Inventories were carried out in farms part of the sustainable cattle ranching project using standardized methods. In this map we depict the farms and dates of sampling.


Five ecoregions were sampled looking for dung beetles using

Zoom to Meta. Here the samplings were made in ten farms and in years 2013, 2016-2017.


See the Species Acumulation Curve for Meta by Year


Species accumulation curve: species richness

Rank bundance, accumulation and rarefaction in 2016 for Finca La Herradura 4 and Finca La Herradura 5


Explanatory text here.

Rank bundance, accumulation and rarefaction in 2016 for Finca El Amparo and Finca Buena Vista


Some text here.

Rank bundance, accumulation and rarefaction in 2016 for Finca Los Cambulos


Some text here.

Rank bundance, accumulation and rarefaction in 2017 for Finca La Herradura 4 and Finca La Herradura 5


Some text here.

Rank bundance, accumulation and rarefaction in 2017 for Finca El Amparo and Finca Buena Vista


Some text here.

Rank bundance, accumulation and rarefaction in 2017 for Finca Los Cambulos


aditional text here

iNEXT plot by Chao et al


https://github.com/AnneChao/iNEXT

De acuerdo a las curvas de acumulación, los muestreos fueron suficientes y consistentes.

---
title: "Dung Beetle Inventory"
output: 
  flexdashboard::flex_dashboard:
    storyboard: true
    social: menu
    source: embed
---

```{r setup, include=FALSE}
library(flexdashboard)
```


```{r loadata, include=FALSE, warning=FALSE, message=FALSE}
library(readxl) # lee excel
library(tidyverse)# manipula datos eficientemente
library(sp) # spatial polygon
library(magrittr)
library(raster)
library(rasterVis)
library(sf) # new spatial package
library(mapview) # plotting maps in html
library(knitr)
library(colorspace)
library(DT)
library(leaflet)
library(lubridate)
library(tmap)
library(tmaptools)
library(vegan)
library(mobsim)

###################################
###
### Read Beetle Data
###
###################################

beetle_full <- as.data.frame(read_excel("C:/Users/diego.lizcano/Box Sync/CodigoR/Tablas_GCS/data/GAICA_inventarios_Escarabajos_Ene_2019.xlsx", sheet = "Full"))

########## Remove NA row
ind_na <- which(is.na(beetle_full$Lat))
# beetle_full <- beetle_full[-ind_na,]

# put year
beetle_full$year <- year(beetle_full$Fecha)

# select by uniques
site_dept_loc_yr <- beetle_full %>% dplyr::select(Lon, Lat, Localidad, Departamento, year) %>%  distinct() # igual a site_dept_loc<-
# beetle_full <- filter(beetle_full, ORDEN == ordenes[1])


# View(site_dept_loc_yr)

```


### Inventories were carried out in farms part of the sustainable cattle ranching project using standardized methods. In this map we depict the farms and dates of sampling.

```{r map}
# make sp spatial point
coordinates(site_dept_loc_yr) = ~Lon+Lat
geo<- CRS("+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0")
proj4string(site_dept_loc_yr) <-  geo

# make sf
sampling.sf = st_as_sf(site_dept_loc_yr)


mapview(sampling.sf, 
        zcol = c("year", "Localidad" ),
         map.types = c("OpenStreetMap.DE", "Esri.WorldImagery" ),
        leafletHeight = 8, 
        burst = TRUE, hide = TRUE)
 


```

***

Five ecoregions were sampled looking for dung beetles using

- Transects across the landscape with pitfall traps 

- The sampling covered forest, pastures and silvopastoral systems

- The main indicators to compare were richness and abundance per region


### Zoom to Meta. Here the samplings were made in ten farms and in years 2013, 2016-2017.

```{r}

sf_por_depto_q<- sampling.sf %>% filter(Departamento == "Meta") 

mapview(sf_por_depto_q, 
        zcol = c("year", "Localidad" ),
         map.types = c("OpenStreetMap.DE", "Esri.WorldImagery" ),
        leafletHeight = 8, 
        burst = TRUE, hide = TRUE)

```

***


- You can change the display options to show yeas or sampled fams.


