluated.Group_eff +  
##     (1 | Participant)
##    Data: Evaluation.in.out
## 
## REML criterion at convergence: 7650.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -7.3484 -0.4843  0.0722  0.4964  3.9430 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  Participant (Intercept)  0.8512  0.9226  
##  Residual                69.8962  8.3604  
## Number of obs: 1080, groups:  Participant, 540
## 
## Fixed effects:
##                                                                  Estimate
## (Intercept)                                                       62.5949
## Valence_dum1Pos                                                    3.3458
## Condition_c_effWorse                                              -0.9181
## Condition_c_effSame                                                0.4051
## Evaluated.Group_effIn.Group                                        0.7347
## Valence_dum1Pos:Condition_c_effWorse                               1.3969
## Valence_dum1Pos:Condition_c_effSame                               -0.6752
## Valence_dum1Pos:Evaluated.Group_effIn.Group                        1.5783
## Condition_c_effWorse:Evaluated.Group_effIn.Group                  -0.9969
## Condition_c_effSame:Evaluated.Group_effIn.Group                   -0.6312
## Valence_dum1Pos:Condition_c_effWorse:Evaluated.Group_effIn.Group  -1.0115
## Valence_dum1Pos:Condition_c_effSame:Evaluated.Group_effIn.Group    0.6124
##                                                                  Std. Error
## (Intercept)                                                          0.3650
## Valence_dum1Pos                                                      0.5165
## Condition_c_effWorse                                                 0.5280
## Condition_c_effSame                                                  0.5200
## Evaluated.Group_effIn.Group                                          0.3606
## Valence_dum1Pos:Condition_c_effWorse                                 0.7412
## Valence_dum1Pos:Condition_c_effSame                                  0.7378
## Valence_dum1Pos:Evaluated.Group_effIn.Group                          0.5103
## Condition_c_effWorse:Evaluated.Group_effIn.Group                     0.5217
## Condition_c_effSame:Evaluated.Group_effIn.Group                      0.5138
## Valence_dum1Pos:Condition_c_effWorse:Evaluated.Group_effIn.Group     0.7324
## Valence_dum1Pos:Condition_c_effSame:Evaluated.Group_effIn.Group      0.7289
##                                                                        df
## (Intercept)                                                      534.0360
## Valence_dum1Pos                                                  534.0360
## Condition_c_effWorse                                             534.0360
## Condition_c_effSame                                              534.0360
## Evaluated.Group_effIn.Group                                      534.0398
## Valence_dum1Pos:Condition_c_effWorse                             534.0360
## Valence_dum1Pos:Condition_c_effSame                              534.0360
## Valence_dum1Pos:Evaluated.Group_effIn.Group                      534.0398
## Condition_c_effWorse:Evaluated.Group_effIn.Group                 534.0398
## Condition_c_effSame:Evaluated.Group_effIn.Group                  534.0398
## Valence_dum1Pos:Condition_c_effWorse:Evaluated.Group_effIn.Group 534.0398
## Valence_dum1Pos:Condition_c_effSame:Evaluated.Group_effIn.Group  534.0398
##                                                                  t value
## (Intercept)                                                      171.492
## Valence_dum1Pos                                                    6.478
## Condition_c_effWorse                                              -1.739
## Condition_c_effSame                                                0.779
## Evaluated.Group_effIn.Group                                        2.037
## Valence_dum1Pos:Condition_c_effWorse                               1.885
## Valence_dum1Pos:Condition_c_effSame                               -0.915
## Valence_dum1Pos:Evaluated.Group_effIn.Group                        3.093
## Condition_c_effWorse:Evaluated.Group_effIn.Group                  -1.911
## Condition_c_effSame:Evaluated.Group_effIn.Group                   -1.229
## Valence_dum1Pos:Condition_c_effWorse:Evaluated.Group_effIn.Group  -1.381
## Valence_dum1Pos:Condition_c_effSame:Evaluated.Group_effIn.Group    0.840
##                                                                  Pr(>|t|)
## (Intercept)                                                       < 2e-16
## Valence_dum1Pos                                                  2.11e-10
## Condition_c_effWorse                                              0.08264
## Condition_c_effSame                                               0.43628
## Evaluated.Group_effIn.Group                                       0.04213
## Valence_dum1Pos:Condition_c_effWorse                              0.06003
## Valence_dum1Pos:Condition_c_effSame                               0.36049
## Valence_dum1Pos:Evaluated.Group_effIn.Group                       0.00209
## Condition_c_effWorse:Evaluated.Group_effIn.Group                  0.05655
## Condition_c_effSame:Evaluated.Group_effIn.Group                   0.21976
## Valence_dum1Pos:Condition_c_effWorse:Evaluated.Group_effIn.Group  0.16781
## Valence_dum1Pos:Condition_c_effSame:Evaluated.Group_effIn.Group   0.40125
##                                                                     
## (Intercept)                                                      ***
## Valence_dum1Pos                                                  ***
## Condition_c_effWorse                                             .  
## Condition_c_effSame                                                 
## Evaluated.Group_effIn.Group                                      *  
## Valence_dum1Pos:Condition_c_effWorse                             .  
## Valence_dum1Pos:Condition_c_effSame                                 
## Valence_dum1Pos:Evaluated.Group_effIn.Group                      ** 
## Condition_c_effWorse:Evaluated.Group_effIn.Group                 .  
## Condition_c_effSame:Evaluated.Group_effIn.Group                     
## Valence_dum1Pos:Condition_c_effWorse:Evaluated.Group_effIn.Group    
## Valence_dum1Pos:Condition_c_effSame:Evaluated.Group_effIn.Group     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Vln_1P Cnd__W Cnd__S E.G_I. Vl_1P:C__W Vl_1P:C__S
