A. PENGHIMPUNAN DAN EDITING DATA
A.1. Pengumpulan Data
- Akses basis data kebutuhan kalsium fosfor
# 1. pemasukkan data
Data <- read_excel("Data_2019_Prosiding-ISTAP.xls", sheet = "Data-Kumulatif")
Age <- Data$`Umur (minggu)`
Company <- Data$Perusahaan
Breeds <- Data$Breeds
Body_weight <- Data$`BB_(g/minggu)`
Feed_consumption <- Data$`Konsumsi_(g/minggu)`
Calcium <- Data$`%_Ca`
Total_phosphorus <- Data$`%_P`
Available_phosphorus <- Data$`%_P-Ter.`
Data <- data.frame(Age, Company, Breeds, Body_weight, Feed_consumption, Calcium, Total_phosphorus, Available_phosphorus)
kable(Data) %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>%
scroll_box(height = "500px")| Age | Company | Breeds | Body_weight | Feed_consumption | Calcium | Total_phosphorus | Available_phosphorus |
|---|---|---|---|---|---|---|---|
| 8 | HG | BaB | 709.5 | 350 | 1.00 | 0.70 | 0.42 |
| 9 | HG | BaB | 814.5 | 378 | 0.95 | 0.58 | 0.36 |
| 10 | HG | BaB | 918.0 | 406 | 0.95 | 0.58 | 0.36 |
| 11 | HG | BaB | 1019.5 | 427 | 0.95 | 0.58 | 0.36 |
| 12 | HG | BaB | 1117.0 | 469 | 0.95 | 0.58 | 0.36 |
| 13 | HG | BaB | 1211.5 | 490 | 0.95 | 0.58 | 0.36 |
| 14 | HG | BaB | 1300.5 | 511 | 0.95 | 0.58 | 0.36 |
| 15 | HG | BaB | 1383.5 | 532 | 0.95 | 0.58 | 0.36 |
| 16 | HG | BaB | 1459.5 | 574 | 0.95 | 0.58 | 0.36 |
| 17 | HG | BaB | 1529.5 | 609 | 2.05 | 0.65 | 0.42 |
| 18 | HG | BaB | 1592.0 | 609 | 2.05 | 0.65 | 0.42 |
| 19 | HG | BaB | 1646.0 | 651 | 2.05 | 0.65 | 0.42 |
| 20 | HG | BaB | 1693.0 | 742 | 2.05 | 0.65 | 0.42 |
| 21 | HG | BaB | 1722.0 | 742 | 2.05 | 0.65 | 0.42 |
| 22 | HG | BaB | 1750.0 | 777 | 2.05 | 0.65 | 0.42 |
| 23 | HG | BaB | 1773.0 | 798 | 2.05 | 0.65 | 0.42 |
| 24 | HG | BaB | 1795.0 | 805 | 2.05 | 0.65 | 0.42 |
| 25 | HG | BaB | 1814.0 | 805 | 2.05 | 0.65 | 0.42 |
| 26 | HG | BaB | 1827.0 | 805 | 2.05 | 0.65 | 0.42 |
| 27 | HG | BaB | 1839.0 | 805 | 2.05 | 0.65 | 0.42 |
| 28 | HG | BaB | 1850.0 | 805 | 2.05 | 0.65 | 0.42 |
| 29 | HG | BaB | 1860.0 | 805 | 2.05 | 0.65 | 0.42 |
| 30 | HG | BaB | 1869.0 | 805 | 2.05 | 0.65 | 0.42 |
| 31 | HG | BaB | 1877.0 | 805 | 2.05 | 0.65 | 0.42 |
| 32 | HG | BaB | 1885.0 | 805 | 2.05 | 0.65 | 0.42 |
| 33 | HG | BaB | 1892.0 | 805 | 2.05 | 0.65 | 0.42 |
| 34 | HG | BaB | 1898.0 | 805 | 2.05 | 0.65 | 0.42 |
| 35 | HG | BaB | 1904.0 | 805 | 2.05 | 0.65 | 0.42 |
| 8 | HG | BaW | 602.0 | 322 | 1.00 | 0.70 | 0.42 |
| 9 | HG | BaW | 686.0 | 343 | 0.95 | 0.58 | 0.36 |
| 10 | HG | BaW | 770.5 | 371 | 0.95 | 0.58 | 0.36 |
| 11 | HG | BaW | 854.5 | 392 | 0.95 | 0.58 | 0.36 |
| 12 | HG | BaW | 937.0 | 434 | 0.95 | 0.58 | 0.36 |
| 13 | HG | BaW | 1017.5 | 455 | 0.95 | 0.58 | 0.36 |
| 14 | HG | BaW | 1095.0 | 476 | 0.95 | 0.58 | 0.36 |
| 15 | HG | BaW | 1169.5 | 497 | 0.95 | 0.58 | 0.36 |
| 16 | HG | BaW | 1240.0 | 518 | 0.95 | 0.58 | 0.36 |
| 17 | HG | BaW | 1305.5 | 546 | 2.05 | 0.65 | 0.42 |
| 18 | HG | BaW | 1366.0 | 546 | 2.05 | 0.65 | 0.42 |
| 19 | HG | BaW | 1420.0 | 602 | 2.05 | 0.65 | 0.42 |
| 20 | HG | BaW | 1468.0 | 693 | 2.05 | 0.65 | 0.42 |
| 21 | HG | BaW | 1504.0 | 693 | 2.05 | 0.65 | 0.42 |
| 22 | HG | BaW | 1542.0 | 735 | 2.05 | 0.65 | 0.42 |
| 23 | HG | BaW | 1566.0 | 756 | 2.05 | 0.65 | 0.42 |
| 24 | HG | BaW | 1580.0 | 770 | 2.05 | 0.65 | 0.42 |
| 25 | HG | BaW | 1594.0 | 770 | 2.05 | 0.65 | 0.42 |
| 26 | HG | BaW | 1607.0 | 777 | 2.05 | 0.65 | 0.42 |
| 27 | HG | BaW | 1619.0 | 777 | 2.05 | 0.65 | 0.42 |
| 28 | HG | BaW | 1631.0 | 777 | 2.05 | 0.65 | 0.42 |
| 29 | HG | BaW | 1641.0 | 784 | 2.05 | 0.65 | 0.42 |
| 30 | HG | BaW | 1651.0 | 784 | 2.05 | 0.65 | 0.42 |
| 31 | HG | BaW | 1660.0 | 784 | 2.05 | 0.65 | 0.42 |
| 32 | HG | BaW | 1668.0 | 784 | 2.05 | 0.65 | 0.42 |
| 33 | HG | BaW | 1676.0 | 791 | 2.05 | 0.65 | 0.42 |
| 34 | HG | BaW | 1683.0 | 791 | 2.05 | 0.65 | 0.42 |
| 35 | HG | BaW | 1690.0 | 791 | 2.05 | 0.65 | 0.42 |
| 8 | HG | BB | 702.5 | 350 | 1.00 | 0.70 | 0.42 |
| 9 | HG | BB | 806.0 | 378 | 0.95 | 0.58 | 0.36 |
| 10 | HG | BB | 909.0 | 406 | 0.95 | 0.58 | 0.36 |
| 11 | HG | BB | 1009.0 | 427 | 0.95 | 0.58 | 0.36 |
| 12 | HG | BB | 1106.5 | 469 | 0.95 | 0.58 | 0.36 |
| 13 | HG | BB | 1199.0 | 490 | 0.95 | 0.58 | 0.36 |
| 14 | HG | BB | 1287.0 | 511 | 0.95 | 0.58 | 0.36 |
| 15 | HG | BB | 1369.5 | 532 | 0.95 | 0.58 | 0.36 |
| 16 | HG | BB | 1445.0 | 567 | 0.95 | 0.58 | 0.36 |
| 17 | HG | BB | 1514.0 | 609 | 2.05 | 0.65 | 0.42 |
| 18 | HG | BB | 1576.0 | 609 | 2.05 | 0.65 | 0.42 |
| 19 | HG | BB | 1630.0 | 651 | 2.05 | 0.65 | 0.42 |
| 20 | HG | BB | 1676.0 | 742 | 2.05 | 0.65 | 0.42 |
| 21 | HG | BB | 1713.0 | 742 | 2.05 | 0.65 | 0.42 |
| 22 | HG | BB | 1750.0 | 770 | 2.05 | 0.65 | 0.42 |
| 23 | HG | BB | 1767.0 | 791 | 2.05 | 0.65 | 0.42 |
| 24 | HG | BB | 1782.0 | 798 | 2.05 | 0.65 | 0.42 |
| 25 | HG | BB | 1796.0 | 798 | 2.05 | 0.65 | 0.42 |
| 26 | HG | BB | 1809.0 | 798 | 2.05 | 0.65 | 0.42 |
| 27 | HG | BB | 1821.0 | 798 | 2.05 | 0.65 | 0.42 |
| 28 | HG | BB | 1831.0 | 798 | 2.05 | 0.65 | 0.42 |
| 29 | HG | BB | 1841.0 | 798 | 2.05 | 0.65 | 0.42 |
| 30 | HG | BB | 1850.0 | 798 | 2.05 | 0.65 | 0.42 |
| 31 | HG | BB | 1858.0 | 805 | 2.05 | 0.65 | 0.42 |
| 32 | HG | BB | 1866.0 | 805 | 2.05 | 0.65 | 0.42 |
| 33 | HG | BB | 1873.0 | 805 | 2.05 | 0.65 | 0.42 |
| 34 | HG | BB | 1879.0 | 805 | 2.05 | 0.65 | 0.42 |
| 35 | HG | BB | 1885.0 | 805 | 2.05 | 0.65 | 0.42 |
| 8 | HG | BBL | 773.0 | 350 | 1.00 | 0.70 | 0.42 |
| 9 | HG | BBL | 887.0 | 378 | 0.95 | 0.58 | 0.36 |
| 10 | HG | BBL | 1000.0 | 406 | 0.95 | 0.58 | 0.36 |
| 11 | HG | BBL | 1110.5 | 427 | 0.95 | 0.58 | 0.36 |
| 12 | HG | BBL | 1217.5 | 448 | 0.95 | 0.58 | 0.36 |
| 13 | HG | BBL | 1320.0 | 469 | 0.95 | 0.58 | 0.36 |
| 14 | HG | BBL | 1416.5 | 490 | 0.95 | 0.58 | 0.36 |
| 15 | HG | BBL | 1506.5 | 511 | 0.95 | 0.58 | 0.36 |
| 16 | HG | BBL | 1590.5 | 532 | 0.95 | 0.58 | 0.36 |
| 17 | HG | BBL | 1666.5 | 553 | 2.05 | 0.65 | 0.42 |
| 18 | HG | BBL | 1734.0 | 595 | 2.05 | 0.65 | 0.42 |
| 19 | HG | BBL | 1794.0 | 658 | 2.05 | 0.65 | 0.42 |
| 20 | HG | BBL | 1845.0 | 777 | 2.05 | 0.65 | 0.42 |
| 21 | HG | BBL | 1887.0 | 777 | 2.05 | 0.65 | 0.42 |
| 22 | HG | BBL | 1921.0 | 798 | 2.05 | 0.65 | 0.42 |
| 23 | HG | BBL | 1946.0 | 805 | 2.05 | 0.65 | 0.42 |
| 24 | HG | BBL | 1963.0 | 812 | 2.05 | 0.65 | 0.42 |
| 25 | HG | BBL | 1977.0 | 812 | 2.05 | 0.65 | 0.42 |
| 26 | HG | BBL | 1991.0 | 819 | 2.05 | 0.65 | 0.42 |
| 27 | HG | BBL | 2004.0 | 826 | 2.05 | 0.65 | 0.42 |
| 28 | HG | BBL | 2015.0 | 826 | 2.05 | 0.65 | 0.42 |
| 29 | HG | BBL | 2026.0 | 833 | 2.05 | 0.65 | 0.42 |
| 30 | HG | BBL | 2036.0 | 833 | 2.05 | 0.65 | 0.42 |
| 31 | HG | BBL | 2045.0 | 840 | 2.05 | 0.65 | 0.42 |
| 32 | HG | BBL | 2053.0 | 840 | 2.05 | 0.65 | 0.42 |
| 33 | HG | BBL | 2061.0 | 840 | 2.05 | 0.65 | 0.42 |
| 34 | HG | BBL | 2068.0 | 847 | 2.05 | 0.65 | 0.42 |
| 35 | HG | BBL | 2074.0 | 847 | 2.05 | 0.65 | 0.42 |
| 8 | HG | BW | 587.0 | 294 | 1.00 | 0.70 | 0.42 |
| 9 | HG | BW | 669.0 | 329 | 0.95 | 0.58 | 0.36 |
| 10 | HG | BW | 751.5 | 357 | 0.95 | 0.58 | 0.36 |
| 11 | HG | BW | 833.0 | 378 | 0.95 | 0.58 | 0.36 |
| 12 | HG | BW | 914.0 | 399 | 0.95 | 0.58 | 0.36 |
| 13 | HG | BW | 992.5 | 420 | 0.95 | 0.58 | 0.36 |
| 14 | HG | BW | 1069.0 | 434 | 0.95 | 0.58 | 0.36 |
| 15 | HG | BW | 1142.5 | 455 | 0.95 | 0.58 | 0.36 |
| 16 | HG | BW | 1211.5 | 476 | 0.95 | 0.58 | 0.36 |
| 17 | HG | BW | 1276.0 | 497 | 2.05 | 0.65 | 0.42 |
| 18 | HG | BW | 1335.5 | 539 | 2.05 | 0.65 | 0.42 |
| 19 | HG | BW | 1388.0 | 574 | 2.05 | 0.65 | 0.42 |
| 20 | HG | BW | 1435.0 | 665 | 2.05 | 0.65 | 0.42 |
| 21 | HG | BW | 1473.0 | 665 | 2.05 | 0.65 | 0.42 |
| 22 | HG | BW | 1503.0 | 707 | 2.05 | 0.65 | 0.42 |
| 23 | HG | BW | 1519.0 | 728 | 2.05 | 0.65 | 0.42 |
| 24 | HG | BW | 1535.0 | 735 | 2.05 | 0.65 | 0.42 |
| 25 | HG | BW | 1550.0 | 742 | 2.05 | 0.65 | 0.42 |
| 26 | HG | BW | 1564.0 | 742 | 2.05 | 0.65 | 0.42 |
| 27 | HG | BW | 1577.0 | 749 | 2.05 | 0.65 | 0.42 |
| 28 | HG | BW | 1589.0 | 749 | 2.05 | 0.65 | 0.42 |
| 29 | HG | BW | 1601.0 | 749 | 2.05 | 0.65 | 0.42 |
| 30 | HG | BW | 1611.0 | 756 | 2.05 | 0.65 | 0.42 |
