Carga de Datos

Matrices

library(readr)
library(dplyr)
archivo<-"C:/Users/corte/Desktop/datos.csv"
datos<-read.csv(file = archivo)
Y<-datos%>%select(Y) %>% as.matrix()
X<-datos%>% mutate(Cte=1) %>% select("Cte","X") %>% as.matrix()

Encontrando Xt y XtX

Xt<-t(X)
print(Xt)
##     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
## Cte    1    1    1    1    1    1    1    1    1     1     1     1     1
## X    216  283  237  203  259  374  342  301  365   384   404   426   432
##     [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24]
## Cte     1     1     1     1     1     1     1     1     1     1     1
## X     409   553   572   506   528   501   628   677   602   630   652
XtX<-t(X)%*%X
print(XtX)
##       Cte       X
## Cte    24   10484
## X   10484 5073858

Obteniendo la inversa de Xtx

XtX_inv<-solve(XtX)
print(XtX_inv)
##               Cte             X
## Cte  0.4278726796 -8.841038e-04
## X   -0.0008841038  2.023893e-06

Obteniendo matriz XtY

XtY<-t(X)%*%Y
print(XtY)
##            Y
## Cte    316.0
## X   152715.7

Obteniendo Beta

B<-XtX_inv%*%XtY
colnames(B)<-c("Parametros")
print(B)
##     Parametros
## Cte 0.19123503
## X   0.02970339

Obteniendo los residuos

Obteniendo Y estimada (Y_est)

Y_est<-X%*%B
print(Y_est)
##       Parametros
##  [1,]   6.607168
##  [2,]   8.597295
##  [3,]   7.230939
##  [4,]   6.221024
##  [5,]   7.884413
##  [6,]  11.300304
##  [7,]  10.349795
##  [8,]   9.131956
##  [9,]  11.032973
## [10,]  11.597337
## [11,]  12.191405
## [12,]  12.844880
## [13,]  13.023100
## [14,]  12.339922
## [15,]  16.617211
## [16,]  17.181575
## [17,]  15.221151
## [18,]  15.874626
## [19,]  15.072634
## [20,]  18.844965
## [21,]  20.300431
## [22,]  18.072677
## [23,]  18.904372
## [24,]  19.557846

Obteniendo los residuos

E<-Y-Y_est
print(E)
##                 Y
##  [1,] -0.50716765
##  [2,]  0.50270510
##  [3,] -0.03093888
##  [4,]  1.27897644
##  [5,] -0.98441350
##  [6,]  0.19969645
##  [7,] -0.04979501
##  [8,]  0.36804405
##  [9,] -1.83297302
## [10,] -0.99733747
## [11,]  0.30859470
## [12,]  0.05512008
## [13,]  0.57689973
## [14,]  0.46007774
## [15,] -0.11721068
## [16,] -0.08157512
## [17,] -0.22115126
## [18,]  0.32537412
## [19,]  0.72736569
## [20,]  0.15503494
## [21,] -0.90043126
## [22,]  1.02732313
## [23,] -0.90437184
## [24,]  0.64215354

Obteniendo Matrices A,P, y M

Matriz A

A<-XtX_inv%*%Xt
print(A)
##             [,1]          [,2]          [,3]          [,4]          [,5]
## Cte  0.236906257  0.1776713023  0.2183400774  0.2483996068  0.1988897936
## X   -0.000446943 -0.0003113422 -0.0004044412 -0.0004732536 -0.0003599156
##              [,6]          [,7]          [,8]         [,9]        [,10]
## Cte  0.0972178559  0.1255091777  0.1617574338  0.105174790  0.088376818
## X   -0.0001271679 -0.0001919325 -0.0002749121 -0.000145383 -0.000106929
##             [,11]         [,12]         [,13]         [,14]         [,15]
## Cte  7.069474e-02  0.0512444579  4.593984e-02  6.627422e-02 -0.0610367256
## X   -6.645114e-05 -0.0000219255 -9.782148e-06 -5.633168e-05  0.0002351089
##             [,16]         [,17]         [,18]         [,19]         [,20]
## Cte -0.0778346979 -0.0194838466 -0.0389341304 -0.0150633276 -0.1273445111
## X    0.0002735628  0.0001399859  0.0001845116  0.0001298665  0.0003869008
##             [,21]         [,22]         [,23]         [,24]
## Cte -0.1706655976 -0.1043578121 -0.1291127187 -0.1485630024
## X    0.0004860716  0.0003342796  0.0003909486  0.0004354743