## Valnc_dm1Ps -0.707                                                  
## Cndtn_c_ffW  0.064 -0.045                                           
## Cndtn_c_ffS  0.021 -0.015 -0.544                                    
## Evltd.G_I.G  0.000  0.000  0.000  0.000                             
## Vln_1P:C__W -0.045  0.042 -0.712  0.388  0.000                      
## Vln_1P:C__S -0.015  0.028  0.384 -0.705  0.000 -0.537               
## V_1P:E.G_I.  0.000  0.000  0.000  0.000 -0.707  0.000      0.000    
## C__W:E.G_I.  0.000  0.000  0.000  0.000  0.064  0.000      0.000    
## C__S:E.G_I.  0.000  0.000  0.000  0.000  0.021  0.000      0.000    
## V_1P:C__W:E  0.000  0.000  0.000  0.000 -0.045  0.000      0.000    
## V_1P:C__S:E  0.000  0.000  0.000  0.000 -0.015  0.000      0.000    
##             V_1P:E C__W:E C__S:E V_1P:C__W:
## Valnc_dm1Ps                                
## Cndtn_c_ffW                                
## Cndtn_c_ffS                                
## Evltd.G_I.G                                
## Vln_1P:C__W                                
## Vln_1P:C__S                                
## V_1P:E.G_I.                                
## C__W:E.G_I. -0.045                         
## C__S:E.G_I. -0.015 -0.544                  
## V_1P:C__W:E  0.042 -0.712  0.388           
## V_1P:C__S:E  0.028  0.384 -0.705 -0.537

Model 3[point-estimates]

collapsed.evaluation.3 <- lmer(P.Estimates~Evaluated.Group_eff*Valence_dum1*Condition_c_eff+ (1|Participant), data = Evaluation.in.out)
summary(collapsed.evaluation.3)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## P.Estimates ~ Evaluated.Group_eff * Valence_dum1 * Condition_c_eff +  
##     (1 | Participant)
##    Data: Evaluation.in.out
## 
## REML criterion at convergence: 7650.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -7.3484 -0.4843  0.0722  0.4964  3.9430 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  Participant (Intercept)  0.8512  0.9226  
