I PARTE

Datos

library(dplyr)
library(readr)
library(readxl)
envios1<-read_excel("C:/Users/Samsung/Desktop/envios1.xlsx")
envios1%>% select("ordenes") %>% as.matrix()->Y
head.matrix(Y,n=10) 
##       ordenes
##  [1,]     6.1
##  [2,]     9.1
##  [3,]     7.2
##  [4,]     7.5
##  [5,]     6.9
##  [6,]    11.5
##  [7,]    10.3
##  [8,]     9.5
##  [9,]     9.2
## [10,]    10.6
envios1%>%  mutate(Cte=1) %>% select("Cte","peso") %>% as.matrix()->X
head.matrix(X,n=10) 
##       Cte peso
##  [1,]   1  216
##  [2,]   1  283
##  [3,]   1  237
##  [4,]   1  203
##  [5,]   1  259
##  [6,]   1  374
##  [7,]   1  342
##  [8,]   1  301
##  [9,]   1  365
## [10,]   1  384

a)Calculo de matrices A,P,y M

Matriz A

XX<-t(X)%*%X
A<-solve(XX)%*%t(X)
A
##              [,1]          [,2]          [,3]          [,4]          [,5]
## Cte   0.236906257  0.1776713023  0.2183400774  0.2483996068  0.1988897936
## peso -0.000446943 -0.0003113422 -0.0004044412 -0.0004732536 -0.0003599156
##               [,6]          [,7]          [,8]         [,9]        [,10]
## Cte   0.0972178559  0.1255091777  0.1617574338  0.105174790  0.088376818
## peso -0.0001271679 -0.0001919325 -0.0002749121 -0.000145383 -0.000106929
##              [,11]         [,12]         [,13]         [,14]         [,15]
## Cte   7.069474e-02  0.0512444579  4.593984e-02  6.627422e-02 -0.0610367256
## peso -6.645114e-05 -0.0000219255 -9.782148e-06 -5.633168e-05  0.0002351089
##              [,16]         [,17]         [,18]         [,19]         [,20]
## Cte  -0.0778346979 -0.0194838466 -0.0389341304 -0.0150633276 -0.1273445111
## peso  0.0002735628  0.0001399859  0.0001845116  0.0001298665  0.0003869008
##              [,21]         [,22]         [,23]         [,24]
## Cte  -0.1706655976 -0.1043578121 -0.1291127187 -0.1485630024
## peso  0.0004860716  0.0003342796  0.0003909486  0.0004354743