Matriz P

P<-X%*%XtX_inv%*%Xt
head(P,n=10)
##             [,1]       [,2]       [,3]       [,4]       [,5]       [,6]
##  [1,] 0.14036657 0.11042139 0.13098077 0.14617683 0.12114803 0.06974958
##  [2,] 0.11042139 0.08956147 0.10388321 0.11446884 0.09703368 0.06122933
##  [3,] 0.13098077 0.10388321 0.12248751 0.13623851 0.11358980 0.06707906
##  [4,] 0.14617683 0.11446884 0.13623851 0.15232913 0.12582693 0.07140277
##  [5,] 0.12114803 0.09703368 0.11358980 0.12582693 0.10567166 0.06428136
##  [6,] 0.06974958 0.06122933 0.06707906 0.07140277 0.06428136 0.04965705
##  [7,] 0.08405176 0.07119228 0.08002118 0.08654688 0.07579866 0.05372643
##  [8,] 0.10237642 0.08395731 0.09660327 0.10595028 0.09055520 0.05894031
##  [9,] 0.07377207 0.06403141 0.07071903 0.07566205 0.06752060 0.05080156
## [10,] 0.06528015 0.05811591 0.06303464 0.06667023 0.06068221 0.04838537
##             [,7]       [,8]       [,9]      [,10]      [,11]      [,12]
##  [1,] 0.08405176 0.10237642 0.07377207 0.06528015 0.05634129 0.04650855
##  [2,] 0.07119228 0.08395731 0.06403141 0.05811591 0.05188907 0.04503954
##  [3,] 0.08002118 0.09660327 0.07071903 0.06303464 0.05494582 0.04604811
##  [4,] 0.08654688 0.10595028 0.07566205 0.06667023 0.05720516 0.04679358
##  [5,] 0.07579866 0.09055520 0.06752060 0.06068221 0.05348390 0.04556575
##  [6,] 0.05372643 0.05894031 0.05080156 0.04838537 0.04584201 0.04304432
##  [7,] 0.05986826 0.06773750 0.05545382 0.05180710 0.04796845 0.04374594
##  [8,] 0.06773750 0.07900889 0.06141452 0.05619119 0.05069295 0.04464488
##  [9,] 0.05545382 0.06141452 0.05211001 0.04934773 0.04644007 0.04324165
## [10,] 0.05180710 0.05619119 0.04934773 0.04731608 0.04517750 0.04282506
##            [,13]      [,14]         [,15]         [,16]       [,17]
##  [1,] 0.04382689 0.05410658 -0.0102532092 -0.0187451258 0.010753111
##  [2,] 0.04317149 0.05033236  0.0054990852 -0.0004164159 0.020132167
##  [3,] 0.04362147 0.05292361 -0.0053159229 -0.0130003063 0.013692815
##  [4,] 0.04395406 0.05483889 -0.0133096246 -0.0223014426 0.008933294
##  [5,] 0.04340626 0.05168432 -0.0001435277 -0.0069819239 0.016772505
##  [6,] 0.04228131 0.04520617  0.0268939925  0.0244778019 0.032870885
##  [7,] 0.04259434 0.04700879  0.0193705086  0.0157237913 0.028391336
##  [8,] 0.04299541 0.04931839  0.0097310449  0.0045077151 0.022651913
##  [9,] 0.04236935 0.04571316  0.0247780127  0.0220157364 0.031611012
## [10,] 0.04218349 0.04464286  0.0292450813  0.0272134303 0.034270744
##               [,18]      [,19]        [,20]        [,21]        [,22]
##  [1,]  0.0009203652 0.01298783 -0.043773933 -0.065674138 -0.032153415
##  [2,]  0.0132826393 0.02168888 -0.017851577 -0.033107343 -0.009756681
##  [3,]  0.0047951078 0.01571502 -0.035649015 -0.055466635 -0.025133543
##  [4,] -0.0014782850 0.01129956 -0.048803643 -0.071993069 -0.036499050
##  [5,]  0.0088543620 0.01857208 -0.027137197 -0.044773061 -0.017779392
##  [6,]  0.0300731907 0.03350672  0.017356398  0.011125170  0.020662764
##  [7,]  0.0241688210 0.02935100  0.004975572 -0.004429121  0.009965816
##  [8,]  0.0166038473 0.02402647 -0.010887362 -0.024358055 -0.003739648
##  [9,]  0.0284125867 0.03233793  0.013874291  0.006750526  0.017654248
## [10,]  0.0319183062 0.03480539  0.021225406  0.015985885  0.024005560
##              [,23]         [,24]
##  [1,] -0.044667818 -0.0545005640
##  [2,] -0.018474261 -0.0253237891
##  [3,] -0.036457898 -0.0453556047
##  [4,] -0.049750150 -0.0601617293
##  [5,] -0.027857028 -0.0357751712
##  [6,]  0.017102062  0.0143043678
##  [7,]  0.004591707  0.0003691918
##  [8,] -0.011437186 -0.0174852526
##  [9,]  0.013583525  0.0103850996
## [10,]  0.021011548  0.0186591104

