Ejercicio 1

Creacion de los datos

library(dplyr)
X<-matrix(data = c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
                   1,1,1,216,283,237,203,259,374,342,301,365,
                   384,404,426,432,409,553,572,506,528,501,
                   628,677,602,630,652),
          nrow = 24, ncol = 2, byrow = FALSE)
colnames(X) <-c("cte","x")
Y<-matrix(data = c(6.1,9.1,7.2,7.5,6.9,11.5,10.3,9.5,9.2,
                   10.6,12.5,12.9,13.6,12.8,16.5,17.1,15,
                   16.2,15.8,19,19.4,19.1,18,20.2),
          nrow = 24)
XY<- cbind(Y,X)
print(XY)
##            cte   x
##  [1,]  6.1   1 216
##  [2,]  9.1   1 283
##  [3,]  7.2   1 237
##  [4,]  7.5   1 203
##  [5,]  6.9   1 259
##  [6,] 11.5   1 374
##  [7,] 10.3   1 342
##  [8,]  9.5   1 301
##  [9,]  9.2   1 365
## [10,] 10.6   1 384
## [11,] 12.5   1 404
## [12,] 12.9   1 426
## [13,] 13.6   1 432
## [14,] 12.8   1 409
## [15,] 16.5   1 553
## [16,] 17.1   1 572
## [17,] 15.0   1 506
## [18,] 16.2   1 528
## [19,] 15.8   1 501
## [20,] 19.0   1 628
## [21,] 19.4   1 677
## [22,] 19.1   1 602
## [23,] 18.0   1 630
## [24,] 20.2   1 652

Optención de la matriz A

A = \((X'.X)^{-1}*X'\)

#Matriz A 
A<-solve(t(X)%*%X)%*%t(X)
head(A,10)
##             [,1]          [,2]          [,3]          [,4]          [,5]
## cte  0.236906257  0.1776713023  0.2183400774  0.2483996068  0.1988897936
## x   -0.000446943 -0.0003113422 -0.0004044412 -0.0004732536 -0.0003599156
##              [,6]          [,7]          [,8]         [,9]        [,10]
## cte  0.0972178559  0.1255091777  0.1617574338  0.105174790  0.088376818
## x   -0.0001271679 -0.0001919325 -0.0002749121 -0.000145383 -0.000106929
##             [,11]         [,12]         [,13]         [,14]         [,15]
## cte  7.069474e-02  0.0512444579  4.593984e-02  6.627422e-02 -0.0610367256
## x   -6.645114e-05 -0.0000219255 -9.782148e-06 -5.633168e-05  0.0002351089
##             [,16]         [,17]         [,18]         [,19]         [,20]
## cte -0.0778346979 -0.0194838466 -0.0389341304 -0.0150633276 -0.1273445111
## x    0.0002735628  0.0001399859  0.0001845116  0.0001298665  0.0003869008
##             [,21]         [,22]         [,23]         [,24]
## cte -0.1706655976 -0.1043578121 -0.1291127187 -0.1485630024
## x    0.0004860716  0.0003342796  0.0003909486  0.0004354743