Matriz P

P<-(X%*%solve(XX))%*%t(X)
head(P,n=10)
##             [,1]       [,2]       [,3]       [,4]       [,5]       [,6]
##  [1,] 0.14036657 0.11042139 0.13098077 0.14617683 0.12114803 0.06974958
##  [2,] 0.11042139 0.08956147 0.10388321 0.11446884 0.09703368 0.06122933
##  [3,] 0.13098077 0.10388321 0.12248751 0.13623851 0.11358980 0.06707906
##  [4,] 0.14617683 0.11446884 0.13623851 0.15232913 0.12582693 0.07140277
##  [5,] 0.12114803 0.09703368 0.11358980 0.12582693 0.10567166 0.06428136
##  [6,] 0.06974958 0.06122933 0.06707906 0.07140277 0.06428136 0.04965705
##  [7,] 0.08405176 0.07119228 0.08002118 0.08654688 0.07579866 0.05372643
##  [8,] 0.10237642 0.08395731 0.09660327 0.10595028 0.09055520 0.05894031
##  [9,] 0.07377207 0.06403141 0.07071903 0.07566205 0.06752060 0.05080156
## [10,] 0.06528015 0.05811591 0.06303464 0.06667023 0.06068221 0.04838537
##             [,7]       [,8]       [,9]      [,10]      [,11]      [,12]
##  [1,] 0.08405176 0.10237642 0.07377207 0.06528015 0.05634129 0.04650855
##  [2,] 0.07119228 0.08395731 0.06403141 0.05811591 0.05188907 0.04503954
##  [3,] 0.08002118 0.09660327 0.07071903 0.06303464 0.05494582 0.04604811
##  [4,] 0.08654688 0.10595028 0.07566205 0.06667023 0.05720516 0.04679358
##  [5,] 0.07579866 0.09055520 0.06752060 0.06068221 0.05348390 0.04556575
##  [6,] 0.05372643 0.05894031 0.05080156 0.04838537 0.04584201 0.04304432
##  [7,] 0.05986826 0.06773750 0.05545382 0.05180710 0.04796845 0.04374594
##  [8,] 0.06773750 0.07900889 0.06141452 0.05619119 0.05069295 0.04464488
##  [9,] 0.05545382 0.06141452 0.05211001 0.04934773 0.04644007 0.04324165
## [10,] 0.05180710 0.05619119 0.04934773 0.04731608 0.04517750 0.04282506
##            [,13]      [,14]         [,15]         [,16]       [,17]
##  [1,] 0.04382689 0.05410658 -0.0102532092 -0.0187451258 0.010753111
##  [2,] 0.04317149 0.05033236  0.0054990852 -0.0004164159 0.020132167
##  [3,] 0.04362147 0.05292361 -0.0053159229 -0.0130003063 0.013692815
##  [4,] 0.04395406 0.05483889 -0.0133096246 -0.0223014426 0.008933294
##  [5,] 0.04340626 0.05168432 -0.0001435277 -0.0069819239 0.016772505
##  [6,] 0.04228131 0.04520617  0.0268939925  0.0244778019 0.032870885
##  [7,] 0.04259434 0.04700879  0.0193705086  0.0157237913 0.028391336
##  [8,] 0.04299541 0.04931839  0.0097310449  0.0045077151 0.022651913
##  [9,] 0.04236935 0.04571316  0.0247780127  0.0220157364 0.031611012
## [10,] 0.04218349 0.04464286  0.0292450813  0.0272134303 0.034270744
##               [,18]      [,19]        [,20]        [,21]        [,22]
##  [1,]  0.0009203652 0.01298783 -0.043773933 -0.065674138 -0.032153415
##  [2,]  0.0132826393 0.02168888 -0.017851577 -0.033107343 -0.009756681
##  [3,]  0.0047951078 0.01571502 -0.035649015 -0.055466635 -0.025133543
##  [4,] -0.0014782850 0.01129956 -0.048803643 -0.071993069 -0.036499050
##  [5,]  0.0088543620 0.01857208 -0.027137197 -0.044773061 -0.017779392
##  [6,]  0.0300731907 0.03350672  0.017356398  0.011125170  0.020662764
##  [7,]  0.0241688210 0.02935100  0.004975572 -0.004429121  0.009965816
##  [8,]  0.0166038473 0.02402647 -0.010887362 -0.024358055 -0.003739648
##  [9,]  0.0284125867 0.03233793  0.013874291  0.006750526  0.017654248
## [10,]  0.0319183062 0.03480539  0.021225406  0.015985885  0.024005560
##              [,23]         [,24]
##  [1,] -0.044667818 -0.0545005640
##  [2,] -0.018474261 -0.0253237891
##  [3,] -0.036457898 -0.0453556047
##  [4,] -0.049750150 -0.0601617293
##  [5,] -0.027857028 -0.0357751712
##  [6,]  0.017102062  0.0143043678
##  [7,]  0.004591707  0.0003691918
##  [8,] -0.011437186 -0.0174852526
##  [9,]  0.013583525  0.0103850996
## [10,]  0.021011548  0.0186591104