Matriz M

idem=diag(1,nrow = 24)
M=idem-P
head(M,n=10)
##              [,1]        [,2]        [,3]        [,4]        [,5]
##  [1,]  0.85963343 -0.11042139 -0.13098077 -0.14617683 -0.12114803
##  [2,] -0.11042139  0.91043853 -0.10388321 -0.11446884 -0.09703368
##  [3,] -0.13098077 -0.10388321  0.87751249 -0.13623851 -0.11358980
##  [4,] -0.14617683 -0.11446884 -0.13623851  0.84767087 -0.12582693
##  [5,] -0.12114803 -0.09703368 -0.11358980 -0.12582693  0.89432834
##  [6,] -0.06974958 -0.06122933 -0.06707906 -0.07140277 -0.06428136
##  [7,] -0.08405176 -0.07119228 -0.08002118 -0.08654688 -0.07579866
##  [8,] -0.10237642 -0.08395731 -0.09660327 -0.10595028 -0.09055520
##  [9,] -0.07377207 -0.06403141 -0.07071903 -0.07566205 -0.06752060
## [10,] -0.06528015 -0.05811591 -0.06303464 -0.06667023 -0.06068221
##              [,6]        [,7]        [,8]        [,9]       [,10]
##  [1,] -0.06974958 -0.08405176 -0.10237642 -0.07377207 -0.06528015
##  [2,] -0.06122933 -0.07119228 -0.08395731 -0.06403141 -0.05811591
##  [3,] -0.06707906 -0.08002118 -0.09660327 -0.07071903 -0.06303464
##  [4,] -0.07140277 -0.08654688 -0.10595028 -0.07566205 -0.06667023
##  [5,] -0.06428136 -0.07579866 -0.09055520 -0.06752060 -0.06068221
##  [6,]  0.95034295 -0.05372643 -0.05894031 -0.05080156 -0.04838537
##  [7,] -0.05372643  0.94013174 -0.06773750 -0.05545382 -0.05180710
##  [8,] -0.05894031 -0.06773750  0.92099111 -0.06141452 -0.05619119
##  [9,] -0.05080156 -0.05545382 -0.06141452  0.94788999 -0.04934773
## [10,] -0.04838537 -0.05180710 -0.05619119 -0.04934773  0.95268392
##             [,11]       [,12]       [,13]       [,14]         [,15]
##  [1,] -0.05634129 -0.04650855 -0.04382689 -0.05410658  0.0102532092
##  [2,] -0.05188907 -0.04503954 -0.04317149 -0.05033236 -0.0054990852
##  [3,] -0.05494582 -0.04604811 -0.04362147 -0.05292361  0.0053159229
##  [4,] -0.05720516 -0.04679358 -0.04395406 -0.05483889  0.0133096246
##  [5,] -0.05348390 -0.04556575 -0.04340626 -0.05168432  0.0001435277
##  [6,] -0.04584201 -0.04304432 -0.04228131 -0.04520617 -0.0268939925
##  [7,] -0.04796845 -0.04374594 -0.04259434 -0.04700879 -0.0193705086
##  [8,] -0.05069295 -0.04464488 -0.04299541 -0.04931839 -0.0097310449
##  [9,] -0.04644007 -0.04324165 -0.04236935 -0.04571316 -0.0247780127
## [10,] -0.04517750 -0.04282506 -0.04218349 -0.04464286 -0.0292450813
##               [,16]        [,17]         [,18]       [,19]        [,20]
##  [1,]  0.0187451258 -0.010753111 -0.0009203652 -0.01298783  0.043773933
##  [2,]  0.0004164159 -0.020132167 -0.0132826393 -0.02168888  0.017851577
##  [3,]  0.0130003063 -0.013692815 -0.0047951078 -0.01571502  0.035649015
##  [4,]  0.0223014426 -0.008933294  0.0014782850 -0.01129956  0.048803643
##  [5,]  0.0069819239 -0.016772505 -0.0088543620 -0.01857208  0.027137197
##  [6,] -0.0244778019 -0.032870885 -0.0300731907 -0.03350672 -0.017356398
##  [7,] -0.0157237913 -0.028391336 -0.0241688210 -0.02935100 -0.004975572
##  [8,] -0.0045077151 -0.022651913 -0.0166038473 -0.02402647  0.010887362
##  [9,] -0.0220157364 -0.031611012 -0.0284125867 -0.03233793 -0.013874291
## [10,] -0.0272134303 -0.034270744 -0.0319183062 -0.03480539 -0.021225406
##              [,21]        [,22]        [,23]         [,24]
##  [1,]  0.065674138  0.032153415  0.044667818  0.0545005640
##  [2,]  0.033107343  0.009756681  0.018474261  0.0253237891
##  [3,]  0.055466635  0.025133543  0.036457898  0.0453556047
##  [4,]  0.071993069  0.036499050  0.049750150  0.0601617293
##  [5,]  0.044773061  0.017779392  0.027857028  0.0357751712
##  [6,] -0.011125170 -0.020662764 -0.017102062 -0.0143043678
##  [7,]  0.004429121 -0.009965816 -0.004591707 -0.0003691918
##  [8,]  0.024358055  0.003739648  0.011437186  0.0174852526
##  [9,] -0.006750526 -0.017654248 -0.013583525 -0.0103850996
## [10,] -0.015985885 -0.024005560 -0.021011548 -0.0186591104