Calculando la matriz P

#Matriz P 
P<-X%*%A
N <- nrow(P)
Iden<-diag(x=1,N,N)
head(P,10)
##             [,1]       [,2]       [,3]       [,4]       [,5]       [,6]
##  [1,] 0.14036657 0.11042139 0.13098077 0.14617683 0.12114803 0.06974958
##  [2,] 0.11042139 0.08956147 0.10388321 0.11446884 0.09703368 0.06122933
##  [3,] 0.13098077 0.10388321 0.12248751 0.13623851 0.11358980 0.06707906
##  [4,] 0.14617683 0.11446884 0.13623851 0.15232913 0.12582693 0.07140277
##  [5,] 0.12114803 0.09703368 0.11358980 0.12582693 0.10567166 0.06428136
##  [6,] 0.06974958 0.06122933 0.06707906 0.07140277 0.06428136 0.04965705
##  [7,] 0.08405176 0.07119228 0.08002118 0.08654688 0.07579866 0.05372643
##  [8,] 0.10237642 0.08395731 0.09660327 0.10595028 0.09055520 0.05894031
##  [9,] 0.07377207 0.06403141 0.07071903 0.07566205 0.06752060 0.05080156
## [10,] 0.06528015 0.05811591 0.06303464 0.06667023 0.06068221 0.04838537
##             [,7]       [,8]       [,9]      [,10]      [,11]      [,12]
##  [1,] 0.08405176 0.10237642 0.07377207 0.06528015 0.05634129 0.04650855
##  [2,] 0.07119228 0.08395731 0.06403141 0.05811591 0.05188907 0.04503954
##  [3,] 0.08002118 0.09660327 0.07071903 0.06303464 0.05494582 0.04604811
##  [4,] 0.08654688 0.10595028 0.07566205 0.06667023 0.05720516 0.04679358
##  [5,] 0.07579866 0.09055520 0.06752060 0.06068221 0.05348390 0.04556575
##  [6,] 0.05372643 0.05894031 0.05080156 0.04838537 0.04584201 0.04304432
##  [7,] 0.05986826 0.06773750 0.05545382 0.05180710 0.04796845 0.04374594
##  [8,] 0.06773750 0.07900889 0.06141452 0.05619119 0.05069295 0.04464488
##  [9,] 0.05545382 0.06141452 0.05211001 0.04934773 0.04644007 0.04324165
## [10,] 0.05180710 0.05619119 0.04934773 0.04731608 0.04517750 0.04282506
##            [,13]      [,14]         [,15]         [,16]       [,17]
##  [1,] 0.04382689 0.05410658 -0.0102532092 -0.0187451258 0.010753111
##  [2,] 0.04317149 0.05033236  0.0054990852 -0.0004164159 0.020132167
##  [3,] 0.04362147 0.05292361 -0.0053159229 -0.0130003063 0.013692815
##  [4,] 0.04395406 0.05483889 -0.0133096246 -0.0223014426 0.008933294
##  [5,] 0.04340626 0.05168432 -0.0001435277 -0.0069819239 0.016772505
##  [6,] 0.04228131 0.04520617  0.0268939925  0.0244778019 0.032870885
##  [7,] 0.04259434 0.04700879  0.0193705086  0.0157237913 0.028391336
##  [8,] 0.04299541 0.04931839  0.0097310449  0.0045077151 0.022651913
##  [9,] 0.04236935 0.04571316  0.0247780127  0.0220157364 0.031611012
## [10,] 0.04218349 0.04464286  0.0292450813  0.0272134303 0.034270744
##               [,18]      [,19]        [,20]        [,21]        [,22]
##  [1,]  0.0009203652 0.01298783 -0.043773933 -0.065674138 -0.032153415
##  [2,]  0.0132826393 0.02168888 -0.017851577 -0.033107343 -0.009756681
##  [3,]  0.0047951078 0.01571502 -0.035649015 -0.055466635 -0.025133543
##  [4,] -0.0014782850 0.01129956 -0.048803643 -0.071993069 -0.036499050
##  [5,]  0.0088543620 0.01857208 -0.027137197 -0.044773061 -0.017779392
##  [6,]  0.0300731907 0.03350672  0.017356398  0.011125170  0.020662764
##  [7,]  0.0241688210 0.02935100  0.004975572 -0.004429121  0.009965816
##  [8,]  0.0166038473 0.02402647 -0.010887362 -0.024358055 -0.003739648
##  [9,]  0.0284125867 0.03233793  0.013874291  0.006750526  0.017654248
## [10,]  0.0319183062 0.03480539  0.021225406  0.015985885  0.024005560
##              [,23]         [,24]
##  [1,] -0.044667818 -0.0545005640
##  [2,] -0.018474261 -0.0253237891
##  [3,] -0.036457898 -0.0453556047
##  [4,] -0.049750150 -0.0601617293
##  [5,] -0.027857028 -0.0357751712
##  [6,]  0.017102062  0.0143043678
##  [7,]  0.004591707  0.0003691918
##  [8,] -0.011437186 -0.0174852526
##  [9,]  0.013583525  0.0103850996
## [10,]  0.021011548  0.0186591104