| 31 | HG | BW | 1620.0 | 756 | 2.05 | 0.65 | 0.42 |
| 32 | HG | BW | 1629.0 | 756 | 2.05 | 0.65 | 0.42 |
| 33 | HG | BW | 1637.0 | 756 | 2.05 | 0.65 | 0.42 |
| 34 | HG | BW | 1645.0 | 763 | 2.05 | 0.65 | 0.42 |
| 35 | HG | BW | 1652.0 | 763 | 2.05 | 0.65 | 0.42 |
| 8 | HG | DB | 702.5 | 350 | 1.00 | 0.70 | 0.42 |
| 9 | HG | DB | 806.0 | 364 | 0.95 | 0.58 | 0.36 |
| 10 | HG | DB | 909.0 | 406 | 0.95 | 0.58 | 0.36 |
| 11 | HG | DB | 1009.0 | 427 | 0.95 | 0.58 | 0.36 |
| 12 | HG | DB | 1106.5 | 448 | 0.95 | 0.58 | 0.36 |
| 13 | HG | DB | 1199.0 | 469 | 0.95 | 0.58 | 0.36 |
| 14 | HG | DB | 1287.0 | 490 | 0.95 | 0.58 | 0.36 |
| 15 | HG | DB | 1369.5 | 511 | 0.95 | 0.58 | 0.36 |
| 16 | HG | DB | 1445.0 | 532 | 0.95 | 0.58 | 0.36 |
| 17 | HG | DB | 1514.0 | 560 | 2.05 | 0.65 | 0.42 |
| 18 | HG | DB | 1576.0 | 602 | 2.05 | 0.65 | 0.42 |
| 19 | HG | DB | 1630.0 | 644 | 2.05 | 0.65 | 0.42 |
| 20 | HG | DB | 1678.0 | 735 | 2.05 | 0.65 | 0.42 |
| 21 | HG | DB | 1713.0 | 735 | 2.05 | 0.65 | 0.42 |
| 22 | HG | DB | 1750.0 | 763 | 2.05 | 0.65 | 0.42 |
| 23 | HG | DB | 1767.0 | 784 | 2.05 | 0.65 | 0.42 |
| 24 | HG | DB | 1782.0 | 784 | 2.05 | 0.65 | 0.42 |
| 25 | HG | DB | 1796.0 | 791 | 2.05 | 0.65 | 0.42 |
| 26 | HG | DB | 1809.0 | 791 | 2.05 | 0.65 | 0.42 |
| 27 | HG | DB | 1821.0 | 791 | 2.05 | 0.65 | 0.42 |
| 28 | HG | DB | 1831.0 | 791 | 2.05 | 0.65 | 0.42 |
| 29 | HG | DB | 1841.0 | 791 | 2.05 | 0.65 | 0.42 |
| 30 | HG | DB | 1850.0 | 791 | 2.05 | 0.65 | 0.42 |
| 31 | HG | DB | 1858.0 | 791 | 2.05 | 0.65 | 0.42 |
| 32 | HG | DB | 1866.0 | 791 | 2.05 | 0.65 | 0.42 |
| 33 | HG | DB | 1873.0 | 791 | 2.05 | 0.65 | 0.42 |
| 34 | HG | DB | 1879.0 | 791 | 2.05 | 0.65 | 0.42 |
| 35 | HG | DB | 1885.0 | 791 | 2.05 | 0.65 | 0.42 |
| 8 | HG | DW | 594.0 | 294 | 1.00 | 0.70 | 0.42 |
| 9 | HG | DW | 677.0 | 336 | 0.95 | 0.58 | 0.36 |
| 10 | HG | DW | 760.0 | 357 | 0.95 | 0.58 | 0.36 |
| 11 | HG | DW | 842.0 | 378 | 0.95 | 0.58 | 0.36 |
| 12 | HG | DW | 923.0 | 399 | 0.95 | 0.58 | 0.36 |
| 13 | HG | DW | 1002.0 | 420 | 0.95 | 0.58 | 0.36 |
| 14 | HG | DW | 1079.0 | 441 | 0.95 | 0.58 | 0.36 |
| 15 | HG | DW | 1152.0 | 455 | 0.95 | 0.58 | 0.36 |
| 16 | HG | DW | 1221.5 | 476 | 0.95 | 0.58 | 0.36 |
| 17 | HG | DW | 1287.0 | 504 | 2.05 | 0.65 | 0.42 |
| 18 | HG | DW | 1345.5 | 539 | 2.05 | 0.65 | 0.42 |
| 19 | HG | DW | 1401.0 | 574 | 2.05 | 0.65 | 0.42 |
| 20 | HG | DW | 1450.0 | 672 | 2.05 | 0.65 | 0.42 |
| 21 | HG | DW | 1493.0 | 672 | 2.05 | 0.65 | 0.42 |
| 22 | HG | DW | 1529.0 | 714 | 2.05 | 0.65 | 0.42 |
| 23 | HG | DW | 1550.0 | 735 | 2.05 | 0.65 | 0.42 |
| 24 | HG | DW | 1567.0 | 742 | 2.05 | 0.65 | 0.42 |
| 25 | HG | DW | 1579.0 | 742 | 2.05 | 0.65 | 0.42 |
| 26 | HG | DW | 1591.0 | 749 | 2.05 | 0.65 | 0.42 |
| 27 | HG | DW | 1601.0 | 749 | 2.05 | 0.65 | 0.42 |
| 28 | HG | DW | 1611.0 | 749 | 2.05 | 0.65 | 0.42 |
| 29 | HG | DW | 1621.0 | 756 | 2.05 | 0.65 | 0.42 |
| 30 | HG | DW | 1630.0 | 756 | 2.05 | 0.65 | 0.42 |
| 31 | HG | DW | 1638.0 | 756 | 2.05 | 0.65 | 0.42 |
| 32 | HG | DW | 1646.0 | 756 | 2.05 | 0.65 | 0.42 |
| 33 | HG | DW | 1653.0 | 763 | 2.05 | 0.65 | 0.42 |
| 34 | HG | DW | 1659.0 | 763 | 2.05 | 0.65 | 0.42 |
| 35 | HG | DW | 1665.0 | 763 | 2.05 | 0.65 | 0.42 |
| 8 | HG | HB | 702.5 | 350 | 1.00 | 0.70 | 0.42 |
| 9 | HG | HB | 806.0 | 364 | 0.95 | 0.58 | 0.36 |
| 10 | HG | HB | 909.0 | 406 | 0.95 | 0.58 | 0.36 |
| 11 | HG | HB | 1009.0 | 427 | 0.95 | 0.58 | 0.36 |
| 12 | HG | HB | 1106.5 | 448 | 0.95 | 0.58 | 0.36 |
| 13 | HG | HB | 1199.0 | 469 | 0.95 | 0.58 | 0.36 |
| 14 | HG | HB | 1369.5 | 490 | 0.95 | 0.58 | 0.36 |
| 15 | HG | HB | 1445.0 | 511 | 0.95 | 0.58 | 0.36 |
| 16 | HG | HB | 1514.0 | 532 | 0.95 | 0.58 | 0.36 |
| 17 | HG | HB | 1576.0 | 553 | 2.05 | 0.65 | 0.42 |
| 18 | HG | HB | 1630.0 | 588 | 2.05 | 0.65 | 0.42 |
| 19 | HG | HB | 1676.0 | 651 | 2.05 | 0.65 | 0.42 |
| 20 | HG | HB | 1713.0 | 735 | 2.05 | 0.65 | 0.42 |
| 21 | HG | HB | 1750.0 | 735 | 2.05 | 0.65 | 0.42 |
| 22 | HG | HB | 1767.0 | 756 | 2.05 | 0.65 | 0.42 |
| 23 | HG | HB | 1782.0 | 777 | 2.05 | 0.65 | 0.42 |
| 24 | HG | HB | 1796.0 | 784 | 2.05 | 0.65 | 0.42 |
| 25 | HG | HB | 1809.0 | 791 | 2.05 | 0.65 | 0.42 |
| 26 | HG | HB | 1821.0 | 791 | 2.05 | 0.65 | 0.42 |
| 27 | HG | HB | 1831.0 | 791 | 2.05 | 0.65 | 0.42 |
| 28 | HG | HB | 1841.0 | 791 | 2.05 | 0.65 | 0.42 |
| 29 | HG | HB | 1850.0 | 791 | 2.05 | 0.65 | 0.42 |
| 30 | HG | HB | 1858.0 | 791 | 2.05 | 0.65 | 0.42 |
| 31 | HG | HB | 1866.0 | 791 | 2.05 | 0.65 | 0.42 |
| 32 | HG | HB | 1873.0 | 791 | 2.05 | 0.65 | 0.42 |
| 33 | HG | HB | 1879.0 | 791 | 2.05 | 0.65 | 0.42 |
| 34 | HG | HB | 1885.0 | 791 | 2.05 | 0.65 | 0.42 |
| 35 | HG | HB | 1891.0 | 791 | 2.05 | 0.65 | 0.42 |
| 8 | HG | HW | 587.0 | 308 | 1.00 | 0.70 | 0.42 |
| 9 | HG | HW | 669.0 | 329 | 0.95 | 0.58 | 0.36 |
| 10 | HG | HW | 751.5 | 350 | 0.95 | 0.58 | 0.36 |
| 11 | HG | HW | 833.0 | 371 | 0.95 | 0.58 | 0.36 |
| 12 | HG | HW | 914.0 | 392 | 0.95 | 0.58 | 0.36 |
| 13 | HG | HW | 993.0 | 413 | 0.95 | 0.58 | 0.36 |
| 14 | HG | HW | 1069.0 | 434 | 0.95 | 0.58 | 0.36 |
| 15 | HG | HW | 1142.5 | 455 | 0.95 | 0.58 | 0.36 |
| 16 | HG | HW | 1211.5 | 476 | 0.95 | 0.58 | 0.36 |
| 17 | HG | HW | 1276.0 | 497 | 2.05 | 0.65 | 0.42 |
| 18 | HG | HW | 1335.5 | 532 | 2.05 | 0.65 | 0.42 |
| 19 | HG | HW | 1388.0 | 574 | 2.05 | 0.65 | 0.42 |
| 20 | HG | HW | 1434.0 | 665 | 2.05 | 0.65 | 0.42 |
| 21 | HG | HW | 1473.0 | 665 | 2.05 | 0.65 | 0.42 |
| 22 | HG | HW | 1503.0 | 700 | 2.05 | 0.65 | 0.42 |
| 23 | HG | HW | 1520.0 | 728 | 2.05 | 0.65 | 0.42 |
| 24 | HG | HW | 1536.0 | 735 | 2.05 | 0.65 | 0.42 |
| 25 | HG | HW | 1551.0 | 735 | 2.05 | 0.65 | 0.42 |
| 26 | HG | HW | 1565.0 | 742 | 2.05 | 0.65 | 0.42 |
| 27 | HG | HW | 1577.0 | 742 | 2.05 | 0.65 | 0.42 |
| 28 | HG | HW | 1589.0 | 742 | 2.05 | 0.65 | 0.42 |
| 29 | HG | HW | 1600.0 | 749 | 2.05 | 0.65 | 0.42 |
| 30 | HG | HW | 1610.0 | 749 | 2.05 | 0.65 | 0.42 |
| 31 | HG | HW | 1620.0 | 749 | 2.05 | 0.65 | 0.42 |
| 32 | HG | HW | 1629.0 | 749 | 2.05 | 0.65 | 0.42 |
| 33 | HG | HW | 1637.0 | 756 | 2.05 | 0.65 | 0.42 |
| 34 | HG | HW | 1644.0 | 756 | 2.05 | 0.65 | 0.42 |
| 35 | HG | HW | 1651.0 | 756 | 2.05 | 0.65 | 0.42 |
| 8 | HG | IB | 702.5 | 350 | 1.00 | 0.70 | 0.42 |
| 9 | HG | IB | 806.0 | 378 | 0.95 | 0.58 | 0.36 |
| 10 | HG | IB | 909.0 | 406 | 0.95 | 0.58 | 0.36 |
| 11 | HG | IB | 1009.0 | 427 | 0.95 | 0.58 | 0.36 |
| 12 | HG | IB | 1106.5 | 448 | 0.95 | 0.58 | 0.36 |
| 13 | HG | IB | 1199.0 | 469 | 0.95 | 0.58 | 0.36 |
| 14 | HG | IB | 1287.0 | 490 | 0.95 | 0.58 | 0.36 |
| 15 | HG | IB | 1369.5 | 511 | 0.95 | 0.58 | 0.36 |
| 16 | HG | IB | 1445.0 | 532 | 0.95 | 0.58 | 0.36 |
| 17 | HG | IB | 1514.0 | 553 | 2.05 | 0.65 | 0.42 |
| 18 | HG | IB | 1576.0 | 588 | 2.05 | 0.65 | 0.42 |
| 19 | HG | IB | 1630.0 | 623 | 2.05 | 0.65 | 0.42 |
| 20 | HG | IB | 1630.0 | 728 | 2.05 | 0.65 | 0.42 |
| 21 | HG | IB | 1676.0 | 728 | 2.05 | 0.65 | 0.42 |
| 22 | HG | IB | 1713.0 | 770 | 2.05 | 0.65 | 0.42 |
| 23 | HG | IB | 1750.0 | 784 | 2.05 | 0.65 | 0.42 |
| 24 | HG | IB | 1767.0 | 784 | 2.05 | 0.65 | 0.42 |
| 25 | HG | IB | 1782.0 | 784 | 2.05 | 0.65 | 0.42 |
| 26 | HG | IB | 1796.0 | 784 | 2.05 | 0.65 | 0.42 |
| 27 | HG | IB | 1809.0 | 784 | 2.05 | 0.65 | 0.42 |
| 28 | HG | IB | 1821.0 | 784 | 2.05 | 0.65 | 0.42 |
| 29 | HG | IB | 1831.0 | 784 | 2.05 | 0.65 | 0.42 |
| 30 | HG | IB | 1841.0 | 784 | 2.05 | 0.65 | 0.42 |
| 31 | HG | IB | 1850.0 | 784 | 2.05 | 0.65 | 0.42 |
| 32 | HG | IB | 1858.0 | 784 | 2.05 | 0.65 | 0.42 |
| 33 | HG | IB | 1866.0 | 784 | 2.05 | 0.65 | 0.42 |
| 34 | HG | IB | 1873.0 | 784 | 2.05 | 0.65 | 0.42 |
| 35 | HG | IB | 1878.0 | 784 | 2.05 | 0.65 | 0.42 |
| 8 | HG | IW | 602.0 | 343 | 1.00 | 0.70 | 0.42 |
| 9 | HG | IW | 686.0 | 371 | 0.95 | 0.58 | 0.36 |
| 10 | HG | IW | 770.0 | 392 | 0.95 | 0.58 | 0.36 |
| 11 | HG | IW | 853.5 | 413 | 0.95 | 0.58 | 0.36 |
| 12 | HG | IW | 936.5 | 434 | 0.95 | 0.58 | 0.36 |
| 13 | HG | IW | 1016.5 | 455 | 0.95 | 0.58 | 0.36 |
| 14 | HG | IW | 1094.5 | 476 | 0.95 | 0.58 | 0.36 |