Residuos del Modelo

Residuos<-M%*%Y
print(Residuos)
##                 Y
##  [1,] -0.50716765
##  [2,]  0.50270510
##  [3,] -0.03093888
##  [4,]  1.27897644
##  [5,] -0.98441350
##  [6,]  0.19969645
##  [7,] -0.04979501
##  [8,]  0.36804405
##  [9,] -1.83297302
## [10,] -0.99733747
## [11,]  0.30859470
## [12,]  0.05512008
## [13,]  0.57689973
## [14,]  0.46007774
## [15,] -0.11721068
## [16,] -0.08157512
## [17,] -0.22115126
## [18,]  0.32537412
## [19,]  0.72736569
## [20,]  0.15503494
## [21,] -0.90043126
## [22,]  1.02732313
## [23,] -0.90437184
## [24,]  0.64215354

Aplicar las pruebas de Normalidad, e interpretar los resultados en cada una de las pruebas

Prueba Jarque-Bera

library(normtest)
jb.norm.test(Residuos)
## 
##  Jarque-Bera test for normality
## 
## data:  Residuos
## JB = 1.5606, p-value = 0.22

Rechazar Ho si JB > V.c Rechazar Ho si p < a No se rechaza Ho JB < v.C Y P > a, Por lo tanto se concluye que los residuales siguen una distribucion normal.

Prueba de Kolmogorov Smirnov

library(nortest)
lillie.test(Residuos)
## 
##  Lilliefors (Kolmogorov-Smirnov) normality test
## 
## data:  Residuos
## D = 0.14418, p-value = 0.2209

Rechazar Ho si D > v.c Rechazar Ho si p < a D < V.C. por lo que la hipotesis nula no se rechaza, los residuales siguen una distribucion normal.