### See the Species Acumulation Curve for Meta by Year

```{r specacum, warning=FALSE, message=FALSE}
library(vegan)


# select by uniques
site_species <- beetle_full %>% dplyr::select(Lon, Lat, Localidad, Departamento, year,  Fecha, Nombre, Trampa, Conteo) %>%  distinct() # igual a site_dept_loc<-

site_species_q<- site_species %>% filter(Departamento == "Meta")

site_species_q_y1 <- site_species_q %>% filter(year == unique(site_species_q$year)[1]) # yr 2016

site_species_q_y2 <- site_species_q %>% filter(year == unique(site_species_q$year)[2]) # yr 2017

site_species_q_y3 <- site_species_q %>% filter(year == unique(site_species_q$year)[3]) # yr 2017

##### Localidad Trampa
site_species_q_y1$site <- paste(site_species_q_y1$Localidad, 
                             site_species_q_y1$Trampa)
##### Localidad Trampa
site_species_q_y2$site <- paste(site_species_q_y2$Localidad, 
                             site_species_q_y2$Trampa)
##### Localidad Trampa
site_species_q_y3$site <- paste(site_species_q_y3$Localidad, 
                             site_species_q_y3$Trampa)

########  acum by yr1
# get species
sp_qy1 <- unique (site_species_q_y1$Nombre)
# get sites
site_qy1 <- unique (site_species_q_y1$site)

# mat of site by sp

mat_qy1 <- site_species_q_y1 %>%
  group_by(site, Nombre) %>%
  summarize_at("Conteo", sum) %>% 
  spread(Nombre, Conteo, fill=0) %>% as.data.frame() 

########  acum by yr2
# get species
sp_qy2 <- unique (site_species_q_y2$Nombre)
# get sites
site_qy2 <- unique (site_species_q_y2$site)

# mat of site by sp

mat_qy2 <- site_species_q_y2 %>%
  group_by(site, Nombre) %>%
  summarize_at("Conteo", sum) %>% 
  spread(Nombre, Conteo, fill=0) %>% as.data.frame() 

########  acum by yr3
# get species
sp_qy3 <- unique (site_species_q_y3$Nombre)
# get sites
site_qy3 <- unique (site_species_q_y3$site)

# mat of site by sp

mat_qy3 <- site_species_q_y3 %>%
  group_by(site, Nombre) %>%
  summarize_at("Conteo", sum) %>% 
  spread(Nombre, Conteo, fill=0) %>% as.data.frame() 

# Plot by years
par(mfrow = c(1,2))

sp_y2 <- specaccum(mat_qy2[2:dim(mat_qy2)[2]])
plot(sp_y2, ci.type="poly", col="blue", lwd=2, ci.lty=0, ci.col="lightblue", 
     main = paste ("Accumulation curve", unique(site_species_q$year)[2],unique(site_species_q$year)[1]))

sp_y1 <- specaccum(mat_qy1[2:dim(mat_qy1)[2]])
plot(sp_y1, ci.type="poly", col="blue", lwd=2, ci.lty=0, ci.col="lightblue", 
     main = paste ("Accumulation curve", unique(site_species_q$year)[1]), add=T)



sp_y3 <- specaccum(mat_qy3[2:dim(mat_qy3)[2]])
plot(sp_y3, ci.type="poly", col="blue", lwd=2, ci.lty=0, ci.col="lightblue", 
     main = paste ("Accumulation curve", unique(site_species_q$year)[3]))#, add=T)

```

***

Species accumulation curve: species richness

- Total Species found for `r unique(site_species_q$year)[1]` was: `r length( names(mat_qy1))-1`. The species were: `r names(mat_qy1[2:dim(mat_qy1)[2]])`

- Total Species found for `r unique(site_species_q$year)[2]` was: `r length( names(mat_qy2))-1`. The species were: `r names(mat_qy2[2:dim(mat_qy2)[2]])`