| 15 | HG | IW | 1169.0 | 497 | 0.95 | 0.58 | 0.36 |
| 16 | HG | IW | 1240.0 | 518 | 0.95 | 0.58 | 0.36 |
| 17 | HG | IW | 1306.5 | 546 | 2.05 | 0.65 | 0.42 |
| 18 | HG | IW | 1367.5 | 595 | 2.05 | 0.65 | 0.42 |
| 19 | HG | IW | 1423.0 | 651 | 2.05 | 0.65 | 0.42 |
| 20 | HG | IW | 1472.0 | 728 | 2.05 | 0.65 | 0.42 |
| 21 | HG | IW | 1514.0 | 728 | 2.05 | 0.65 | 0.42 |
| 22 | HG | IW | 1548.0 | 756 | 2.05 | 0.65 | 0.42 |
| 23 | HG | IW | 1568.0 | 770 | 2.05 | 0.65 | 0.42 |
| 24 | HG | IW | 1587.0 | 770 | 2.05 | 0.65 | 0.42 |
| 25 | HG | IW | 1600.0 | 777 | 2.05 | 0.65 | 0.42 |
| 26 | HG | IW | 1612.0 | 777 | 2.05 | 0.65 | 0.42 |
| 27 | HG | IW | 1623.0 | 777 | 2.05 | 0.65 | 0.42 |
| 28 | HG | IW | 1633.0 | 784 | 2.05 | 0.65 | 0.42 |
| 29 | HG | IW | 1643.0 | 784 | 2.05 | 0.65 | 0.42 |
| 30 | HG | IW | 1652.0 | 784 | 2.05 | 0.65 | 0.42 |
| 31 | HG | IW | 1661.0 | 791 | 2.05 | 0.65 | 0.42 |
| 32 | HG | IW | 1669.0 | 791 | 2.05 | 0.65 | 0.42 |
| 33 | HG | IW | 1676.0 | 791 | 2.05 | 0.65 | 0.42 |
| 34 | HG | IW | 1683.0 | 791 | 2.05 | 0.65 | 0.42 |
| 35 | HG | IW | 1689.0 | 791 | 2.05 | 0.65 | 0.42 |
| 8 | HG | SB | 686.0 | 350 | 1.00 | 0.70 | 0.42 |
| 9 | HG | SB | 787.0 | 378 | 0.95 | 0.58 | 0.36 |
| 10 | HG | SB | 887.0 | 406 | 0.95 | 0.58 | 0.36 |
| 11 | HG | SB | 984.5 | 427 | 0.95 | 0.58 | 0.36 |
| 12 | HG | SB | 1079.0 | 448 | 0.95 | 0.58 | 0.36 |
| 13 | HG | SB | 1169.0 | 469 | 0.95 | 0.58 | 0.36 |
| 14 | HG | SB | 1254.5 | 490 | 0.95 | 0.58 | 0.36 |
| 15 | HG | SB | 1334.5 | 511 | 0.95 | 0.58 | 0.36 |
| 16 | HG | SB | 1408.0 | 532 | 0.95 | 0.58 | 0.36 |
| 17 | HG | SB | 1475.0 | 553 | 2.05 | 0.65 | 0.42 |
| 18 | HG | SB | 1536.5 | 588 | 2.05 | 0.65 | 0.42 |
| 19 | HG | SB | 1536.0 | 623 | 2.05 | 0.65 | 0.42 |
| 20 | HG | SB | 1590.0 | 714 | 2.05 | 0.65 | 0.42 |
| 21 | HG | SB | 1638.0 | 714 | 2.05 | 0.65 | 0.42 |
| 22 | HG | SB | 1669.0 | 756 | 2.05 | 0.65 | 0.42 |
| 23 | HG | SB | 1700.0 | 777 | 2.05 | 0.65 | 0.42 |
| 24 | HG | SB | 1718.0 | 777 | 2.05 | 0.65 | 0.42 |
| 25 | HG | SB | 1734.0 | 777 | 2.05 | 0.65 | 0.42 |
| 26 | HG | SB | 1748.0 | 777 | 2.05 | 0.65 | 0.42 |
| 27 | HG | SB | 1762.0 | 777 | 2.05 | 0.65 | 0.42 |
| 28 | HG | SB | 1774.0 | 777 | 2.05 | 0.65 | 0.42 |
| 29 | HG | SB | 1785.0 | 777 | 2.05 | 0.65 | 0.42 |
| 30 | HG | SB | 1795.0 | 777 | 2.05 | 0.65 | 0.42 |
| 31 | HG | SB | 1804.0 | 777 | 2.05 | 0.65 | 0.42 |
| 32 | HG | SB | 1813.0 | 777 | 2.05 | 0.65 | 0.42 |
| 33 | HG | SB | 1820.0 | 777 | 2.05 | 0.65 | 0.42 |
| 34 | HG | SB | 1827.0 | 777 | 2.05 | 0.65 | 0.42 |
| 35 | HG | SB | 1834.0 | 777 | 2.05 | 0.65 | 0.42 |
| 8 | HG | SBL | 773.0 | 350 | 1.00 | 0.70 | 0.42 |
| 9 | HG | SBL | 887.0 | 378 | 0.95 | 0.58 | 0.36 |
| 10 | HG | SBL | 1000.0 | 406 | 0.95 | 0.58 | 0.36 |
| 11 | HG | SBL | 1110.5 | 427 | 0.95 | 0.58 | 0.36 |
| 12 | HG | SBL | 1217.5 | 448 | 0.95 | 0.58 | 0.36 |
| 13 | HG | SBL | 1320.0 | 469 | 0.95 | 0.58 | 0.36 |
| 14 | HG | SBL | 1416.5 | 490 | 0.95 | 0.58 | 0.36 |
| 15 | HG | SBL | 1506.5 | 511 | 0.95 | 0.58 | 0.36 |
| 16 | HG | SBL | 1590.5 | 532 | 0.95 | 0.58 | 0.36 |
| 17 | HG | SBL | 1666.5 | 553 | 2.05 | 0.65 | 0.42 |
| 18 | HG | SBL | 1734.0 | 595 | 2.05 | 0.65 | 0.42 |
| 19 | HG | SBL | 1794.0 | 658 | 2.05 | 0.65 | 0.42 |
| 20 | HG | SBL | 1845.0 | 777 | 2.05 | 0.65 | 0.42 |
| 21 | HG | SBL | 1887.0 | 777 | 2.05 | 0.65 | 0.42 |
| 22 | HG | SBL | 1921.0 | 784 | 2.05 | 0.65 | 0.42 |
| 23 | HG | SBL | 1946.0 | 791 | 2.05 | 0.65 | 0.42 |
| 24 | HG | SBL | 1963.0 | 798 | 2.05 | 0.65 | 0.42 |
| 25 | HG | SBL | 1977.0 | 805 | 2.05 | 0.65 | 0.42 |
| 26 | HG | SBL | 1991.0 | 805 | 2.05 | 0.65 | 0.42 |
| 27 | HG | SBL | 2004.0 | 812 | 2.05 | 0.65 | 0.42 |
| 28 | HG | SBL | 2015.0 | 812 | 2.05 | 0.65 | 0.42 |
| 29 | HG | SBL | 2026.0 | 819 | 2.05 | 0.65 | 0.42 |
| 30 | HG | SBL | 2036.0 | 819 | 2.05 | 0.65 | 0.42 |
| 31 | HG | SBL | 2045.0 | 826 | 2.05 | 0.65 | 0.42 |
| 32 | HG | SBL | 2053.0 | 826 | 2.05 | 0.65 | 0.42 |
| 33 | HG | SBL | 2061.0 | 826 | 2.05 | 0.65 | 0.42 |
| 34 | HG | SBL | 2068.0 | 833 | 2.05 | 0.65 | 0.42 |
| 35 | HG | SBL | 2074.0 | 833 | 2.05 | 0.65 | 0.42 |
| 8 | HG | SW | 585.5 | 294 | 1.00 | 0.70 | 0.42 |
| 9 | HG | SW | 667.5 | 322 | 0.95 | 0.58 | 0.36 |
| 10 | HG | SW | 749.5 | 343 | 0.95 | 0.58 | 0.36 |
| 11 | HG | SW | 831.0 | 364 | 0.95 | 0.58 | 0.36 |
| 12 | HG | SW | 911.0 | 385 | 0.95 | 0.58 | 0.36 |
| 13 | HG | SW | 989.0 | 406 | 0.95 | 0.58 | 0.36 |
| 14 | HG | SW | 1064.5 | 420 | 0.95 | 0.58 | 0.36 |
| 15 | HG | SW | 1137.5 | 441 | 0.95 | 0.58 | 0.36 |
| 16 | HG | SW | 1206.0 | 462 | 0.95 | 0.58 | 0.36 |
| 17 | HG | SW | 1270.0 | 483 | 2.05 | 0.65 | 0.42 |
| 18 | HG | SW | 1329.0 | 518 | 2.05 | 0.65 | 0.42 |
| 19 | HG | SW | 1383.0 | 560 | 2.05 | 0.65 | 0.42 |
| 20 | HG | SW | 1430.0 | 644 | 2.05 | 0.65 | 0.42 |
| 21 | HG | SW | 1471.0 | 644 | 2.05 | 0.65 | 0.42 |
| 22 | HG | SW | 1505.0 | 679 | 2.05 | 0.65 | 0.42 |
| 23 | HG | SW | 1525.0 | 707 | 2.05 | 0.65 | 0.42 |
| 24 | HG | SW | 1541.0 | 714 | 2.05 | 0.65 | 0.42 |
| 25 | HG | SW | 1555.0 | 714 | 2.05 | 0.65 | 0.42 |
| 26 | HG | SW | 1568.0 | 721 | 2.05 | 0.65 | 0.42 |
| 27 | HG | SW | 1580.0 | 721 | 2.05 | 0.65 | 0.42 |
| 28 | HG | SW | 1592.0 | 721 | 2.05 | 0.65 | 0.42 |
| 29 | HG | SW | 1602.0 | 728 | 2.05 | 0.65 | 0.42 |
| 30 | HG | SW | 1611.0 | 728 | 2.05 | 0.65 | 0.42 |
| 31 | HG | SW | 1626.0 | 728 | 2.05 | 0.65 | 0.42 |
| 32 | HG | SW | 1633.0 | 728 | 2.05 | 0.65 | 0.42 |
| 33 | HG | SW | 1639.0 | 735 | 2.05 | 0.65 | 0.42 |
| 34 | HG | SW | 1644.0 | 735 | 2.05 | 0.65 | 0.42 |
| 35 | HG | SW | 1644.0 | 735 | 2.05 | 0.65 | 0.42 |
| 8 | LTZ | LB-Classic | 685.0 | 357 | 1.00 | 0.70 | 0.45 |
| 9 | LTZ | LB-Classic | 782.0 | 385 | 0.90 | 0.58 | 0.37 |
| 10 | LTZ | LB-Classic | 874.0 | 406 | 0.90 | 0.58 | 0.37 |
| 11 | LTZ | LB-Classic | 961.0 | 420 | 0.90 | 0.58 | 0.37 |
| 12 | LTZ | LB-Classic | 1043.0 | 448 | 0.90 | 0.58 | 0.37 |
| 13 | LTZ | LB-Classic | 1123.0 | 455 | 0.90 | 0.58 | 0.37 |
| 14 | LTZ | LB-Classic | 1197.0 | 476 | 0.90 | 0.58 | 0.37 |
| 15 | LTZ | LB-Classic | 1264.0 | 490 | 0.90 | 0.58 | 0.37 |
| 16 | LTZ | LB-Classic | 1330.0 | 497 | 0.90 | 0.58 | 0.37 |
| 17 | LTZ | LB-Classic | 1400.0 | 504 | 2.00 | 0.65 | 0.45 |
| 18 | LTZ | LB-Classic | 1475.0 | 525 | 2.00 | 0.65 | 0.45 |
| 19 | LTZ | LB-Classic | 1555.0 | 567 | 2.00 | 0.65 | 0.45 |
| 20 | LTZ | LB-Classic | 1640.0 | 700 | 2.00 | 0.65 | 0.45 |
| 21 | LTZ | LB-Classic | 1711.0 | 700 | 2.00 | 0.65 | 0.45 |
| 22 | LTZ | LB-Classic | 1790.0 | 742 | 2.00 | 0.65 | 0.45 |
| 23 | LTZ | LB-Classic | 1830.0 | 770 | 2.00 | 0.65 | 0.45 |
| 24 | LTZ | LB-Classic | 1870.0 | 791 | 2.00 | 0.65 | 0.45 |
| 25 | LTZ | LB-Classic | 1885.0 | 798 | 2.00 | 0.65 | 0.45 |
| 26 | LTZ | LB-Classic | 1900.0 | 798 | 2.00 | 0.65 | 0.45 |
| 27 | LTZ | LB-Classic | 1905.0 | 798 | 2.00 | 0.65 | 0.45 |
| 28 | LTZ | LB-Classic | 1911.0 | 798 | 2.00 | 0.65 | 0.45 |
| 29 | LTZ | LB-Classic | 1915.0 | 798 | 2.00 | 0.65 | 0.45 |
| 30 | LTZ | LB-Classic | 1920.0 | 798 | 2.00 | 0.65 | 0.45 |
| 31 | LTZ | LB-Classic | 1923.0 | 798 | 2.00 | 0.65 | 0.45 |
| 32 | LTZ | LB-Classic | 1925.0 | 805 | 2.00 | 0.65 | 0.45 |
| 33 | LTZ | LB-Classic | 1928.0 | 805 | 2.00 | 0.65 | 0.45 |
| 34 | LTZ | LB-Classic | 1931.0 | 805 | 2.00 | 0.65 | 0.45 |
| 35 | LTZ | LB-Classic | 1933.0 | 805 | 2.00 | 0.65 | 0.45 |
| 8 | LTZ | LB-Lite | 670.0 | 350 | 1.00 | 0.70 | 0.45 |
| 9 | LTZ | LB-Lite | 765.0 | 378 | 0.90 | 0.58 | 0.37 |
| 10 | LTZ | LB-Lite | 855.0 | 399 | 0.90 | 0.58 | 0.37 |
| 11 | LTZ | LB-Lite | 940.0 | 413 | 0.90 | 0.58 | 0.37 |
| 12 | LTZ | LB-Lite | 1020.0 | 441 | 0.90 | 0.58 | 0.37 |
| 13 | LTZ | LB-Lite | 1098.0 | 448 | 0.90 | 0.58 | 0.37 |
| 14 | LTZ | LB-Lite | 1171.0 | 469 | 0.90 | 0.58 | 0.37 |
| 15 | LTZ | LB-Lite | 1236.0 | 483 | 0.90 | 0.58 | 0.37 |
| 16 | LTZ | LB-Lite | 1301.0 | 490 | 0.90 | 0.58 | 0.37 |
| 17 | LTZ | LB-Lite | 1369.0 | 497 | 2.00 | 0.65 | 0.45 |
| 18 | LTZ | LB-Lite | 1443.0 | 518 | 2.00 | 0.65 | 0.45 |
| 19 | LTZ | LB-Lite | 1521.0 | 560 | 2.00 | 0.65 | 0.45 |