Matriz M

I<-diag(24)
M<- I-P
head(M,n=10)
##              [,1]        [,2]        [,3]        [,4]        [,5]
##  [1,]  0.85963343 -0.11042139 -0.13098077 -0.14617683 -0.12114803
##  [2,] -0.11042139  0.91043853 -0.10388321 -0.11446884 -0.09703368
##  [3,] -0.13098077 -0.10388321  0.87751249 -0.13623851 -0.11358980
##  [4,] -0.14617683 -0.11446884 -0.13623851  0.84767087 -0.12582693
##  [5,] -0.12114803 -0.09703368 -0.11358980 -0.12582693  0.89432834
##  [6,] -0.06974958 -0.06122933 -0.06707906 -0.07140277 -0.06428136
##  [7,] -0.08405176 -0.07119228 -0.08002118 -0.08654688 -0.07579866
##  [8,] -0.10237642 -0.08395731 -0.09660327 -0.10595028 -0.09055520
##  [9,] -0.07377207 -0.06403141 -0.07071903 -0.07566205 -0.06752060
## [10,] -0.06528015 -0.05811591 -0.06303464 -0.06667023 -0.06068221
##              [,6]        [,7]        [,8]        [,9]       [,10]
##  [1,] -0.06974958 -0.08405176 -0.10237642 -0.07377207 -0.06528015
##  [2,] -0.06122933 -0.07119228 -0.08395731 -0.06403141 -0.05811591
##  [3,] -0.06707906 -0.08002118 -0.09660327 -0.07071903 -0.06303464
##  [4,] -0.07140277 -0.08654688 -0.10595028 -0.07566205 -0.06667023
##  [5,] -0.06428136 -0.07579866 -0.09055520 -0.06752060 -0.06068221
##  [6,]  0.95034295 -0.05372643 -0.05894031 -0.05080156 -0.04838537
##  [7,] -0.05372643  0.94013174 -0.06773750 -0.05545382 -0.05180710
##  [8,] -0.05894031 -0.06773750  0.92099111 -0.06141452 -0.05619119
##  [9,] -0.05080156 -0.05545382 -0.06141452  0.94788999 -0.04934773
## [10,] -0.04838537 -0.05180710 -0.05619119 -0.04934773  0.95268392
##             [,11]       [,12]       [,13]       [,14]         [,15]
##  [1,] -0.05634129 -0.04650855 -0.04382689 -0.05410658  0.0102532092
##  [2,] -0.05188907 -0.04503954 -0.04317149 -0.05033236 -0.0054990852
##  [3,] -0.05494582 -0.04604811 -0.04362147 -0.05292361  0.0053159229
##  [4,] -0.05720516 -0.04679358 -0.04395406 -0.05483889  0.0133096246
##  [5,] -0.05348390 -0.04556575 -0.04340626 -0.05168432  0.0001435277
##  [6,] -0.04584201 -0.04304432 -0.04228131 -0.04520617 -0.0268939925
##  [7,] -0.04796845 -0.04374594 -0.04259434 -0.04700879 -0.0193705086
##  [8,] -0.05069295 -0.04464488 -0.04299541 -0.04931839 -0.0097310449
##  [9,] -0.04644007 -0.04324165 -0.04236935 -0.04571316 -0.0247780127
## [10,] -0.04517750 -0.04282506 -0.04218349 -0.04464286 -0.0292450813
##               [,16]        [,17]         [,18]       [,19]        [,20]
##  [1,]  0.0187451258 -0.010753111 -0.0009203652 -0.01298783  0.043773933
##  [2,]  0.0004164159 -0.020132167 -0.0132826393 -0.02168888  0.017851577
##  [3,]  0.0130003063 -0.013692815 -0.0047951078 -0.01571502  0.035649015
##  [4,]  0.0223014426 -0.008933294  0.0014782850 -0.01129956  0.048803643
##  [5,]  0.0069819239 -0.016772505 -0.0088543620 -0.01857208  0.027137197
##  [6,] -0.0244778019 -0.032870885 -0.0300731907 -0.03350672 -0.017356398
##  [7,] -0.0157237913 -0.028391336 -0.0241688210 -0.02935100 -0.004975572
##  [8,] -0.0045077151 -0.022651913 -0.0166038473 -0.02402647  0.010887362
##  [9,] -0.0220157364 -0.031611012 -0.0284125867 -0.03233793 -0.013874291
## [10,] -0.0272134303 -0.034270744 -0.0319183062 -0.03480539 -0.021225406
##              [,21]        [,22]        [,23]         [,24]
##  [1,]  0.065674138  0.032153415  0.044667818  0.0545005640
##  [2,]  0.033107343  0.009756681  0.018474261  0.0253237891
##  [3,]  0.055466635  0.025133543  0.036457898  0.0453556047
##  [4,]  0.071993069  0.036499050  0.049750150  0.0601617293
##  [5,]  0.044773061  0.017779392  0.027857028  0.0357751712
##  [6,] -0.011125170 -0.020662764 -0.017102062 -0.0143043678
##  [7,]  0.004429121 -0.009965816 -0.004591707 -0.0003691918
##  [8,]  0.024358055  0.003739648  0.011437186  0.0174852526
##  [9,] -0.006750526 -0.017654248 -0.013583525 -0.0103850996
## [10,] -0.015985885 -0.024005560 -0.021011548 -0.0186591104

b)Residuos del modelo atraves de combinaciones lineales de la variable endogena

beta_estimada<-A%*%Y
Y_estimada<-X%*%beta_estimada
Residuos<-Y-Y_estimada
Residuos
##           ordenes
##  [1,] -0.50716765
##  [2,]  0.50270510
##  [3,] -0.03093888
##  [4,]  1.27897644
##  [5,] -0.98441350
##  [6,]  0.19969645
##  [7,] -0.04979501
##  [8,]  0.36804405
##  [9,] -1.83297302
## [10,] -0.99733747
## [11,]  0.30859470
## [12,]  0.05512008
## [13,]  0.57689973
## [14,]  0.46007774
## [15,] -0.11721068
## [16,] -0.08157512
## [17,] -0.22115126
## [18,]  0.32537412
## [19,]  0.72736569
## [20,]  0.15503494
## [21,] -0.90043126
## [22,]  1.02732313
## [23,] -0.90437184
## [24,]  0.64215354

c)Pruebas de normalidad

Jarque-Bera

library(normtest)
jb.norm.test(Residuos)
## 
##  Jarque-Bera test for normality
## 
## data:  Residuos
## JB = 1.5606, p-value = 0.2295

Como 0.218<0.05

“Por tanto no se rechaza la Ho y se concluye que los residuos tienen una distribucion normal con media cero y varianza constante.”