Prueba Shapiro Wilk

shapiro.test(Residuos)
## 
##  Shapiro-Wilk normality test
## 
## data:  Residuos
## W = 0.95746, p-value = 0.3895

Rechazar Ho si Wn > V.C Rechazar Ho si p < a Wn < V.C por lo que la hipotesis nula no se rechaza, los residuos siguen una distribucion normal.

EJERCICIO 2

Datos

Matriz de correlación

d<-c(1,-0.8,0.68,0.74,-0.57,-0.75)
e<-c(-0.8,1,-0.71,-0.87,0.69,0.8)
f<-c(0.68,-0.71,1, 0.81,-0.77, -0.82)
g<-c(0.74,-0.87,0.81,1,-0.80,-0.84)
h<-c(-0.57,0.69,-0.77,-0.80,1,0.64)
i<-c(-0.75,0.8,-0.82,-0.84,0.64,1)
R<-cbind(d,e,f,g,h,i)
print(R)
##          d     e     f     g     h     i
## [1,]  1.00 -0.80  0.68  0.74 -0.57 -0.75
## [2,] -0.80  1.00 -0.71 -0.87  0.69  0.80
## [3,]  0.68 -0.71  1.00  0.81 -0.77 -0.82
## [4,]  0.74 -0.87  0.81  1.00 -0.80 -0.84
## [5,] -0.57  0.69 -0.77 -0.80  1.00  0.64
## [6,] -0.75  0.80 -0.82 -0.84  0.64  1.00

Determinante

determinante_R<-det(R)
print(determinante_R)
## [1] 0.001684439

Prueba de Farrer Glaubar (Bartlett)

m<-ncol(R)
n<-nrow(R)
chi_FG<--(n-1-(2*m+5)/6)*log(determinante_R)
print(chi_FG)
## [1] 13.83703

Valor Critico

gl<-m*(m-1)/2
VC<-qchisq(p = 0.95,df = gl)
print(VC)
## [1] 24.99579

Como el estadistico es menor al Valor Crítico, no se rechaza la Ho, por lo tanto no hay evidencia de colinealidad en los regresores.

Uso de la Librería Psych

library(psych)
FG_test<-cortest.bartlett(R)
print(FG_test)
## $chisq
## [1] 614.1513
## 
## $p.value
## [1] 3.491034e-121
## 
## $df
## [1] 15

Calculando los VIF para el modelo estimado

Matriz de Correlación de los regresores del modelo (Como se obtuvo con anterioridad).

print(R)
##          d     e     f     g     h     i
## [1,]  1.00 -0.80  0.68  0.74 -0.57 -0.75
## [2,] -0.80  1.00 -0.71 -0.87  0.69  0.80
## [3,]  0.68 -0.71  1.00  0.81 -0.77 -0.82
## [4,]  0.74 -0.87  0.81  1.00 -0.80 -0.84
## [5,] -0.57  0.69 -0.77 -0.80  1.00  0.64
## [6,] -0.75  0.80 -0.82 -0.84  0.64  1.00

Inversa de la matriz de correlación \(R^{-1}\):

Inversa_R<-solve(R)
print(Inversa_R)
##          [,1]       [,2]       [,3]        [,4]       [,5]       [,6]
## d  3.12989194  1.8066302 -0.5430948  0.01312674 -0.2872837  0.6516651
## e  1.80663016  5.5207504 -0.8728955  3.04065276 -0.4001754 -0.9671414
## f -0.54309484 -0.8728955  4.6100427 -0.68684569  1.7897206  2.3488587
## g  0.01312674  3.0406528 -0.6868457  7.70048852  2.2224574  2.0601470
## h -0.28728369 -0.4001754  1.7897206  2.22245739  3.5016734  1.1980416
## i  0.65166508 -0.9671414  2.3488587  2.06014702  1.1980416  5.1523030

VIF´s para el modelo estimado:

VIFs<-diag(Inversa_R)
print(VIFs)
## [1] 3.129892 5.520750 4.610043 7.700489 3.501673 5.152303