| 20 | LTZ | LB-Lite | 1604.0 | 700 | 2.00 | 0.65 | 0.45 |
| 21 | LTZ | LB-Lite | 1673.0 | 700 | 2.00 | 0.65 | 0.45 |
| 22 | LTZ | LB-Lite | 1751.0 | 742 | 2.00 | 0.65 | 0.45 |
| 23 | LTZ | LB-Lite | 1790.0 | 770 | 2.00 | 0.65 | 0.45 |
| 24 | LTZ | LB-Lite | 1829.0 | 791 | 2.00 | 0.65 | 0.45 |
| 25 | LTZ | LB-Lite | 1844.0 | 798 | 2.00 | 0.65 | 0.45 |
| 26 | LTZ | LB-Lite | 1858.0 | 798 | 2.00 | 0.65 | 0.45 |
| 27 | LTZ | LB-Lite | 1863.0 | 798 | 2.00 | 0.65 | 0.45 |
| 28 | LTZ | LB-Lite | 1869.0 | 798 | 2.00 | 0.65 | 0.45 |
| 29 | LTZ | LB-Lite | 1873.0 | 798 | 2.00 | 0.65 | 0.45 |
| 30 | LTZ | LB-Lite | 1878.0 | 798 | 2.00 | 0.65 | 0.45 |
| 31 | LTZ | LB-Lite | 1881.0 | 798 | 2.00 | 0.65 | 0.45 |
| 32 | LTZ | LB-Lite | 1883.0 | 805 | 2.00 | 0.65 | 0.45 |
| 33 | LTZ | LB-Lite | 1886.0 | 805 | 2.00 | 0.65 | 0.45 |
| 34 | LTZ | LB-Lite | 1889.0 | 805 | 2.00 | 0.65 | 0.45 |
| 35 | LTZ | LB-Lite | 1891.0 | 805 | 2.00 | 0.65 | 0.45 |
| 8 | LTZ | L-Sandy | 658.0 | 329 | 1.00 | 0.70 | 0.45 |
| 9 | LTZ | L-Sandy | 758.0 | 357 | 0.90 | 0.58 | 0.37 |
| 10 | LTZ | L-Sandy | 853.0 | 385 | 0.90 | 0.58 | 0.37 |
| 11 | LTZ | L-Sandy | 935.0 | 413 | 0.90 | 0.58 | 0.37 |
| 12 | LTZ | L-Sandy | 1009.0 | 434 | 0.90 | 0.58 | 0.37 |
| 13 | LTZ | L-Sandy | 1072.0 | 455 | 0.90 | 0.58 | 0.37 |
| 14 | LTZ | L-Sandy | 1130.0 | 476 | 0.90 | 0.58 | 0.37 |
| 15 | LTZ | L-Sandy | 1183.0 | 497 | 0.90 | 0.58 | 0.37 |
| 16 | LTZ | L-Sandy | 1230.0 | 518 | 0.90 | 0.58 | 0.37 |
| 17 | LTZ | L-Sandy | 1280.0 | 539 | 0.90 | 0.58 | 0.37 |
| 18 | LTZ | L-Sandy | 1333.0 | 560 | 2.00 | 0.65 | 0.45 |
| 19 | LTZ | L-Sandy | 1394.0 | 588 | 2.00 | 0.65 | 0.45 |
| 20 | LTZ | L-Sandy | 1490.0 | 742 | 2.00 | 0.65 | 0.45 |
| 21 | LTZ | L-Sandy | 1552.0 | 742 | 2.00 | 0.65 | 0.45 |
| 22 | LTZ | L-Sandy | 1612.0 | 770 | 2.00 | 0.65 | 0.45 |
| 23 | LTZ | L-Sandy | 1663.0 | 791 | 2.00 | 0.65 | 0.45 |
| 24 | LTZ | L-Sandy | 1704.0 | 798 | 2.00 | 0.65 | 0.45 |
| 25 | LTZ | L-Sandy | 1738.0 | 798 | 2.00 | 0.65 | 0.45 |
| 26 | LTZ | L-Sandy | 1767.0 | 798 | 2.00 | 0.65 | 0.45 |
| 27 | LTZ | L-Sandy | 1791.0 | 798 | 2.00 | 0.65 | 0.45 |
| 28 | LTZ | L-Sandy | 1810.0 | 798 | 2.00 | 0.65 | 0.45 |
| 29 | LTZ | L-Sandy | 1824.0 | 798 | 2.00 | 0.65 | 0.45 |
| 30 | LTZ | L-Sandy | 1835.0 | 798 | 2.00 | 0.65 | 0.45 |
| 31 | LTZ | L-Sandy | 1841.0 | 805 | 2.00 | 0.65 | 0.45 |
| 32 | LTZ | L-Sandy | 1845.0 | 805 | 2.00 | 0.65 | 0.45 |
| 33 | LTZ | L-Sandy | 1848.0 | 805 | 2.00 | 0.65 | 0.45 |
| 34 | LTZ | L-Sandy | 1851.0 | 805 | 2.00 | 0.65 | 0.45 |
| 35 | LTZ | L-Sandy | 1854.0 | 735 | 2.00 | 0.65 | 0.45 |
| 8 | LTZ | L-Silver | 690.0 | 364 | 1.00 | 0.70 | 0.45 |
| 9 | LTZ | L-Silver | 790.0 | 392 | 0.90 | 0.58 | 0.37 |
| 10 | LTZ | L-Silver | 890.0 | 420 | 0.90 | 0.58 | 0.37 |
| 11 | LTZ | L-Silver | 980.0 | 462 | 0.90 | 0.58 | 0.37 |
| 12 | LTZ | L-Silver | 1075.0 | 483 | 0.90 | 0.58 | 0.37 |
| 13 | LTZ | L-Silver | 1160.0 | 504 | 0.90 | 0.58 | 0.37 |
| 14 | LTZ | L-Silver | 1240.0 | 525 | 0.90 | 0.58 | 0.37 |
| 15 | LTZ | L-Silver | 1305.0 | 546 | 0.90 | 0.58 | 0.37 |
| 16 | LTZ | L-Silver | 1375.0 | 567 | 0.90 | 0.58 | 0.37 |
| 17 | LTZ | L-Silver | 1445.0 | 595 | 2.00 | 0.65 | 0.45 |
| 18 | LTZ | L-Silver | 1520.0 | 623 | 2.00 | 0.65 | 0.45 |
| 19 | LTZ | L-Silver | 1600.0 | 700 | 2.00 | 0.65 | 0.45 |
| 20 | LTZ | L-Silver | 1680.0 | 770 | 2.00 | 0.65 | 0.45 |
| 21 | LTZ | L-Silver | 1750.0 | 770 | 2.00 | 0.65 | 0.45 |
| 22 | LTZ | L-Silver | 1827.0 | 791 | 2.00 | 0.65 | 0.45 |
| 23 | LTZ | L-Silver | 1866.0 | 798 | 2.00 | 0.65 | 0.45 |
| 24 | LTZ | L-Silver | 1905.0 | 798 | 2.00 | 0.65 | 0.45 |
| 25 | LTZ | L-Silver | 1920.0 | 798 | 2.00 | 0.65 | 0.45 |
| 26 | LTZ | L-Silver | 1935.0 | 798 | 2.00 | 0.65 | 0.45 |
| 27 | LTZ | L-Silver | 1940.0 | 798 | 2.00 | 0.65 | 0.45 |
| 28 | LTZ | L-Silver | 1945.0 | 798 | 2.00 | 0.65 | 0.45 |
| 29 | LTZ | L-Silver | 1950.0 | 798 | 2.00 | 0.65 | 0.45 |
| 30 | LTZ | L-Silver | 1955.0 | 805 | 2.00 | 0.65 | 0.45 |
| 31 | LTZ | L-Silver | 1958.0 | 805 | 2.00 | 0.65 | 0.45 |
| 32 | LTZ | L-Silver | 1961.0 | 805 | 2.00 | 0.65 | 0.45 |
| 33 | LTZ | L-Silver | 1964.0 | 805 | 2.00 | 0.65 | 0.45 |
| 34 | LTZ | L-Silver | 1967.0 | 735 | 2.00 | 0.65 | 0.45 |
| 35 | LTZ | L-Silver | 1970.0 | 735 | 2.00 | 0.65 | 0.45 |
| 8 | LTZ | LSL-Classic | 624.0 | 315 | 1.00 | 0.70 | 0.45 |
| 9 | LTZ | LSL-Classic | 719.0 | 343 | 0.90 | 0.58 | 0.37 |
| 10 | LTZ | LSL-Classic | 809.0 | 371 | 0.90 | 0.58 | 0.37 |
| 11 | LTZ | LSL-Classic | 887.0 | 392 | 0.90 | 0.58 | 0.37 |
| 12 | LTZ | LSL-Classic | 957.0 | 420 | 0.90 | 0.58 | 0.37 |
| 13 | LTZ | LSL-Classic | 1017.0 | 448 | 0.90 | 0.58 | 0.37 |
| 14 | LTZ | LSL-Classic | 1072.0 | 469 | 0.90 | 0.58 | 0.37 |
| 15 | LTZ | LSL-Classic | 1122.0 | 490 | 0.90 | 0.58 | 0.37 |
| 16 | LTZ | LSL-Classic | 1167.0 | 511 | 0.90 | 0.58 | 0.37 |
| 17 | LTZ | LSL-Classic | 1214.0 | 532 | 0.90 | 0.58 | 0.37 |
| 18 | LTZ | LSL-Classic | 1264.0 | 553 | 2.00 | 0.65 | 0.45 |
| 19 | LTZ | LSL-Classic | 1322.0 | 588 | 2.00 | 0.65 | 0.45 |
| 20 | LTZ | LSL-Classic | 1386.0 | 700 | 2.00 | 0.65 | 0.45 |
| 21 | LTZ | LSL-Classic | 1450.0 | 742 | 2.00 | 0.65 | 0.45 |
| 22 | LTZ | LSL-Classic | 1500.0 | 770 | 2.00 | 0.65 | 0.45 |
| 23 | LTZ | LSL-Classic | 1540.0 | 791 | 2.00 | 0.65 | 0.45 |
| 24 | LTZ | LSL-Classic | 1580.0 | 798 | 2.00 | 0.65 | 0.45 |
| 25 | LTZ | LSL-Classic | 1610.0 | 798 | 2.00 | 0.65 | 0.45 |
| 26 | LTZ | LSL-Classic | 1630.0 | 798 | 2.00 | 0.65 | 0.45 |
| 27 | LTZ | LSL-Classic | 1650.0 | 798 | 2.00 | 0.65 | 0.45 |
| 28 | LTZ | LSL-Classic | 1670.0 | 798 | 2.00 | 0.65 | 0.45 |
| 29 | LTZ | LSL-Classic | 1690.0 | 798 | 2.00 | 0.65 | 0.45 |
| 30 | LTZ | LSL-Classic | 1700.0 | 798 | 2.00 | 0.65 | 0.45 |
| 31 | LTZ | LSL-Classic | 1705.0 | 805 | 2.00 | 0.65 | 0.45 |
| 32 | LTZ | LSL-Classic | 1710.0 | 805 | 2.00 | 0.65 | 0.45 |
| 33 | LTZ | LSL-Classic | 1713.0 | 805 | 2.00 | 0.65 | 0.45 |
| 34 | LTZ | LSL-Classic | 1715.0 | 805 | 2.00 | 0.65 | 0.45 |
| 35 | LTZ | LSL-Classic | 1718.0 | 735 | 2.00 | 0.65 | 0.45 |
| 8 | LTZ | LSL-Extra | 666.0 | 336 | 1.00 | 0.70 | 0.45 |
| 9 | LTZ | LSL-Extra | 767.0 | 364 | 0.90 | 0.58 | 0.37 |
| 10 | LTZ | LSL-Extra | 863.0 | 392 | 0.90 | 0.58 | 0.37 |
| 11 | LTZ | LSL-Extra | 946.0 | 420 | 0.90 | 0.58 | 0.37 |
| 12 | LTZ | LSL-Extra | 1021.0 | 448 | 0.90 | 0.58 | 0.37 |
| 13 | LTZ | LSL-Extra | 1085.0 | 469 | 0.90 | 0.58 | 0.37 |
| 14 | LTZ | LSL-Extra | 1144.0 | 490 | 0.90 | 0.58 | 0.37 |
| 15 | LTZ | LSL-Extra | 1197.0 | 511 | 0.90 | 0.58 | 0.37 |
| 16 | LTZ | LSL-Extra | 1245.0 | 532 | 0.90 | 0.58 | 0.37 |
| 17 | LTZ | LSL-Extra | 1295.0 | 553 | 0.90 | 0.58 | 0.37 |
| 18 | LTZ | LSL-Extra | 1348.0 | 581 | 2.00 | 0.65 | 0.45 |
| 19 | LTZ | LSL-Extra | 1410.0 | 616 | 2.00 | 0.65 | 0.45 |
| 20 | LTZ | LSL-Extra | 1478.0 | 700 | 2.00 | 0.65 | 0.45 |
| 21 | LTZ | LSL-Extra | 1543.0 | 742 | 2.00 | 0.65 | 0.45 |
| 22 | LTZ | LSL-Extra | 1593.0 | 770 | 2.00 | 0.65 | 0.45 |
| 23 | LTZ | LSL-Extra | 1633.0 | 791 | 2.00 | 0.65 | 0.45 |
| 24 | LTZ | LSL-Extra | 1668.0 | 798 | 2.00 | 0.65 | 0.45 |
| 25 | LTZ | LSL-Extra | 1698.0 | 798 | 2.00 | 0.65 | 0.45 |
| 26 | LTZ | LSL-Extra | 1723.0 | 798 | 2.00 | 0.65 | 0.45 |
| 27 | LTZ | LSL-Extra | 1743.0 | 798 | 2.00 | 0.65 | 0.45 |
| 28 | LTZ | LSL-Extra | 1758.0 | 798 | 2.00 | 0.65 | 0.45 |
| 29 | LTZ | LSL-Extra | 1768.0 | 798 | 2.00 | 0.65 | 0.45 |
| 30 | LTZ | LSL-Extra | 1775.0 | 798 | 2.00 | 0.65 | 0.45 |
| 31 | LTZ | LSL-Extra | 1780.0 | 805 | 2.00 | 0.65 | 0.45 |
| 32 | LTZ | LSL-Extra | 1783.0 | 805 | 2.00 | 0.65 | 0.45 |
| 33 | LTZ | LSL-Extra | 1786.0 | 805 | 2.00 | 0.65 | 0.45 |
| 34 | LTZ | LSL-Extra | 1789.0 | 805 | 2.00 | 0.65 | 0.45 |
| 35 | LTZ | LSL-Extra | 1792.0 | 735 | 2.00 | 0.65 | 0.45 |
| 8 | LTZ | LSL-Lite | 635.0 | 322 | 1.00 | 0.70 | 0.45 |
| 9 | LTZ | LSL-Lite | 735.0 | 343 | 0.90 | 0.58 | 0.37 |
| 10 | LTZ | LSL-Lite | 825.0 | 364 | 0.90 | 0.58 | 0.37 |
| 11 | LTZ | LSL-Lite | 894.0 | 385 | 0.90 | 0.58 | 0.37 |
| 12 | LTZ | LSL-Lite | 959.0 | 406 | 0.90 | 0.58 | 0.37 |