##  Residual                69.8962  8.3604  
## Number of obs: 1080, groups:  Participant, 540
## 
## Fixed effects:
##                                                                  Estimate
## (Intercept)                                                       62.5949
## Evaluated.Group_effIn.Group                                        0.7347
## Valence_dum1Pos                                                    3.3458
## Condition_c_effWorse                                              -0.9181
## Condition_c_effSame                                                0.4051
## Evaluated.Group_effIn.Group:Valence_dum1Pos                        1.5783
## Evaluated.Group_effIn.Group:Condition_c_effWorse                  -0.9969
## Evaluated.Group_effIn.Group:Condition_c_effSame                   -0.6312
## Valence_dum1Pos:Condition_c_effWorse                               1.3969
## Valence_dum1Pos:Condition_c_effSame                               -0.6752
## Evaluated.Group_effIn.Group:Valence_dum1Pos:Condition_c_effWorse  -1.0115
## Evaluated.Group_effIn.Group:Valence_dum1Pos:Condition_c_effSame    0.6124
##                                                                  Std. Error
## (Intercept)                                                          0.3650
## Evaluated.Group_effIn.Group                                          0.3606
## Valence_dum1Pos                                                      0.5165
## Condition_c_effWorse                                                 0.5280
## Condition_c_effSame                                                  0.5200
## Evaluated.Group_effIn.Group:Valence_dum1Pos                          0.5103
## Evaluated.Group_effIn.Group:Condition_c_effWorse                     0.5217
## Evaluated.Group_effIn.Group:Condition_c_effSame                      0.5138
## Valence_dum1Pos:Condition_c_effWorse                                 0.7412
## Valence_dum1Pos:Condition_c_effSame                                  0.7378
## Evaluated.Group_effIn.Group:Valence_dum1Pos:Condition_c_effWorse     0.7324
## Evaluated.Group_effIn.Group:Valence_dum1Pos:Condition_c_effSame      0.7289
##                                                                        df
## (Intercept)                                                      534.0360
## Evaluated.Group_effIn.Group                                      534.0398
## Valence_dum1Pos                                                  534.0360
## Condition_c_effWorse                                             534.0360
## Condition_c_effSame                                              534.0360
## Evaluated.Group_effIn.Group:Valence_dum1Pos                      534.0398
## Evaluated.Group_effIn.Group:Condition_c_effWorse                 534.0398
## Evaluated.Group_effIn.Group:Condition_c_effSame                  534.0398
## Valence_dum1Pos:Condition_c_effWorse                             534.0360
## Valence_dum1Pos:Condition_c_effSame                              534.0360
## Evaluated.Group_effIn.Group:Valence_dum1Pos:Condition_c_effWorse 534.0398
## Evaluated.Group_effIn.Group:Valence_dum1Pos:Condition_c_effSame  534.0398
##                                                                  t value
## (Intercept)                                                      171.492
## Evaluated.Group_effIn.Group                                        2.037
## Valence_dum1Pos                                                    6.478
## Condition_c_effWorse                                              -1.739
## Condition_c_effSame                                                0.779
## Evaluated.Group_effIn.Group:Valence_dum1Pos                        3.093
## Evaluated.Group_effIn.Group:Condition_c_effWorse                  -1.911
## Evaluated.Group_effIn.Group:Condition_c_effSame                   -1.229
## Valence_dum1Pos:Condition_c_effWorse                               1.885
## Valence_dum1Pos:Condition_c_effSame                               -0.915
## Evaluated.Group_effIn.Group:Valence_dum1Pos:Condition_c_effWorse  -1.381
## Evaluated.Group_effIn.Group:Valence_dum1Pos:Condition_c_effSame    0.840
##                                                                  Pr(>|t|)
## (Intercept)                                                       < 2e-16
## Evaluated.Group_effIn.Group                                       0.04213
## Valence_dum1Pos                                                  2.11e-10
## Condition_c_effWorse                                              0.08264
## Condition_c_effSame                                               0.43628
## Evaluated.Group_effIn.Group:Valence_dum1Pos                       0.00209
## Evaluated.Group_effIn.Group:Condition_c_effWorse                  0.05655
## Evaluated.Group_effIn.Group:Condition_c_effSame                   0.21976
## Valence_dum1Pos:Condition_c_effWorse                              0.06003
## Valence_dum1Pos:Condition_c_effSame                               0.36049
## Evaluated.Group_effIn.Group:Valence_dum1Pos:Condition_c_effWorse  0.16781
## Evaluated.Group_effIn.Group:Valence_dum1Pos:Condition_c_effSame   0.40125
##                                                                     
## (Intercept)                                                      ***
## Evaluated.Group_effIn.Group                                      *  
## Valence_dum1Pos                                                  ***
## Condition_c_effWorse                                             .  
## Condition_c_effSame                                                 
## Evaluated.Group_effIn.Group:Valence_dum1Pos                      ** 
## Evaluated.Group_effIn.Group:Condition_c_effWorse                 .  
## Evaluated.Group_effIn.Group:Condition_c_effSame                     
## Valence_dum1Pos:Condition_c_effWorse                             .  
## Valence_dum1Pos:Condition_c_effSame                                 
## Evaluated.Group_effIn.Group:Valence_dum1Pos:Condition_c_effWorse    
## Evaluated.Group_effIn.Group:Valence_dum1Pos:Condition_c_effSame     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##                   (Intr) Ev.G_I.G Vln_1P Cnd__W Cnd__S Ev.G_I.G:V_1P
## Evltd.G_I.G        0.000                                            
## Valnc_dm1Ps       -0.707  0.000                                     
## Cndtn_c_ffW        0.064  0.000   -0.045                            
## Cndtn_c_ffS        0.021  0.000   -0.015 -0.544                     
## Ev.G_I.G:V_1P      0.000 -0.707    0.000  0.000  0.000              
## E.G_I.G:C__W       0.000  0.064    0.000  0.000  0.000 -0.045       
## E.G_I.G:C__S       0.000  0.021    0.000  0.000  0.000 -0.015       
## Vln_1P:C__W       -0.045  0.000    0.042 -0.712  0.388  0.000       
## Vln_1P:C__S       -0.015  0.000    0.028  0.384 -0.705  0.000       
## E.G_I.G:V_1P:C__W  0.000 -0.045    0.000  0.000  0.000  0.042       
## E.G_I.G:V_1P:C__S  0.000 -0.015    0.000  0.000  0.000  0.028       
##                   E.G_I.G:C__W E.G_I.G:C__S V_1P:C__W V_1P:C__S
## Evltd.G_I.G                                                    
## Valnc_dm1Ps                                                    
## Cndtn_c_ffW                                                    
## Cndtn_c_ffS                                                    
## Ev.G_I.G:V_1P                                                  
## E.G_I.G:C__W                                                   
## E.G_I.G:C__S      -0.544                                       
## Vln_1P:C__W        0.000        0.000                          
## Vln_1P:C__S        0.000        0.000       -0.537             
## E.G_I.G:V_1P:C__W -0.712        0.388        0.000     0.000   
## E.G_I.G:V_1P:C__S  0.384       -0.705        0.000     0.000   
##                   E.G_I.G:V_1P:C__W
## Evltd.G_I.G                        
## Valnc_dm1Ps                        
## Cndtn_c_ffW                        
## Cndtn_c_ffS                        
## Ev.G_I.G:V_1P                      
## E.G_I.G:C__W                       
## E.G_I.G:C__S                       
## Vln_1P:C__W                        
## Vln_1P:C__S                        
## E.G_I.G:V_1P:C__W                  
## E.G_I.G:V_1P:C__S -0.537

Power Simulations with the Simr package

Post-hoc power with current sample size. Monte Carlo simulations with 1k simulations

Sample first from in group – collapsed across conditiona and first sample valence coefficient

#We set a seed here so that we can replicate this simulation exactly.