Calculando la matriz M

#Matriz M
M<- (Iden-P)
head(M,10)
##              [,1]        [,2]        [,3]        [,4]        [,5]
##  [1,]  0.85963343 -0.11042139 -0.13098077 -0.14617683 -0.12114803
##  [2,] -0.11042139  0.91043853 -0.10388321 -0.11446884 -0.09703368
##  [3,] -0.13098077 -0.10388321  0.87751249 -0.13623851 -0.11358980
##  [4,] -0.14617683 -0.11446884 -0.13623851  0.84767087 -0.12582693
##  [5,] -0.12114803 -0.09703368 -0.11358980 -0.12582693  0.89432834
##  [6,] -0.06974958 -0.06122933 -0.06707906 -0.07140277 -0.06428136
##  [7,] -0.08405176 -0.07119228 -0.08002118 -0.08654688 -0.07579866
##  [8,] -0.10237642 -0.08395731 -0.09660327 -0.10595028 -0.09055520
##  [9,] -0.07377207 -0.06403141 -0.07071903 -0.07566205 -0.06752060
## [10,] -0.06528015 -0.05811591 -0.06303464 -0.06667023 -0.06068221
##              [,6]        [,7]        [,8]        [,9]       [,10]
##  [1,] -0.06974958 -0.08405176 -0.10237642 -0.07377207 -0.06528015
##  [2,] -0.06122933 -0.07119228 -0.08395731 -0.06403141 -0.05811591
##  [3,] -0.06707906 -0.08002118 -0.09660327 -0.07071903 -0.06303464
##  [4,] -0.07140277 -0.08654688 -0.10595028 -0.07566205 -0.06667023
##  [5,] -0.06428136 -0.07579866 -0.09055520 -0.06752060 -0.06068221
##  [6,]  0.95034295 -0.05372643 -0.05894031 -0.05080156 -0.04838537
##  [7,] -0.05372643  0.94013174 -0.06773750 -0.05545382 -0.05180710
##  [8,] -0.05894031 -0.06773750  0.92099111 -0.06141452 -0.05619119
##  [9,] -0.05080156 -0.05545382 -0.06141452  0.94788999 -0.04934773
## [10,] -0.04838537 -0.05180710 -0.05619119 -0.04934773  0.95268392
##             [,11]       [,12]       [,13]       [,14]         [,15]
##  [1,] -0.05634129 -0.04650855 -0.04382689 -0.05410658  0.0102532092
##  [2,] -0.05188907 -0.04503954 -0.04317149 -0.05033236 -0.0054990852
##  [3,] -0.05494582 -0.04604811 -0.04362147 -0.05292361  0.0053159229
##  [4,] -0.05720516 -0.04679358 -0.04395406 -0.05483889  0.0133096246
##  [5,] -0.05348390 -0.04556575 -0.04340626 -0.05168432  0.0001435277
##  [6,] -0.04584201 -0.04304432 -0.04228131 -0.04520617 -0.0268939925
##  [7,] -0.04796845 -0.04374594 -0.04259434 -0.04700879 -0.0193705086
##  [8,] -0.05069295 -0.04464488 -0.04299541 -0.04931839 -0.0097310449
##  [9,] -0.04644007 -0.04324165 -0.04236935 -0.04571316 -0.0247780127
## [10,] -0.04517750 -0.04282506 -0.04218349 -0.04464286 -0.0292450813
##               [,16]        [,17]         [,18]       [,19]        [,20]
##  [1,]  0.0187451258 -0.010753111 -0.0009203652 -0.01298783  0.043773933
##  [2,]  0.0004164159 -0.020132167 -0.0132826393 -0.02168888  0.017851577
##  [3,]  0.0130003063 -0.013692815 -0.0047951078 -0.01571502  0.035649015
##  [4,]  0.0223014426 -0.008933294  0.0014782850 -0.01129956  0.048803643
##  [5,]  0.0069819239 -0.016772505 -0.0088543620 -0.01857208  0.027137197
##  [6,] -0.0244778019 -0.032870885 -0.0300731907 -0.03350672 -0.017356398
##  [7,] -0.0157237913 -0.028391336 -0.0241688210 -0.02935100 -0.004975572
##  [8,] -0.0045077151 -0.022651913 -0.0166038473 -0.02402647  0.010887362
##  [9,] -0.0220157364 -0.031611012 -0.0284125867 -0.03233793 -0.013874291
## [10,] -0.0272134303 -0.034270744 -0.0319183062 -0.03480539 -0.021225406
##              [,21]        [,22]        [,23]         [,24]
##  [1,]  0.065674138  0.032153415  0.044667818  0.0545005640
##  [2,]  0.033107343  0.009756681  0.018474261  0.0253237891
##  [3,]  0.055466635  0.025133543  0.036457898  0.0453556047
##  [4,]  0.071993069  0.036499050  0.049750150  0.0601617293
##  [5,]  0.044773061  0.017779392  0.027857028  0.0357751712
##  [6,] -0.011125170 -0.020662764 -0.017102062 -0.0143043678
##  [7,]  0.004429121 -0.009965816 -0.004591707 -0.0003691918
##  [8,]  0.024358055  0.003739648  0.011437186  0.0174852526
##  [9,] -0.006750526 -0.017654248 -0.013583525 -0.0103850996
## [10,] -0.015985885 -0.024005560 -0.021011548 -0.0186591104

Calculado los residuos del modelo

#Residuos E = (I-P)*Y
u_i<- M%*%Y
print(u_i)
##              [,1]
##  [1,] -0.50716765
##  [2,]  0.50270510
##  [3,] -0.03093888
##  [4,]  1.27897644
##  [5,] -0.98441350
##  [6,]  0.19969645
##  [7,] -0.04979501
##  [8,]  0.36804405
##  [9,] -1.83297302
## [10,] -0.99733747
## [11,]  0.30859470
## [12,]  0.05512008
## [13,]  0.57689973
## [14,]  0.46007774
## [15,] -0.11721068
## [16,] -0.08157512
## [17,] -0.22115126
## [18,]  0.32537412
## [19,]  0.72736569
## [20,]  0.15503494
## [21,] -0.90043126
## [22,]  1.02732313
## [23,] -0.90437184
## [24,]  0.64215354