| 13 | LTZ | LSL-Lite | 1023.0 | 427 | 0.90 | 0.58 | 0.37 |
| 14 | LTZ | LSL-Lite | 1084.0 | 448 | 0.90 | 0.58 | 0.37 |
| 15 | LTZ | LSL-Lite | 1143.0 | 469 | 0.90 | 0.58 | 0.37 |
| 16 | LTZ | LSL-Lite | 1200.0 | 497 | 0.90 | 0.58 | 0.37 |
| 17 | LTZ | LSL-Lite | 1255.0 | 525 | 0.90 | 0.58 | 0.37 |
| 18 | LTZ | LSL-Lite | 1306.0 | 553 | 2.00 | 0.65 | 0.45 |
| 19 | LTZ | LSL-Lite | 1356.0 | 581 | 2.00 | 0.65 | 0.45 |
| 20 | LTZ | LSL-Lite | 1405.0 | 700 | 2.00 | 0.65 | 0.45 |
| 21 | LTZ | LSL-Lite | 1452.0 | 742 | 2.00 | 0.65 | 0.45 |
| 22 | LTZ | LSL-Lite | 1497.0 | 770 | 2.00 | 0.65 | 0.45 |
| 23 | LTZ | LSL-Lite | 1538.0 | 791 | 2.00 | 0.65 | 0.45 |
| 24 | LTZ | LSL-Lite | 1575.0 | 798 | 2.00 | 0.65 | 0.45 |
| 25 | LTZ | LSL-Lite | 1608.0 | 798 | 2.00 | 0.65 | 0.45 |
| 26 | LTZ | LSL-Lite | 1628.0 | 798 | 2.00 | 0.65 | 0.45 |
| 27 | LTZ | LSL-Lite | 1639.0 | 798 | 2.00 | 0.65 | 0.45 |
| 28 | LTZ | LSL-Lite | 1645.0 | 798 | 2.00 | 0.65 | 0.45 |
| 29 | LTZ | LSL-Lite | 1649.0 | 798 | 2.00 | 0.65 | 0.45 |
| 30 | LTZ | LSL-Lite | 1651.0 | 798 | 2.00 | 0.65 | 0.45 |
| 31 | LTZ | LSL-Lite | 1653.0 | 805 | 2.00 | 0.65 | 0.45 |
| 32 | LTZ | LSL-Lite | 1655.0 | 805 | 2.00 | 0.65 | 0.45 |
| 33 | LTZ | LSL-Lite | 1657.0 | 805 | 2.00 | 0.65 | 0.45 |
| 34 | LTZ | LSL-Lite | 1658.0 | 805 | 2.00 | 0.65 | 0.45 |
| 35 | LTZ | LSL-Lite | 1660.0 | 735 | 2.00 | 0.65 | 0.45 |
| 8 | LTZ | LSL-Ultra-Lite | 595.0 | 315 | 1.00 | 0.70 | 0.45 |
| 9 | LTZ | LSL-Ultra-Lite | 685.0 | 336 | 0.90 | 0.58 | 0.37 |
| 10 | LTZ | LSL-Ultra-Lite | 765.0 | 357 | 0.90 | 0.58 | 0.37 |
| 11 | LTZ | LSL-Ultra-Lite | 840.0 | 378 | 0.90 | 0.58 | 0.37 |
| 12 | LTZ | LSL-Ultra-Lite | 910.0 | 399 | 0.90 | 0.58 | 0.37 |
| 13 | LTZ | LSL-Ultra-Lite | 975.0 | 427 | 0.90 | 0.58 | 0.37 |
| 14 | LTZ | LSL-Ultra-Lite | 1035.0 | 448 | 0.90 | 0.58 | 0.37 |
| 15 | LTZ | LSL-Ultra-Lite | 1090.0 | 469 | 0.90 | 0.58 | 0.37 |
| 16 | LTZ | LSL-Ultra-Lite | 1143.0 | 497 | 0.90 | 0.58 | 0.37 |
| 17 | LTZ | LSL-Ultra-Lite | 1203.0 | 525 | 0.90 | 0.58 | 0.37 |
| 18 | LTZ | LSL-Ultra-Lite | 1273.0 | 553 | 2.00 | 0.65 | 0.45 |
| 19 | LTZ | LSL-Ultra-Lite | 1338.0 | 581 | 2.00 | 0.65 | 0.45 |
| 20 | LTZ | LSL-Ultra-Lite | 1393.0 | 700 | 2.00 | 0.65 | 0.45 |
| 21 | LTZ | LSL-Ultra-Lite | 1438.0 | 742 | 2.00 | 0.65 | 0.45 |
| 22 | LTZ | LSL-Ultra-Lite | 1478.0 | 770 | 2.00 | 0.65 | 0.45 |
| 23 | LTZ | LSL-Ultra-Lite | 1513.0 | 791 | 2.00 | 0.65 | 0.45 |
| 24 | LTZ | LSL-Ultra-Lite | 1538.0 | 798 | 2.00 | 0.65 | 0.45 |
| 25 | LTZ | LSL-Ultra-Lite | 1558.0 | 798 | 2.00 | 0.65 | 0.45 |
| 26 | LTZ | LSL-Ultra-Lite | 1573.0 | 798 | 2.00 | 0.65 | 0.45 |
| 27 | LTZ | LSL-Ultra-Lite | 1583.0 | 798 | 2.00 | 0.65 | 0.45 |
| 28 | LTZ | LSL-Ultra-Lite | 1589.0 | 798 | 2.00 | 0.65 | 0.45 |
| 29 | LTZ | LSL-Ultra-Lite | 1591.0 | 798 | 2.00 | 0.65 | 0.45 |
| 30 | LTZ | LSL-Ultra-Lite | 1593.0 | 798 | 2.00 | 0.65 | 0.45 |
| 31 | LTZ | LSL-Ultra-Lite | 1595.0 | 805 | 2.00 | 0.65 | 0.45 |
| 32 | LTZ | LSL-Ultra-Lite | 1597.0 | 805 | 2.00 | 0.65 | 0.45 |
| 33 | LTZ | LSL-Ultra-Lite | 1601.0 | 805 | 2.00 | 0.65 | 0.45 |
| 34 | LTZ | LSL-Ultra-Lite | 1603.0 | 805 | 2.00 | 0.65 | 0.45 |
| 35 | LTZ | LSL-Ultra-Lite | 1604.0 | 735 | 2.00 | 0.65 | 0.45 |
| 8 | LTZ | LT | 697.0 | 364 | 1.00 | 0.70 | 0.45 |
| 9 | LTZ | LT | 796.0 | 392 | 0.90 | 0.58 | 0.37 |
| 10 | LTZ | LT | 890.0 | 413 | 0.90 | 0.58 | 0.37 |
| 11 | LTZ | LT | 978.0 | 427 | 0.90 | 0.58 | 0.37 |
| 12 | LTZ | LT | 1062.0 | 448 | 0.90 | 0.58 | 0.37 |
| 13 | LTZ | LT | 1143.0 | 462 | 0.90 | 0.58 | 0.37 |
| 14 | LTZ | LT | 1219.0 | 476 | 0.90 | 0.58 | 0.37 |
| 15 | LTZ | LT | 1287.0 | 483 | 0.90 | 0.58 | 0.37 |
| 16 | LTZ | LT | 1354.0 | 504 | 0.90 | 0.58 | 0.37 |
| 17 | LTZ | LT | 1426.0 | 518 | 2.00 | 0.65 | 0.45 |
| 18 | LTZ | LT | 1502.0 | 539 | 2.00 | 0.65 | 0.45 |
| 19 | LTZ | LT | 1583.0 | 581 | 2.00 | 0.65 | 0.45 |
| 20 | LTZ | LT | 1670.0 | 672 | 2.00 | 0.65 | 0.45 |
| 21 | LTZ | LT | 1742.0 | 700 | 2.00 | 0.65 | 0.45 |
| 22 | LTZ | LT | 1823.0 | 742 | 2.00 | 0.65 | 0.45 |
| 23 | LTZ | LT | 1868.0 | 770 | 2.00 | 0.65 | 0.45 |
| 24 | LTZ | LT | 1906.0 | 791 | 2.00 | 0.65 | 0.45 |
| 25 | LTZ | LT | 1922.0 | 798 | 2.00 | 0.65 | 0.45 |
| 26 | LTZ | LT | 1935.0 | 798 | 2.00 | 0.65 | 0.45 |
| 27 | LTZ | LT | 1940.0 | 798 | 2.00 | 0.65 | 0.45 |
| 28 | LTZ | LT | 1846.0 | 798 | 2.00 | 0.65 | 0.45 |
| 29 | LTZ | LT | 1951.0 | 798 | 2.00 | 0.65 | 0.45 |
| 30 | LTZ | LT | 1955.0 | 798 | 2.00 | 0.65 | 0.45 |
| 31 | LTZ | LT | 1958.0 | 798 | 2.00 | 0.65 | 0.45 |
| 32 | LTZ | LT | 1961.0 | 805 | 2.00 | 0.65 | 0.45 |
| 33 | LTZ | LT | 1964.0 | 805 | 2.00 | 0.65 | 0.45 |
| 34 | LTZ | LT | 1967.0 | 805 | 2.00 | 0.65 | 0.45 |
| 35 | LTZ | LT | 1970.0 | 805 | 2.00 | 0.65 | 0.45 |
A.2. Editing Data
- Tranformasi dalam bobot badan metabolis (\(BB^{0.75}\))
- Persamaan:
- \(Konsumsi\:Kalsium\:(g/ekor/minggu) = ({\frac{\%\:Kalsium\:Ransum}{100}} \times Konsumsi\:Pakan\:(g/ekor/minggu))\)
- \(Transformasi\:kalsium\:(BB^{0.75}\:(g)) = (\frac{Konsumsi\:Kalsium\:(g/ekor/minggu)}{Bobot\:Badan\:(g)}) \times (Bobot\:Badan^{0.75}\:(g))\)
- Persamaan:
- Evalusi
# 2. transformasi dalam bobot badan metabolis
Calcium <- ((Calcium/100) * Feed_consumption)
Calcium_BB075 <- (Calcium/Body_weight)*(Body_weight**0.75)
Total_phosphorus <- ((Total_phosphorus/100) * Feed_consumption)
Total_phosphorus_BB075 <- (Total_phosphorus/Body_weight)*(Body_weight**0.75)
Available_phosphorus <- ((Available_phosphorus/100) * Feed_consumption)
Available_phosphorus_BB075 <- (Available_phosphorus/Body_weight)*(Body_weight**0.75)
Calcium_g <- Calcium
Total_phosphorus_g <- Total_phosphorus
Available_phosphorus_g <- Available_phosphorus
Data <- add_column(Data, Calcium_g, .after = "Calcium")
Data <- add_column(Data, Total_phosphorus_g, .after = "Total_phosphorus")
Data <- add_column(Data, Available_phosphorus_g, .after = "Available_phosphorus")
Data <- add_column(Data, Calcium_BB075, .after = "Calcium_g")
Data <- add_column(Data, Total_phosphorus_BB075, .after = "Total_phosphorus_g")
Data <- add_column(Data, Available_phosphorus_BB075, .after = "Available_phosphorus_g")
# 2. transformasi dalam nilai min max
Calcium_transformation <- scale_min_max(Calcium_BB075)
Total_phosphorus_transformation <- scale_min_max(Total_phosphorus_BB075)
Available_phosphorus_transformation <- scale_min_max(Available_phosphorus_BB075)
Data <- add_column(Data, Calcium_transformation, .after = "Calcium_BB075")
Data <- add_column(Data, Total_phosphorus_transformation, .after = "Total_phosphorus_BB075")
Data <- add_column(Data, Available_phosphorus_transformation, .after = "Available_phosphorus_BB075")
# 2. grafik data
# Ca
breaksx <-c(seq(10, 35, by=5))
labelsx <-as.character(breaksx)
breaksy <-c(seq(0, 18, by=4))
labelsy <-as.character(breaksy)
breaksyp <-c(seq(0, 5, by=1))
labelsyp <-as.character(breaksyp)
breaksypz <-c(seq(0, 3.5, by=0.5))
labelsypz <-as.character(breaksypz)
PlotDataCa <- ggplot(data=Data, aes(x=Age)) +
geom_point(aes(y=Calcium_g), shape=17, color="black") +
xlab("Age") +
scale_x_continuous(limits=c(8, 35), breaks=breaksx, labels=labelsx) +
ylab("Ca") +
scale_y_continuous(limits=c(0, 18), breaks=breaksy, labels=labelsy) +
theme(panel.grid.major=element_blank(), panel.grid.minor=element_blank(), panel.background=element_blank(), axis.line=element_line(colour="black"), axis.title=element_text(size=8)) +
theme(legend.position="bottom")
plot(PlotDataCa) # plot 1# TP
PlotDataTP <- ggplot(data=Data, aes(x=Age)) +
geom_point(aes(y=Total_phosphorus_g), shape=17, color="black") +
xlab("Age") +
scale_x_continuous(limits=c(8, 35), breaks=breaksx, labels=labelsx) +
ylab("TP") +
scale_y_continuous(limits=c(1, 6), breaks=breaksyp, labels=labelsyp) +
theme(panel.grid.major=element_blank(), panel.grid.minor=element_blank(), panel.background=element_blank(), axis.line=element_line(colour="black"), axis.title=element_text(size=8)) +
theme(legend.position="bottom")
plot(PlotDataTP) # plot 3# AP
PlotDataAP <- ggplot(data=Data, aes(x=Age)) +
geom_point(aes(y=Available_phosphorus_g), shape=17, color="black") +