### Rank bundance, accumulation and rarefaction in `r unique(site_species_q$year)[1]` for `r unique( site_species_q$Localidad)[1]` and `r unique( site_species_q$Localidad)[2]`

```{r rank_abun_s1_2y1}

mat_q2y1 <- site_species_q_y1 %>%
  group_by(Localidad, Nombre) %>%
  summarize_at("Conteo", sum) %>% 
  spread(Nombre, Conteo, fill=0) %>% as.data.frame() 

############## Site 1
site_species_qs1 <- site_species_q_y1 %>%
  filter(Localidad==mat_q2y1$Localidad[1])

census=(data.frame(x=site_species_qs1$Lon, y=site_species_qs1$Lat, species=site_species_qs1$Nombre))

sim_dat1 <-  list(census=census, x_min_max=c(min(site_species_qs1$Lon, max(site_species_qs1$Lon))), y_min_max=c(min(site_species_qs1$Lat, max(site_species_qs1$Lat))))

class(sim_dat1) = "community"
abund1 <- community_to_sad(sim_dat1)


############## Site 2
site_species_qs2 <- site_species_q_y1 %>%
  filter(Localidad==mat_q2y1$Localidad[2])

census=(data.frame(x=site_species_qs2$Lon, y=site_species_qs2$Lat, species=site_species_qs2$Nombre))

sim_dat2 <-  list(census=census, x_min_max=c(min(site_species_qs2$Lon, max(site_species_qs2$Lon))), y_min_max=c(min(site_species_qs2$Lat, max(site_species_qs2$Lat))))

class(sim_dat2) = "community"
abund2 <- community_to_sad(sim_dat2)


############## Site 3
site_species_qs3 <- site_species_q_y1 %>%
  filter(Localidad==mat_q2y1$Localidad[3])

census=(data.frame(x=site_species_qs3$Lon, y=site_species_qs3$Lat, species=site_species_qs3$Nombre))

sim_dat3 <-  list(census=census, x_min_max=c(min(site_species_qs3$Lon, max(site_species_qs3$Lon))), y_min_max=c(min(site_species_qs3$Lat, max(site_species_qs3$Lat))))

class(sim_dat3) = "community"
abund3 <- community_to_sad(sim_dat3)


############## Site 4
site_species_qs4 <- site_species_q_y1 %>%
  filter(Localidad==mat_q2y1$Localidad[4])

census=(data.frame(x=site_species_qs4$Lon, y=site_species_qs4$Lat, species=site_species_qs4$Nombre))

sim_dat4 <-  list(census=census, x_min_max=c(min(site_species_qs4$Lon, max(site_species_qs4$Lon))), y_min_max=c(min(site_species_qs4$Lat, max(site_species_qs4$Lat))))

class(sim_dat4) = "community"
abund4 <- community_to_sad(sim_dat4)


############## Site 5
site_species_qs5 <- site_species_q_y1 %>%
  filter(Localidad==mat_q2y1$Localidad[5])

census=(data.frame(x=site_species_qs5$Lon, y=site_species_qs5$Lat, species=site_species_qs5$Nombre))

sim_dat5 <-  list(census=census, x_min_max=c(min(site_species_qs5$Lon, max(site_species_qs5$Lon))), y_min_max=c(min(site_species_qs5$Lat, max(site_species_qs5$Lat))))

class(sim_dat5) = "community"
abund5 <- community_to_sad(sim_dat5)


#######################################
######### Plot ####################
#######################################3
par(mfrow = c(2,2))
# plot(abund1, method = "rank") 
plot(abund1, method = "rank", sub=unique(site_species_q$Localidad)[1])
spec_curves1 <- spec_sample_curve(sim_dat1, method = c("accumulation", "rarefaction"))
plot(spec_curves1, sub=unique(site_species_q$Localidad)[1])

plot(abund2, method = "rank", sub=unique(site_species_q$Localidad)[2])
spec_curves2 <- spec_sample_curve(sim_dat2, method = c("accumulation", "rarefaction"))
plot(spec_curves2, sub=unique(site_species_q$Localidad)[2])


```

***

Explanatory text here.


### Rank bundance, accumulation and rarefaction in `r unique(site_species_q$year)[1]` for `r unique( site_species_q$Localidad)[3]` and `r unique( site_species_q$Localidad)[4]`

```{r rank_abun_s3_4y1}

#######################################
######### Plot ####################
#######################################3
par(mfrow = c(2,2))
# plot(abund1, method = "rank") 
plot(abund3, method = "rank", sub=unique(site_species_q$Localidad)[3])
spec_curves3 <- spec_sample_curve(sim_dat3, method = c("accumulation", "rarefaction"))
plot(spec_curves3, sub=unique(site_species_q$Localidad)[3])

plot(abund4, method = "rank", sub=unique(site_species_q$Localidad)[4])
spec_curves4 <- spec_sample_curve(sim_dat4, method = c("accumulation", "rarefaction"))
plot(spec_curves4, sub=unique(site_species_q$Localidad)[4])




```

***

Some text here.