#nsim and alpha are the default in this function but I made them explicit so that we could see it. 
sim <- powerSim(collapsed.sampling.1, fixed("Samp_GroupB_dumIn.Group", "z"), seed = 5, nsim = 800, alpha = .05)
## Simulating: |                                                             |Simulating: |=                                                            |Simulating: |==                                                           |Simulating: |===                                                          |Simulating: |====                                                         |Simulating: |=====                                                        |Simulating: |======                                                       |Simulating: |=======                                                      |Simulating: |========                                                     |Simulating: |=========                                                    |Simulating: |==========                                                   |Simulating: |===========                                                  |Simulating: |============                                                 |Simulating: |=============                                                |Simulating: |==============                                               |Simulating: |===============                                              |Simulating: |================                                             |Simulating: |=================                                            |Simulating: |==================                                           |Simulating: |===================                                          |Simulating: |====================                                         |Simulating: |=====================                                        |Simulating: |======================                                       |Simulating: |=======================                                      |Simulating: |========================                                     |Simulating: |=========================                                    |Simulating: |==========================                                   |Simulating: |===========================                                  |Simulating: |============================                                 |Simulating: |=============================                                |Simulating: |==============================                               |Simulating: |===============================                              |Simulating: |================================                             |Simulating: |=================================                            |Simulating: |==================================                           |Simulating: |===================================                          |Simulating: |====================================                         |Simulating: |=====================================                        |Simulating: |======================================                       |Simulating: |=======================================                      |Simulating: |========================================                     |Simulating: |=========================================                    |Simulating: |==========================================                   |Simulating: |===========================================                  |Simulating: |============================================                 |Simulating: |=============================================                |Simulating: |==============================================               |Simulating: |===============================================              |Simulating: |================================================             |Simulating: |=================================================            |Simulating: |==================================================           |Simulating: |===================================================          |Simulating: |====================================================         |Simulating: |=====================================================        |Simulating: |======================================================       |Simulating: |=======================================================      |Simulating: |========================================================     |Simulating: |=========================================================    |Simulating: |==========================================================   |Simulating: |===========================================================  |Simulating: |============================================================ |Simulating: |=============================================================|
## Warning in observedPowerWarning(sim): This appears to be an "observed
## power" calculation
sim
## Power for predictor 'Samp_GroupB_dumIn.Group', (95% confidence interval):
##       47.75% (44.24, 51.28)
## 
## Test: z-test
##       Effect size for Samp_GroupB_dumIn.Group is 0.045
## 
## Based on 800 simulations, (0 warnings, 0 errors)
## alpha = 0.05, nrow = 1080
## 
## Time elapsed: 0 h 11 m 29 s
## 
## nb: result might be an observed power calculation

Sample more in same condition coefficient

sim2 <- powerSim(collapsed.sampling.1, fixed("Condition_c_effSame", "z"), seed = 2, nsim = 800, alpha = .05)
## Simulating: |                                                             |Simulating: |=                                                            |Simulating: |==                                                           |Simulating: |===                                                          |Simulating: |====                                                         |Simulating: |=====                                                        |Simulating: |======                                                       |Simulating: |=======                                                      |Simulating: |========                                                     |Simulating: |=========                                                    |Simulating: |==========                                                   |Simulating: |===========                                                  |Simulating: |============                                                 |Simulating: |=============                                                |Simulating: |==============                                               |Simulating: |===============                                              |Simulating: |================                                             |Simulating: |=================                                            |Simulating: |==================                                           |Simulating: |===================                                          |Simulating: |====================                                         |Simulating: |=====================                                        |Simulating: |======================                                       |Simulating: |=======================                                      |Simulating: |========================                                     |Simulating: |=========================                                    |Simulating: |==========================                                   |Simulating: |===========================                                  |Simulating: |============================                                 |Simulating: |=============================                                |Simulating: |==============================                               |Simulating: |===============================                              |Simulating: |================================                             |Simulating: |=================================                            |Simulating: |==================================                           |Simulating: |===================================                          |Simulating: |====================================                         |Simulating: |=====================================                        |Simulating: |======================================                       |Simulating: |=======================================                      |Simulating: |========================================                     |Simulating: |=========================================                    |Simulating: |==========================================                   |Simulating: |===========================================                  |Simulating: |============================================                 |Simulating: |=============================================                |Simulating: |==============================================               |Simulating: |===============================================              |Simulating: |================================================             |Simulating: |=================================================            |Simulating: |==================================================           |Simulating: |===================================================          |Simulating: |====================================================         |Simulating: |=====================================================        |Simulating: |======================================================       |Simulating: |=======================================================      |Simulating: |========================================================     |Simulating: |=========================================================    |Simulating: |==========================================================   |Simulating: |===========================================================  |Simulating: |============================================================ |Simulating: |=============================================================|
## Warning in observedPowerWarning(sim): This appears to be an "observed
## power" calculation
sim2
## Power for predictor 'Condition_c_effSame', (95% confidence interval):
##       56.25% (52.73, 59.72)
## 
## Test: z-test
##       Effect size for Condition_c_effSame is 0.091
## 
## Based on 800 simulations, (0 warnings, 0 errors)
## alpha = 0.05, nrow = 1080
## 
## Time elapsed: 0 h 11 m 23 s
## 
## nb: result might be an observed power calculation

``` ##Power simulation with N = 1200. Monte Carlo simulations with 1k simulations

#First we extend the participant column so that is contains 1200 participants -- essentially doubling our sample size
sim2 <- extend(collapsed.sampling.1, along="Participant", n=1200)

Sampling more from the in group with n = 1200

#Next we run power analysis on the coefficient of interest. let's start with first sample holding valence and condition constant
sim2.pow <- powerSim(sim2, fixed("Samp_GroupB_dumIn.Group", "z"), seed = 2, nsim = 800, alpha = .05)
## Simulating: |                                                             |Simulating: |=                                                            |Simulating: |==                                                           |Simulating: |===                                                          |Simulating: |====                                                         |Simulating: |=====                                                        |Simulating: |======                                                       |Simulating: |=======                                                      |Simulating: |========                                                     |Simulating: |=========                                                    |Simulating: |==========                                                   |Simulating: |===========                                                  |Simulating: |============                                                 |Simulating: |=============                                                |Simulating: |==============                                               |Simulating: |===============                                              |Simulating: |================                                             |Simulating: |=================                                            |Simulating: |==================                                           |Simulating: |===================                                          |Simulating: |====================                                         |Simulating: |=====================                                        |Simulating: |======================                                       |Simulating: |=======================                                      |Simulating: |========================                                     |Simulating: |=========================                                    |Simulating: |==========================                                   |Simulating: |===========================                                  |Simulating: |============================                                 |Simulating: |=============================                                |Simulating: |==============================                               |Simulating: |===============================                              |Simulating: |================================                             |Simulating: |=================================                            |Simulating: |==================================                           |Simulating: |===================================                          |Simulating: |====================================                         |Simulating: |=====================================                        |Simulating: |======================================                       |Simulating: |=======================================                      |Simulating: |========================================                     |Simulating: |=========================================                    |Simulating: |==========================================                   |Simulating: |===========================================                  |Simulating: |============================================                 |Simulating: |=============================================                |Simulating: |==============================================               |Simulating: |===============================================              |Simulating: |================================================             |Simulating: |=================================================            |Simulating: |==================================================           |Simulating: |===================================================          |Simulating: |====================================================         |Simulating: |=====================================================        |Simulating: |======================================================       |Simulating: |=======================================================      |Simulating: |========================================================     |Simulating: |=========================================================    |Simulating: |==========================================================   |Simulating: |===========================================================  |Simulating: |============================================================ |Simulating: |=============================================================|
## Warning in observedPowerWarning(sim): This appears to be an "observed
## power" calculation
sim2.pow
## Power for predictor 'Samp_GroupB_dumIn.Group', (95% confidence interval):
##       77.00% (73.92, 79.87)
## 
## Test: z-test
##       Effect size for Samp_GroupB_dumIn.Group is 0.045
## 
## Based on 800 simulations, (0 warnings, 0 errors)
## alpha = 0.05, nrow = 2400
## 
## Time elapsed: 0 h 22 m 34 s
## 
## nb: result might be an observed power calculation

Sample more in the same condition with n = 1200

#Next, let's look at the sampling more in the same coefficient with 1200 participants. 