xlab("Age") +
scale_x_continuous(limits=c(8, 35), breaks=breaksx, labels=labelsx) +
ylab("AP") +
scale_y_continuous(limits=c(1, 4), breaks=breaksypz, labels=labelsypz) +
theme(panel.grid.major=element_blank(), panel.grid.minor=element_blank(), panel.background=element_blank(), axis.line=element_line(colour="black"), axis.title=element_text(size=8)) +
theme(legend.position="bottom")
plot(PlotDataAP) # plot 3## Saving 7 x 5 in image
## Saving 7 x 5 in image
## Saving 7 x 5 in image
B. PEMBUATAN, PREDIKSI, FITTING MODEL
Pembuatan, Prediksi, dan Fitting Model
B.3.a. Pembuatan model
- Persamaan Logistics
- Persamaan Gompertz
Persamaan Weibull
- Kalsium
# 3.a. pembuatan model
# Ca
LogisCa.ss <- nls(Calcium_transformation ~ SSlogis(Age, Asym, xmid, scal), data = Data)
GompertzCa.ss <- nls(Calcium_transformation ~ SSgompertz(Age, Asym, b2, b3), data = Data)
WeibullCa.ss <- nls(Calcium_transformation ~ SSweibull(Age, Asym, Drop, lrc, pwr), data = Data)
summary(LogisCa.ss)##
## Formula: Calcium_transformation ~ SSlogis(Age, Asym, xmid, scal)
##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## Asym 0.939666 0.003524 266.66 <2e-16 ***
## xmid 17.316932 0.039082 443.10 <2e-16 ***
## scal 1.153850 0.033982 33.95 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.06314 on 641 degrees of freedom
##
## Number of iterations to convergence: 0
## Achieved convergence tolerance: 2.279e-06
##
## Formula: Calcium_transformation ~ SSgompertz(Age, Asym, b2, b3)
##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## Asym 9.427e-01 3.643e-03 258.743 < 2e-16 ***
## b2 6.532e+04 2.272e+04 2.875 0.00418 **
## b3 5.142e-01 1.054e-02 48.789 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.06321 on 641 degrees of freedom
##
## Number of iterations to convergence: 0
## Achieved convergence tolerance: 7.167e-06
##
## Formula: Calcium_transformation ~ SSweibull(Age, Asym, Drop, lrc, pwr)
##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## Asym 0.933927 0.003481 268.30 <2e-16 ***
## Drop 0.904363 0.006848 132.06 <2e-16 ***
## lrc -31.877086 1.121245 -28.43 <2e-16 ***
## pwr 11.007687 0.388116 28.36 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.06459 on 640 degrees of freedom
##
## Number of iterations to convergence: 0
## Achieved convergence tolerance: 2.172e-06
- Total Fosfor
# TP
LogisTP.ss <- nls(Total_phosphorus_transformation ~ SSlogis(Age, Asym, xmid, scal), data = Data)
GompertzTP.ss <- nls(Total_phosphorus_transformation ~ SSgompertz(Age, Asym, b2, b3), data = Data)
WeibullTP.ss <- nls(Total_phosphorus_transformation ~ SSweibull(Age, Asym, Drop, lrc, pwr), data = Data)
summary(LogisTP.ss)##
## Formula: Total_phosphorus_transformation ~ SSlogis(Age, Asym, xmid, scal)
##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## Asym 0.937014 0.005047 185.67 <2e-16 ***
## xmid 17.115195 0.075735 225.99 <2e-16 ***
## scal 2.562650 0.065112 39.36 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.07279 on 641 degrees of freedom
##
## Number of iterations to convergence: 1
## Achieved convergence tolerance: 4.364e-06
##
## Formula: Total_phosphorus_transformation ~ SSgompertz(Age, Asym, b2, b3)
##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## Asym 0.955829 0.007235 132.114 < 2e-16 ***
## b2 58.159902 7.732521 7.521 1.84e-13 ***
## b3 0.769918 0.006561 117.356 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0863 on 641 degrees of freedom
##
## Number of iterations to convergence: 0
## Achieved convergence tolerance: 2.301e-06
##
## Formula: Total_phosphorus_transformation ~ SSweibull(Age, Asym, Drop,
## lrc, pwr)
##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## Asym 0.912941 0.003235 282.23 <2e-16 ***
## Drop 0.778273 0.006475 120.19 <2e-16 ***
## lrc -23.420656 0.745973 -31.40 <2e-16 ***
## pwr 7.953070 0.253499 31.37 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.05555 on 640 degrees of freedom
##
## Number of iterations to convergence: 0
## Achieved convergence tolerance: 5.424e-07
- Fosfor Tersedia
# AP
LogisAP.ss <- nls(Available_phosphorus_transformation ~ SSlogis(Age, Asym, xmid, scal), data = Data)
GompertzAP.ss <- nls(Available_phosphorus_transformation ~ SSgompertz(Age, Asym, b2, b3), data = Data)
WeibullAP.ss <- nls(Available_phosphorus_transformation ~ SSweibull(Age, Asym, Drop, lrc, pwr), data = Data)
summary(LogisAP.ss)##
## Formula: Available_phosphorus_transformation ~ SSlogis(Age, Asym, xmid,
## scal)
##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## Asym 0.875119 0.005417 161.54 <2e-16 ***
## xmid 17.145962 0.084969 201.79 <2e-16 ***
## scal 2.373410 0.073011 32.51 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.08085 on 641 degrees of freedom
##
## Number of iterations to convergence: 0
## Achieved convergence tolerance: 1.681e-06
##
## Formula: Available_phosphorus_transformation ~ SSgompertz(Age, Asym, b2,
## b3)
##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## Asym 0.888881 0.007137 124.552 < 2e-16 ***
## b2 95.694675 16.494551 5.802 1.03e-08 ***
## b3 0.748103 0.008115 92.192 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.09126 on 641 degrees of freedom
##
## Number of iterations to convergence: 0
## Achieved convergence tolerance: 1.963e-06
##
## Formula: Available_phosphorus_transformation ~ SSweibull(Age, Asym, Drop,
## lrc, pwr)
##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## Asym 0.854992 0.003986 214.51 <2e-16 ***
## Drop 0.740102 0.008001 92.51 <2e-16 ***
## lrc -23.996364 1.009560 -23.77 <2e-16 ***
## pwr 8.168486 0.343963 23.75 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.06917 on 640 degrees of freedom
##
## Number of iterations to convergence: 0
## Achieved convergence tolerance: 1.206e-07
B.3.b. Prediksi nilai konsumsi kalsium dan fospor dari model
- Kalsium
# 3.b. prediksi model
# Ca
predict.LogisCa.ss <- predict(LogisCa.ss, Age)
predict.GompertzCa.ss <- predict(GompertzCa.ss, Age)
predict.WeibullCa.ss <- predict(WeibullCa.ss, Age)- Total Fosfor
# TP
predict.LogisTP.ss <- predict(LogisTP.ss, Age)
predict.GompertzTP.ss <- predict(GompertzTP.ss, Age)
predict.WeibullTP.ss <- predict(WeibullTP.ss, Age)- Fosfor Tersedia
B.3.c. Penambahan data retransformasi
- Kalsium
# 3.c. penambahan data
# Ca
Data_colourCa <- data.frame(Age, Calcium_transformation, predict.LogisCa.ss, predict.GompertzCa.ss, predict.WeibullCa.ss)
Data_colourCa <- melt(Data_colourCa, id.vars=c("Age", "Calcium_transformation"), measure.vars=c("predict.LogisCa.ss", "predict.GompertzCa.ss", "predict.WeibullCa.ss"))## Warning: attributes are not identical across measure variables; they will
## be dropped
- Total Fosfor
# TP
Data_colourTP <- data.frame(Age, Total_phosphorus_transformation, predict.LogisTP.ss, predict.GompertzTP.ss, predict.WeibullTP.ss)
Data_colourTP <- melt(Data_colourTP, id.vars=c("Age", "Total_phosphorus_transformation"), measure.vars=c("predict.LogisTP.ss", "predict.GompertzTP.ss", "predict.WeibullTP.ss"))## Warning: attributes are not identical across measure variables; they will
## be dropped
- Fosfor Tersedia
# AP
Data_colourAP <- data.frame(Age, Available_phosphorus_transformation, predict.LogisAP.ss, predict.GompertzAP.ss, predict.WeibullAP.ss)
Data_colourAP <- melt(Data_colourAP, id.vars=c("Age", "Available_phosphorus_transformation"), measure.vars=c("predict.LogisAP.ss", "predict.GompertzAP.ss", "predict.WeibullAP.ss"))## Warning: attributes are not identical across measure variables; they will
## be dropped
B.3.d. Fitting model
- Kalsium
# 3.d. fitting model
# Ca
breaksx <-c(seq(10, 35, by=5))
labelsx <-as.character(breaksx)
PlotCa <- ggplot(data=Data_colourCa, aes(x=Age, y=value, shape=variable, colour=variable)) +
geom_point(aes(x=Age, y=Calcium_transformation), shape=20, colour="#8c8c8c") +
geom_point(aes(Age, value, shape=variable)) +
geom_line() +
scale_x_continuous(limits=c(8, 35), breaks=breaksx, labels=labelsx) +
labs(x="Age(week)", y="Ca (g/hen/week)") +
scale_shape_manual(name="Nonlinear Model",
values=c(20, 8, 18),
labels=c("Logistics", "Gompertz", "Weibulle")) +