### Rank bundance, accumulation and rarefaction in `r unique(site_species_q$year)[1]` for `r unique( site_species_q$Localidad)[5]`

```{r rank_abun_s5y1}

#######################################
######### Plot ####################
#######################################3
par(mfrow = c(1,2))

plot(abund5, method = "rank", sub=unique(site_species_q$Localidad)[5])
spec_curves5 <- spec_sample_curve(sim_dat5, method = c("accumulation", "rarefaction"))
plot(spec_curves5, sub=unique(site_species_q$Localidad)[5])



```



***

Some text here.




### Rank bundance, accumulation and rarefaction in `r unique(site_species_q$year)[2]` for `r unique( site_species_q$Localidad)[1]` and `r unique( site_species_q$Localidad)[2]`

```{r rank_abun_s1_2y2, eval=FALSE}

mat_q2y2 <- site_species_q_y2 %>%
  group_by(Localidad, Nombre) %>%
  summarize_at("Conteo", sum) %>% 
  spread(Nombre, Conteo, fill=0) %>% as.data.frame() 

############## Site 1
site_species_y2s1 <- site_species_q_y2 %>%
  filter(Localidad==mat_q2y1$Localidad[1])

census=(data.frame(x=site_species_y2s1$Lon, y=site_species_y2s1$Lat, species=site_species_y2s1$Nombre))

sim_dat1 <-  list(census=census, x_min_max=c(min(site_species_y2s1$Lon, max(site_species_y2s1$Lon))), y_min_max=c(min(site_species_y2s1$Lat, max(site_species_y2s1$Lat))))

class(sim_dat1) = "community"
abund1 <- community_to_sad(sim_dat1)


############## Site 2
site_species_y2s2 <- site_species_q_y2 %>%
  filter(Localidad==mat_q2y1$Localidad[2])

census=(data.frame(x=site_species_y2s2$Lon, y=site_species_y2s2$Lat, species=site_species_y2s2$Nombre))

sim_dat2 <-  list(census=census, x_min_max=c(min(site_species_y2s2$Lon, max(site_species_y2s2$Lon))), y_min_max=c(min(site_species_y2s2$Lat, max(site_species_y2s2$Lat))))

class(sim_dat2) = "community"
abund2 <- community_to_sad(sim_dat2)


############## Site 3
site_species_y2s3 <- site_species_q_y1 %>%
  filter(Localidad==mat_q2y1$Localidad[3])

census=(data.frame(x=site_species_y2s3$Lon, y=site_species_y2s3$Lat, species=site_species_y2s3$Nombre))

sim_dat3 <-  list(census=census, x_min_max=c(min(site_species_y2s3$Lon, max(site_species_y2s3$Lon))), y_min_max=c(min(site_species_y2s3$Lat, max(site_species_y2s3$Lat))))

class(sim_dat3) = "community"
abund3 <- community_to_sad(sim_dat3)


############## Site 4
site_species_y2s4 <- site_species_q_y1 %>%
  filter(Localidad==mat_q2y1$Localidad[4])

census=(data.frame(x=site_species_y2s4$Lon, y=site_species_y2s4$Lat, species=site_species_y2s4$Nombre))

sim_dat4 <-  list(census=census, x_min_max=c(min(site_species_y2s4$Lon, max(site_species_y2s4$Lon))), y_min_max=c(min(site_species_y2s4$Lat, max(site_species_y2s4$Lat))))

class(sim_dat4) = "community"
abund4 <- community_to_sad(sim_dat4)


############## Site 5
site_species_y2s5 <- site_species_q_y1 %>%
  filter(Localidad==mat_q2y1$Localidad[5])

census=(data.frame(x=site_species_y2s5$Lon, y=site_species_y2s5$Lat, species=site_species_y2s5$Nombre))

sim_dat5 <-  list(census=census, x_min_max=c(min(site_species_y2s5$Lon, max(site_species_y2s5$Lon))), y_min_max=c(min(site_species_y2s5$Lat, max(site_species_y2s5$Lat))))

class(sim_dat5) = "community"
abund5 <- community_to_sad(sim_dat5)


#######################################
######### Plot ####################
#######################################3
par(mfrow = c(2,2))
# plot(abund1, method = "rank") 
plot(abund1, method = "rank", sub=unique(site_species_q$Localidad)[1])
spec_curves1 <- spec_sample_curve(sim_dat1, method = c("accumulation", "rarefaction"))
plot(spec_curves1, sub=unique(site_species_q$Localidad)[1])

plot(abund2, method = "rank", sub=unique(site_species_q$Localidad)[2])
spec_curves2 <- spec_sample_curve(sim_dat2, method = c("accumulation", "rarefaction"))
plot(spec_curves2, sub=unique(site_species_q$Localidad)[2])


```

***

Some text here.