sim3.pow <- powerSim(sim2, fixed("Condition_c_effSame", "z"), seed = 2, nsim = 800, alpha = .05 )
## Simulating: |                                                             |Simulating: |=                                                            |Simulating: |==                                                           |Simulating: |===                                                          |Simulating: |====                                                         |Simulating: |=====                                                        |Simulating: |======                                                       |Simulating: |=======                                                      |Simulating: |========                                                     |Simulating: |=========                                                    |Simulating: |==========                                                   |Simulating: |===========                                                  |Simulating: |============                                                 |Simulating: |=============                                                |Simulating: |==============                                               |Simulating: |===============                                              |Simulating: |================                                             |Simulating: |=================                                            |Simulating: |==================                                           |Simulating: |===================                                          |Simulating: |====================                                         |Simulating: |=====================                                        |Simulating: |======================                                       |Simulating: |=======================                                      |Simulating: |========================                                     |Simulating: |=========================                                    |Simulating: |==========================                                   |Simulating: |===========================                                  |Simulating: |============================                                 |Simulating: |=============================                                |Simulating: |==============================                               |Simulating: |===============================                              |Simulating: |================================                             |Simulating: |=================================                            |Simulating: |==================================                           |Simulating: |===================================                          |Simulating: |====================================                         |Simulating: |=====================================                        |Simulating: |======================================                       |Simulating: |=======================================                      |Simulating: |========================================                     |Simulating: |=========================================                    |Simulating: |==========================================                   |Simulating: |===========================================                  |Simulating: |============================================                 |Simulating: |=============================================                |Simulating: |==============================================               |Simulating: |===============================================              |Simulating: |================================================             |Simulating: |=================================================            |Simulating: |==================================================           |Simulating: |===================================================          |Simulating: |====================================================         |Simulating: |=====================================================        |Simulating: |======================================================       |Simulating: |=======================================================      |Simulating: |========================================================     |Simulating: |=========================================================    |Simulating: |==========================================================   |Simulating: |===========================================================  |Simulating: |============================================================ |Simulating: |=============================================================|
## Warning in observedPowerWarning(sim): This appears to be an "observed
## power" calculation
sim3.pow
## Power for predictor 'Condition_c_effSame', (95% confidence interval):
##       89.62% (87.30, 91.65)
## 
## Test: z-test
##       Effect size for Condition_c_effSame is 0.091
## 
## Based on 800 simulations, (0 warnings, 0 errors)
## alpha = 0.05, nrow = 2400
## 
## Time elapsed: 0 h 57 m 32 s
## 
## nb: result might be an observed power calculation

Power curve for the in group first sample coefficient

Simulating 10X1000

sim2.power.curve <- powerCurve(sim2, test = fixed("Samp_GroupB_dumIn.Group", "z"), along ="Participant" , nsim=800)
## Calculating power at 10 sample sizes along Participant
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## Warning in observedPowerWarning(sim): This appears to be an "observed
## power" calculation
sim3.power.curve <- powerCurve(sim2, test = fixed("Condition_c_effSame", "z"), along ="Participant" , nsim=800)
## Calculating power at 10 sample sizes along Participant
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## Warning in observedPowerWarning(sim): This appears to be an "observed
## power" calculation

plotting the power curves for different coefficients

plot(sim2.power.curve)

plot(sim3.power.curve)