scale_colour_manual(name="Nonlinear Model",
values=c("red", "green", "blue"),
labels=c("Logistics", "Gompertz", "Weibulle")) +
theme_classic() +
theme(legend.position="bottom")
plot(PlotCa) # plot 4- Total Fosfor
# TP
PlotTP <- ggplot(data=Data_colourTP, aes(x=Age, y=value, shape=variable, colour=variable)) +
geom_point(aes(x=Age, y=Total_phosphorus_transformation), shape=20, colour="#8c8c8c") +
geom_point(aes(Age, value, shape=variable)) +
geom_line() +
scale_x_continuous(limits=c(8, 35), breaks=breaksx, labels=labelsx) +
labs(x="Age(week)", y="TP (g/hen/week)") +
scale_shape_manual(name="Nonlinear Model",
values=c(20, 8, 18),
labels=c("Logistics", "Gompertz", "Weibulle")) +
scale_colour_manual(name="Nonlinear Model",
values=c("red", "green", "blue"),
labels=c("Logistics", "Gompertz", "Weibulle")) +
theme_classic() +
theme(legend.position="bottom")
plot(PlotTP) # plot 5- Fosfor Tersedia
# AP
PlotAP <- ggplot(data=Data_colourAP, aes(x=Age, y=value, shape=variable, colour=variable)) +
geom_point(aes(x=Age, y=Available_phosphorus_transformation), shape=20, colour="#8c8c8c") +
geom_point(aes(Age, value, shape=variable)) +
geom_line() +
scale_x_continuous(limits=c(8, 35), breaks=breaksx, labels=labelsx) +
labs(x="Age(week)", y="AP (g/hen/week)") +
scale_shape_manual(name="Nonlinear Model",
values=c(20, 8, 18),
labels=c("Logistics", "Gompertz", "Weibulle")) +
scale_colour_manual(name="Nonlinear Model",
values=c("red", "green", "blue"),
labels=c("Logistics", "Gompertz", "Weibulle")) +
theme_classic() +
theme(legend.position="bottom")
plot(PlotAP) # plot 5## Saving 7 x 5 in image
## Saving 7 x 5 in image
## Saving 7 x 5 in image
# arrange
PlotModel <- ggarrange(PlotCa, PlotTP, PlotAP, labels=c("a.", "b.", "c."), font.label=list(size=12), common.legend = TRUE, legend = "bottom", nrow=1, ncol=3)
plot(PlotModel)## Saving 7 x 5 in image
4. Prediksi Nilai dari Model
# 4.a. mengabalikan nilai transformasi nilai min max
# Ca
Calcium_predictedLg <- scale_min_max_rev(Calcium_BB075, predict.LogisCa.ss)
Calcium_predictedGp <- scale_min_max_rev(Calcium_BB075, predict.GompertzCa.ss)
Calcium_predictedWb <- scale_min_max_rev(Calcium_BB075, predict.WeibullCa.ss)
# TP
Total_phosphorus_predictedLg <- scale_min_max_rev(Total_phosphorus_BB075, predict.LogisTP.ss)
Total_phosphorus_predictedGp <- scale_min_max_rev(Total_phosphorus_BB075, predict.GompertzTP.ss)
Total_phosphorus_predictedWb <- scale_min_max_rev(Total_phosphorus_BB075, predict.WeibullTP.ss)
# Ca
Available_phosphorus_predictedLg <- scale_min_max_rev(Available_phosphorus_BB075, predict.LogisAP.ss)
Available_phosphorus_predictedGp <- scale_min_max_rev(Available_phosphorus_BB075, predict.GompertzAP.ss)
Available_phosphorus_predictedWb <- scale_min_max_rev(Available_phosphorus_BB075, predict.WeibullAP.ss)
# 4.b. mengabalikan nilai transformasi BB075
# Ca
Calcium_predictedLg <- scale_BB075_rev(Calcium_predictedLg, Body_weight)
Calcium_predictedGp <- scale_BB075_rev(Calcium_predictedGp, Body_weight)
Calcium_predictedWb <- scale_BB075_rev(Calcium_predictedWb, Body_weight)
# TP
Total_phosphorus_predictedLg <- scale_BB075_rev(Total_phosphorus_predictedLg, Body_weight)
Total_phosphorus_predictedGp <- scale_BB075_rev(Total_phosphorus_predictedGp, Body_weight)
Total_phosphorus_predictedWb <- scale_BB075_rev(Total_phosphorus_predictedWb, Body_weight)
# Ca
Available_phosphorus_predictedLg <- scale_BB075_rev(Available_phosphorus_predictedLg, Body_weight)
Available_phosphorus_predictedGp <- scale_BB075_rev(Available_phosphorus_predictedGp, Body_weight)
Available_phosphorus_predictedWb <- scale_BB075_rev(Available_phosphorus_predictedWb, Body_weight)
### 4.c. akumulasi data
# Ca
Data_predictedCa0 <- data.frame(Age, Calcium_BB075, Calcium_predictedLg, Calcium_predictedGp, Calcium_predictedWb)
Data_lineCa <- Data_predictedCa0 %>%
group_by(Age) %>%
summarise(average = mean(Calcium_BB075))
Data_predictedCa <- melt(Data_predictedCa0, id.vars=c("Age", "Calcium_BB075"), measure.vars=c("Calcium_predictedLg", "Calcium_predictedGp", "Calcium_predictedWb"))## Warning: attributes are not identical across measure variables; they will
## be dropped
# TP
Data_predictedTP0 <- data.frame(Age, Total_phosphorus_BB075, Total_phosphorus_predictedLg, Total_phosphorus_predictedGp, Total_phosphorus_predictedWb)
Data_lineTP0 <- Data_predictedTP0 %>%
group_by(Age) %>%
summarise(average = mean(Total_phosphorus_BB075))
Data_predictedTP <- melt(Data_predictedTP0, id.vars=c("Age", "Total_phosphorus_BB075"), measure.vars=c("Total_phosphorus_predictedLg", "Total_phosphorus_predictedGp", "Total_phosphorus_predictedWb"))## Warning: attributes are not identical across measure variables; they will
## be dropped
# AP
Data_predictedAP0 <- data.frame(Age, Available_phosphorus_BB075, Available_phosphorus_predictedLg, Available_phosphorus_predictedGp, Available_phosphorus_predictedWb)
Data_lineAP0 <- Data_predictedAP0 %>%
group_by(Age) %>%
summarise(average = mean(Available_phosphorus_BB075))
Data_predictedAP <- melt(Data_predictedAP0, id.vars=c("Age", "Available_phosphorus_BB075"), measure.vars=c("Available_phosphorus_predictedLg", "Available_phosphorus_predictedGp", "Available_phosphorus_predictedWb"))## Warning: attributes are not identical across measure variables; they will
## be dropped
# 4.c. plot data kebalikan nilai min max
# Ca
breaksx <-c(seq(10, 35, by=5))
labelsx <-as.character(breaksx)
breaksy <-c(seq(0, 16, by=4))
labelsy <-as.character(breaksy)
PlotCaPLg7 <- ggplot(data=Data_predictedCa0, aes(x=Age, y=Calcium_predictedLg)) +
geom_point(shape=18, color="red") +
labs(x="Age", y=("Ca")) +
scale_x_continuous(limits=c(8, 35), labels=labelsx, breaks=breaksx) +
scale_y_continuous(limits=c(0, 18), labels=labelsy, breaks=breaksy) +
theme(panel.grid.major=element_blank(), panel.grid.minor=element_blank(), panel.background=element_blank(), axis.line=element_line(colour="black"), axis.title=element_text(size=8))
plot(PlotCaPLg7) # plot 7PlotCaPGp8 <- ggplot(data=Data_predictedCa0, aes(x=Age, y=Calcium_predictedGp)) +
geom_point(shape=18, color="green") +
labs(x="Age", y=("Ca")) +
scale_x_continuous(limits=c(8, 35), labels=labelsx, breaks=breaksx) +
scale_y_continuous(limits=c(0, 18), labels=labelsy, breaks=breaksy) +
theme(panel.grid.major=element_blank(), panel.grid.minor=element_blank(), panel.background=element_blank(), axis.line=element_line(colour="black"), axis.title=element_text(size=8))
plot(PlotCaPGp8) # plot 8PlotCaPWb9 <- ggplot(data=Data_predictedCa0, aes(x=Age, y=Calcium_predictedWb)) +
geom_point(shape=18, color="blue") +
labs(x="Age", y=("Ca")) +
scale_x_continuous(limits=c(8, 35), labels=labelsx, breaks=breaksx) +
scale_y_continuous(limits=c(0, 18), labels=labelsy, breaks=breaksy) +
theme(panel.grid.major=element_blank(), panel.grid.minor=element_blank(), panel.background=element_blank(), axis.line=element_line(colour="black"), axis.title=element_text(size=8))
plot(PlotCaPWb9) # plot 9# TP
breaksy <-c(seq(0, 5, by=1))
labelsy <-as.character(breaksy)
PlotTPPLg10 <- ggplot(data=Data_predictedCa0, aes(x=Age, y=Total_phosphorus_predictedLg)) +
geom_point(shape=18, color="red") +
labs(x="Age", y=("TP")) +
scale_x_continuous(limits=c(8, 35), breaks=breaksx, labels=labelsx) +
scale_y_continuous(limits=c(1, 6), breaks=breaksy, labels=labelsy) +
theme(panel.grid.major=element_blank(), panel.grid.minor=element_blank(), panel.background=element_blank(), axis.line=element_line(colour="black"), axis.title=element_text(size=8))
plot(PlotTPPLg10) # plot 10PlotTPPGp11 <- ggplot(data=Data_predictedCa0, aes(x=Age, y=Total_phosphorus_predictedGp)) +
geom_point(shape=18, color="green") +
labs(x="Age", y=("TP")) +
scale_x_continuous(limits=c(8, 35), breaks=breaksx, labels=labelsx) +
scale_y_continuous(limits=c(1, 6), breaks=breaksy, labels=labelsy) +
theme(panel.grid.major=element_blank(), panel.grid.minor=element_blank(), panel.background=element_blank(), axis.line=element_line(colour="black"), axis.title=element_text(size=8))