### Rank bundance, accumulation and rarefaction in `r unique(site_species_q$year)[2]` for `r unique( site_species_q$Localidad)[3]` and `r unique( site_species_q$Localidad)[4]`

```{r rank_abun_s3_4y2}

#######################################
######### Plot ####################
#######################################3
par(mfrow = c(2,2))
# plot(abund1, method = "rank") 
plot(abund3, method = "rank", sub=unique(site_species_q$Localidad)[3])
spec_curves3 <- spec_sample_curve(sim_dat3, method = c("accumulation", "rarefaction"))
plot(spec_curves3, sub=unique(site_species_q$Localidad)[3])

plot(abund4, method = "rank", sub=unique(site_species_q$Localidad)[4])
spec_curves4 <- spec_sample_curve(sim_dat4, method = c("accumulation", "rarefaction"))
plot(spec_curves4, sub=unique(site_species_q$Localidad)[4])



```

***

Some text here.


### Rank bundance, accumulation and rarefaction in `r unique(site_species_q$year)[2]` for `r unique( site_species_q$Localidad)[5]`

```{r rank_abun_s5y2}

#######################################
######### Plot ####################
#######################################3
par(mfrow = c(1,2))

plot(abund5, method = "rank", sub=unique(site_species_q$Localidad)[5])
spec_curves5 <- spec_sample_curve(sim_dat5, method = c("accumulation", "rarefaction"))
plot(spec_curves5, sub=unique(site_species_q$Localidad)[5])


```

***

aditional text here

### iNEXT plot by Chao et al

```{r inext, eval=FALSE}

## Interpolation and extrapolation of Hill number with order q
library(iNEXT)

mat_q2 <- site_species_q %>%
  group_by(Localidad, Nombre) %>%
  summarize_at("Conteo", sum) %>% 
  spread(Nombre, Conteo, fill=0) %>% as.data.frame() 

BCI.test.no.zero1 <- as.numeric(mat_q2[2:27][1,])
BCI.test.no.zero2 <- as.numeric(mat_q2[2:27][2,])# as.vector(unlist(mat_q[2:27][11:21,]))
BCI.test.no.zero3 <- as.numeric(mat_q2[2:27][3,])
BCI.test.no.zero4 <- as.numeric(mat_q2[2:27][4,])
BCI.test.no.zero5 <- as.numeric(mat_q2[2:27][5,])

i.zero1 <- which(BCI.test.no.zero1 == 0)
BCI.test.no.zero1 <- BCI.test.no.zero1[-i.zero1]

i.zero2 <- which(BCI.test.no.zero2 == 0)
BCI.test.no.zero2 <- BCI.test.no.zero2[-i.zero2]

i.zero3 <- which(BCI.test.no.zero3 == 0)
BCI.test.no.zero3 <- BCI.test.no.zero3[-i.zero3]

i.zero4 <- which(BCI.test.no.zero4 == 0)
BCI.test.no.zero4 <- BCI.test.no.zero4[-i.zero4]

i.zero5 <- which(BCI.test.no.zero5 == 0)
BCI.test.no.zero5 <- BCI.test.no.zero4[-i.zero5]

out_list <- list(# sort(BCI.test.no.zero1, decreasing = TRUE),
                 sort(BCI.test.no.zero2, decreasing = TRUE),
                 sort(BCI.test.no.zero3, decreasing = TRUE),
                 sort(BCI.test.no.zero4, decreasing = TRUE),
                 sort(BCI.test.no.zero5, decreasing = TRUE))

names(out_list) <- c(# "Britania", 
                     "El_Cairo", "El_Cortijo", 
                     "La_Carelia", "Portugal")

out <- iNEXT(out_list, q=c(0), datatype="abundance")

ggiNEXT(out)#, type=1)#, facet.var="site")



```

***

https://github.com/AnneChao/iNEXT

De acuerdo a las curvas de acumulación, los muestreos fueron suficientes y consistentes.