date()
## [1] "Tue Mar 19 17:54:22 2013"
require(spatstat)
Using the ants data set
plot(ants)
## Cataglyphis Messor
## 1 2
CAT = unmark(ants[ants$marks == "Cataglyphis"])
MES = unmark(ants[ants$marks == "Messor"])
plot(Gest(CAT))
## lty col key label meaning
## km 1 1 km hat(G)[km](r) Kaplan-Meier estimate of G(r)
## rs 2 2 rs hat(G)[bord](r) border corrected estimate of G(r)
## han 3 3 han hat(G)[han](r) Hanisch estimate of G(r)
## theo 4 4 theo G[pois](r) theoretical Poisson G(r)
plot(Gest(MES))
## lty col key label meaning
## km 1 1 km hat(G)[km](r) Kaplan-Meier estimate of G(r)
## rs 2 2 rs hat(G)[bord](r) border corrected estimate of G(r)
## han 3 3 han hat(G)[han](r) Hanisch estimate of G(r)
## theo 4 4 theo G[pois](r) theoretical Poisson G(r)
For the Cataglyphis ants, for a given radius greater than 30 units (15 ft), the observed value of G is less than the theoretical value of G (blue line). This indicates spatial regularity - there are fewer nests in the vicinity of other nests than is expected by chance. For the Messor ants, the observed value of G is almost always less than the theoretical value of G, with the exception of very large radii. This again indicated spatial regularity.
plot(Kcross(ants, "Cataglyphis", "Messor"))
## lty col key
## iso 1 1 iso
## trans 2 2 trans
## border 3 3 border
## theo 4 4 theo
## label
## iso hat(K[list(Cataglyphis, Messor)]^{ iso})(r)
## trans hat(K[list(Cataglyphis, Messor)]^{ trans})(r)
## border hat(K[list(Cataglyphis, Messor)]^{ bord})(r)
## theo { K[list(Cataglyphis, Messor)]^{ pois }}(r)
## meaning
## iso Ripley isotropic correction estimate of Kcross["Cataglyphis", "Messor"](r)
## trans translation-corrected estimate of Kcross["Cataglyphis", "Messor"](r)
## border border-corrected estimate of Kcross["Cataglyphis", "Messor"](r)
## theo theoretical Poisson Kcross["Cataglyphis", "Messor"](r)
The estimates closely follow the theoretical poisson function, but are slightly higher than the theoretical curve. If the estimates follow the poisson curve, it indicates that the two types are independent of one another. At larger radii, the estimates fall slightly above the theoretical curve, which would indicate some inter-species clustering.
ants2 = unmark(ants)
ants.model = ppm(ants2, interaction = Strauss(r = 100), rbord = 100)
ants.model
## Stationary Strauss process
##
## First order term:
## beta
## 0.0009962
##
## Interaction: Strauss process
## interaction distance: 100
## Fitted interaction parameter gamma: 0.8189
##
## Relevant coefficients:
## Interaction
## -0.1998
##
## For standard errors, type coef(summary(x))
The first order term, which gives the intensity of the proposal events, is 0.000996. The actual intensity is 97/[(803+25)*(717+49)], or 0.000153. Therefore, the first order term is about 9 times greater than the actual intensity, which would indicate an inhibition process. The interaction paramter is 0.8102. The interaction parameter is less than 1, indicating that events inhibit other nearby events.