Kolmogorov-smirnov

library(nortest) 
lillie.test(Residuos) 
## 
##  Lilliefors (Kolmogorov-Smirnov) normality test
## 
## data:  Residuos
## D = 0.14418, p-value = 0.2209

Como 0.2209>0.05

“Por tanto no se rechaza la Ho y se concluye que los residuos tienen una distribucion normal”

shapiro-wilk

library(nortest) 
shapiro.test(Residuos)
## 
##  Shapiro-Wilk normality test
## 
## data:  Residuos
## W = 0.95746, p-value = 0.3895

Como 0.3895>0.05

“Por tanto no se rechaza la Ho y se concluye que los residuos tienen una distribucion normal”

II PARTE

Datos (matriz de correlación de los regresores)

porcentajeprn<-c(1,-0.8,0.68,0.74,-0.57,-0.75)
porcentajepac<-c(-0.8,1,-0.71,-0.87,0.69,0.8)
rezago<-c(0.68,-0.71,1,0.81,-0.77,-0.82)
nini<-c(0.74,-0.87,0.81,1,-0.8,-0.84)
edu_superior<-c(-0.57,0.69,-0.77,-0.8,1,0.64)
ips<- c(-0.75,0.8,-0.82,-0.84,0.64,1)
R<-cbind(porcentajeprn,porcentajepac,rezago,nini,edu_superior,ips)
R
##      porcentajeprn porcentajepac rezago  nini edu_superior   ips
## [1,]          1.00         -0.80   0.68  0.74        -0.57 -0.75
## [2,]         -0.80          1.00  -0.71 -0.87         0.69  0.80
## [3,]          0.68         -0.71   1.00  0.81        -0.77 -0.82
## [4,]          0.74         -0.87   0.81  1.00        -0.80 -0.84
## [5,]         -0.57          0.69  -0.77 -0.80         1.00  0.64
## [6,]         -0.75          0.80  -0.82 -0.84         0.64  1.00

a)Prueva de Farrer Glauber

Calculo de |R|

determinante_R<-det(R)
print(determinante_R)
## [1] 0.001684439

Estadistico \(X^2_{FG}\)

m<-ncol(R)
n<-nrow(R)
chi_FG<--(n-1-(2*m+5)/6)*log(determinante_R)
print(chi_FG)
## [1] 13.83703

Valor Critico

gl<-m*(m-1)/2
VC<-qchisq(p = 0.95,df = gl)
print(VC)
## [1] 24.99579

Como \(X^2_{FG}\)<V.C ,No se rechaza la Ho,por tanto no hay evidencia de multicolinealidad en los regresores del modelo.

Calculo de los VIF

Inversa de la matriz de correlación

inversa_R<-solve(R)
inversa_R
##                      [,1]       [,2]       [,3]        [,4]       [,5]
## porcentajeprn  3.12989194  1.8066302 -0.5430948  0.01312674 -0.2872837
## porcentajepac  1.80663016  5.5207504 -0.8728955  3.04065276 -0.4001754
## rezago        -0.54309484 -0.8728955  4.6100427 -0.68684569  1.7897206
## nini           0.01312674  3.0406528 -0.6868457  7.70048852  2.2224574
## edu_superior  -0.28728369 -0.4001754  1.7897206  2.22245739  3.5016734
## ips            0.65166508 -0.9671414  2.3488587  2.06014702  1.1980416
##                     [,6]
## porcentajeprn  0.6516651
## porcentajepac -0.9671414
## rezago         2.3488587
## nini           2.0601470
## edu_superior   1.1980416
## ips            5.1523030

VIFs para el modelo estimado

VIFs<-diag(inversa_R)
print(VIFs)
## [1] 3.129892 5.520750 4.610043 7.700489 3.501673 5.152303

Si VIFs>=2 ya se puede considerar que hay presencia de colinealidad

Entonces porcentajeprn y edu_superior se pueden considerar moderadamente colineales mientras porcentajepac,rezago,nini e ips se consideran altamente colineales devido a la alta inflacion de la varianza estimada respecto a la observada en caso de ausencia de colinealidad