plot(PlotTPPGp11) # plot 11PlotTPPWb12 <- ggplot(data=Data_predictedCa0, aes(x=Age, y=Total_phosphorus_predictedWb)) +
geom_point(shape=18, color="blue") +
labs(x="Age", y=("TP")) +
scale_x_continuous(limits=c(8, 35), breaks=breaksx, labels=labelsx) +
scale_y_continuous(limits=c(1, 6), breaks=breaksy, labels=labelsy) +
theme(panel.grid.major=element_blank(), panel.grid.minor=element_blank(), panel.background=element_blank(), axis.line=element_line(colour="black"), axis.title=element_text(size=8))
plot(PlotTPPWb12) # plot 12# AP
breaksy <-c(seq(0, 3.5, by=0.5))
labelsy <-as.character(breaksy)
PlotAPPLg13 <- ggplot(data=Data_predictedCa0, aes(x=Age, y=Available_phosphorus_predictedLg)) +
geom_point(shape=18, color="red") +
labs(x="Age", y=("AP")) +
scale_x_continuous(limits=c(8, 35), breaks=breaksx, labels=labelsx) +
scale_y_continuous(limits=c(1, 4), breaks=breaksy, labels=labelsy) +
theme(panel.grid.major=element_blank(), panel.grid.minor=element_blank(), panel.background=element_blank(), axis.line=element_line(colour="black"), axis.title=element_text(size=8))
plot(PlotAPPLg13) # plot 13PlotAPPGp14 <- ggplot(data=Data_predictedCa0, aes(x=Age, y=Available_phosphorus_predictedGp)) +
geom_point(shape=18, color="green") +
labs(x="Age", y=("AP")) +
scale_x_continuous(limits=c(8, 35), breaks=breaksx, labels=labelsx) +
scale_y_continuous(limits=c(1, 4), breaks=breaksy, labels=labelsy) +
theme(panel.grid.major=element_blank(), panel.grid.minor=element_blank(), panel.background=element_blank(), axis.line=element_line(colour="black"), axis.title=element_text(size=8))
plot(PlotAPPGp14) # plot 14PlotAPPWb15 <- ggplot(data=Data_predictedCa0, aes(x=Age, y=Available_phosphorus_predictedWb)) +
geom_point(shape=18, color="blue") +
labs(x="Age", y=("AP")) +
scale_x_continuous(limits=c(8, 35), breaks=breaksx, labels=labelsx) +
scale_y_continuous(limits=c(1, 4), breaks=breaksy, labels=labelsy) +
theme(panel.grid.major=element_blank(), panel.grid.minor=element_blank(), panel.background=element_blank(), axis.line=element_line(colour="black"), axis.title=element_text(size=8))
plot(PlotAPPWb15) # plot 15# arrange
labelz <- c("a.i.", "a.ii.", "a.iii.", "a.iv.", "b.i.", "b.ii.", "b.iii.", "b.iv.", "c.i.", "c.ii.", "c.iii.", "c.iv.")
PlotPredicted <- ggarrange(PlotDataCa, PlotCaPLg7, PlotCaPGp8, PlotCaPWb9, PlotDataTP, PlotTPPLg10, PlotTPPGp11, PlotTPPWb12, PlotDataAP, PlotAPPLg13, PlotAPPGp14, PlotAPPWb15, labels=labelz, font.label=list(size=8), common.legend=TRUE, legend="bottom", nrow=3, ncol=4)
plot(PlotPredicted)## Saving 7 x 5 in image
5. Validasi Model
5.a. Validasi model RMSE, MSE, MAE, dan koefisien korelasi
- Kalsium
# 5.a. validasi model RMSE, MSE, MAE, dan kk
# Ca
rmse.LogisCa <- rmse(actual=Calcium_transformation, predicted=predict.LogisCa.ss)
rmse.GompertzCa <- rmse(Calcium_transformation, predict.GompertzCa.ss)
rmse.WeibullCa <- rmse(Calcium_transformation, predict.WeibullCa.ss)
mse.LogisCa <- mse(actual=Calcium_transformation, predicted=predict.LogisCa.ss)
mse.GompertzCa <- mse(Calcium_transformation, predict.GompertzCa.ss)
mse.WeibullCa <- mse(Calcium_transformation, predict.WeibullCa.ss)
mae.LogisCa <- mae(actual=Calcium_transformation, predicted=predict.LogisCa.ss)
mae.GompertzCa <- mae(Calcium_transformation, predict.GompertzCa.ss)
mae.WeibullCa <- mae(Calcium_transformation, predict.WeibullCa.ss)
cc.LogisCa <- cor(Calcium_transformation, predict.LogisCa.ss)
cc.GompertzCa <- cor(Calcium_transformation, predict.GompertzCa.ss)
cc.WeibullCa <- cor(Calcium_transformation, predict.WeibullCa.ss)- Total Fosfor
# TP
rmse.LogisTP <- rmse(Total_phosphorus_transformation, predicted=predict.LogisTP.ss)
rmse.GompertzTP <- rmse(Total_phosphorus_transformation, predict.GompertzTP.ss)
rmse.WeibullTP <- rmse(Total_phosphorus_transformation, predict.WeibullTP.ss)
mse.LogisTP <- mse(Total_phosphorus_transformation, predicted=predict.LogisTP.ss)
mse.GompertzTP <- mse(Total_phosphorus_transformation, predict.GompertzTP.ss)
mse.WeibullTP <- mse(Total_phosphorus_transformation, predict.WeibullTP.ss)
mae.LogisTP <- mae(Total_phosphorus_transformation, predict.LogisTP.ss)
mae.GompertzTP <- mae(Total_phosphorus_transformation, predict.GompertzTP.ss)
mae.WeibullTP <- mae(Total_phosphorus_transformation, predict.WeibullTP.ss)
cc.LogisTP <- cor(Total_phosphorus_transformation, predict.LogisTP.ss)
cc.GompertzTP <- cor(Total_phosphorus_transformation, predict.GompertzTP.ss)
cc.WeibullTP <- cor(Total_phosphorus_transformation, predict.WeibullTP.ss)- Fosfor Tersedia
# AP
rmse.LogisAP <- rmse(Available_phosphorus_transformation, predict.LogisAP.ss)
rmse.GompertzAP <- rmse(Available_phosphorus_transformation, predict.GompertzAP.ss)
rmse.WeibullAP <- rmse(Available_phosphorus_transformation, predict.WeibullAP.ss)
mse.LogisAP <- mse(Available_phosphorus_transformation, predict.LogisAP.ss)
mse.GompertzAP <- mse(Available_phosphorus_transformation, predict.GompertzAP.ss)
mse.WeibullAP <- mse(Available_phosphorus_transformation, predict.WeibullAP.ss)
mae.LogisAP <- mae(Available_phosphorus_transformation, predict.LogisAP.ss)
mae.GompertzAP <- mae(Available_phosphorus_transformation, predict.GompertzAP.ss)
mae.WeibullAP <- mae(Available_phosphorus_transformation, predict.WeibullAP.ss)
cc.LogisAP <- cor(Available_phosphorus_transformation, predict.LogisAP.ss)
cc.GompertzAP <- cor(Available_phosphorus_transformation, predict.GompertzAP.ss)
cc.WeibullAP <- cor(Available_phosphorus_transformation, predict.WeibullAP.ss)5.b. Tabel validasi
# 5.b. tabel validasi
# Ca
RMSE <- c(rmse.LogisCa, rmse.GompertzCa, rmse.WeibullCa)
MSE <- c(mse.LogisCa, mse.GompertzCa, mse.WeibullCa)
MAE <- c(mae.LogisCa, mae.GompertzCa, mae.WeibullCa)
CC <- c(cc.LogisCa, cc.GompertzCa, cc.WeibullCa)
Models <- c("Logistics", "Gompertz", "Weibull")
Ca.table <- data.frame(Models, RMSE, MSE, MAE, CC)
# TP
RMSE <- c(rmse.LogisTP, rmse.GompertzTP, rmse.WeibullTP)
MSE <- c(mse.LogisTP, mse.GompertzTP, mse.WeibullTP)
MAE <- c(mae.LogisTP, mae.GompertzTP, mae.WeibullTP)
CC <- c(cc.LogisTP, cc.GompertzTP, cc.WeibullTP)
Models <- c("Logistics", "Gompertz", "Weibull")
TP.table <- data.frame(Models, RMSE, MSE, MAE, CC)
# AP
RMSE <- c(rmse.LogisAP, rmse.GompertzAP, rmse.WeibullAP)
MSE <- c(mse.LogisAP, mse.GompertzAP, mse.WeibullAP)
MAE <- c(mae.LogisAP, mae.GompertzAP, mae.WeibullAP)
CC <- c(cc.LogisAP, cc.GompertzAP, cc.WeibullAP)
Models <- c("Logistics", "Gompertz", "Weibull")
AP.table <- data.frame(Models, RMSE, MSE, MAE, CC)
kable(Ca.table) %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))| Models | RMSE | MSE | MAE | CC |
|---|---|---|---|---|
| Logistics | 0.0629886 | 0.0039676 | 0.0420092 | 0.9880670 |
| Gompertz | 0.0630578 | 0.0039763 | 0.0441593 | 0.9891457 |
| Weibull | 0.0643884 | 0.0041459 | 0.0401528 | 0.9869001 |
kable(TP.table) %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))| Models | RMSE | MSE | MAE | CC |
|---|---|---|---|---|
| Logistics | 0.0726197 | 0.0052736 | 0.0548749 | 0.9783453 |
| Gompertz | 0.0861009 | 0.0074134 | 0.0670575 | 0.9717616 |
| Weibull | 0.0553798 | 0.0030669 | 0.0424407 | 0.9862330 |
kable(AP.table) %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))| Models | RMSE | MSE | MAE | CC |
|---|---|---|---|---|
| Logistics | 0.0806659 | 0.0065070 | 0.0665470 | 0.9703558 |
| Gompertz | 0.0910434 | 0.0082889 | 0.0763604 | 0.9651490 |
| Weibull | 0.0689550 | 0.0047548 | 0.0568673 | 0.9768222 |
6. Koefisien Persamaan Model
# 6. koefisien persamaan model
Coefficient <- c("Asym", "Drop", "lrc", "pwr")
a <- coef(WeibullCa.ss)
b <- coef(WeibullTP.ss)
c <- coef(WeibullAP.ss)
Data.coefficient <- data.frame(Coefficient, "Calcium"=a, "Total Phosphorus"=b, "Available Phosphorus"=c)
kable(Data.coefficient) %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))| Coefficient | Calcium | Total.Phosphorus | Available.Phosphorus | |
|---|---|---|---|---|
| Asym | Asym | 0.9339268 | 0.9129409 | 0.8549917 |
| Drop | Drop | 0.9043634 | 0.7782731 | 0.7401021 |
| lrc | lrc | -31.8770860 | -23.4206563 | -23.9963641 |
| pwr | pwr | 11.0076874 | 7.9530702 | 8.1684862 |