Aplicación de las pruebas de normalidad

Prueba de jarque Bera

library(normtest)
jb.norm.test(u_i)
## 
##  Jarque-Bera test for normality
## 
## data:  u_i
## JB = 1.5606, p-value = 0.2205

Prueba de Kolmogorov Smirnov

library(nortest)
lillie.test(u_i)
## 
##  Lilliefors (Kolmogorov-Smirnov) normality test
## 
## data:  u_i
## D = 0.14418, p-value = 0.2209

-En caso de la prueba de Kolmogorov-Smirnov para un nivel de significancia del 5% y una muesta n=24 el V.C. = 0.1788 la condicion de no rechazar de la Ho es que el estadistico D < V.C., además también se puede evaluar por medio del p-value en la cual la condición de no rechazo es p-value > \(\alpha\) D (0.14418) < V.C.(0.1788) p-value (0.2209) > \(\alpha\)(0.05)

Prueba de Shapiro - Wilk

shapiro.test(u_i)
## 
##  Shapiro-Wilk normality test
## 
## data:  u_i
## W = 0.95746, p-value = 0.3895

SW (0.95746) < V.C.(1.644854) p-value (0.3895) > \(\alpha\)(0.05)

Ejercicio 2

Creando la Matriz de Correlación

#Matriz R
R<-matrix(data = c(1,-0.8,0.68,0.74,-0.57,-0.75,-0.8, 1, -0.71, -0.87, 0.69,0.8,
                   0.68,-0.71,1,.81,-.77,-.82,.74,-.87,.81,1,-.8,-.84,-.57,.69,-.77,
                   -.8,1,.64,-.75,.8,-.82,-.84,.64,1),
          nrow = 6, ncol = 6, byrow = TRUE)
colnames(R) <-c("Prn","Pac","rezago","nini", "educ", "ips")
rownames(R)<-c("Prn","Pac","rezago","nini", "educ", "ips")
print(R)
##          Prn   Pac rezago  nini  educ   ips
## Prn     1.00 -0.80   0.68  0.74 -0.57 -0.75
## Pac    -0.80  1.00  -0.71 -0.87  0.69  0.80
## rezago  0.68 -0.71   1.00  0.81 -0.77 -0.82
## nini    0.74 -0.87   0.81  1.00 -0.80 -0.84
## educ   -0.57  0.69  -0.77 -0.80  1.00  0.64
## ips    -0.75  0.80  -0.82 -0.84  0.64  1.00
determinante_R<- det(R)

Prueba de Farrar Glauder

det_R<-det(R)
m<-2
chi_FG<--(N-1-(2*m+5)/6)*log(det_R)
print(chi_FG)
## [1] 137.3059

Calculo del valor crítico

gl<-m*(m-1)/2
VC<-qchisq(p = 0.95,df = gl)
print(VC)
## [1] 3.841459

Como \(X^2_{FG}\) > V.C. se rechaza H0, por lo tanto hay evidencia de colinealidad en los regresores

Factores Inflacionarios de la Varianza

#Inversa de R
R_inv<-solve(R)
print(R_inv)
##                Prn        Pac     rezago        nini       educ        ips
## Prn     3.12989194  1.8066302 -0.5430948  0.01312674 -0.2872837  0.6516651
## Pac     1.80663016  5.5207504 -0.8728955  3.04065276 -0.4001754 -0.9671414
## rezago -0.54309484 -0.8728955  4.6100427 -0.68684569  1.7897206  2.3488587
## nini    0.01312674  3.0406528 -0.6868457  7.70048852  2.2224574  2.0601470
## educ   -0.28728369 -0.4001754  1.7897206  2.22245739  3.5016734  1.1980416
## ips     0.65166508 -0.9671414  2.3488587  2.06014702  1.1980416  5.1523030

Obteniendo los VIF’s en la diagonal de la inversa de R

VIFs<-diag(R_inv)
print(VIFs)
##      Prn      Pac   rezago     nini     educ      ips 
## 3.129892 5.520750 4.610043 7.700489 3.501673 5.152303

Las variables que se consideran colineales son Cuando VIF>2, se consideran variables colineales. Cuando VIF>5 o VIF>10, se consideran variables altamente colineales. - Respuesta: En este caso todas las variables se consideran colineales porque ningun VIF<2