Init

options(digits = 3)
library(pacman)
p_load(kirkegaard, readxl, rms, gganimate, lubridate, animation)

Data

National IQs

#dataset
active_data = "data/NIQ-DATASET-V1.3.2/N-IQ-DATA (V1.3.2).xlsx"

#which sheets?
readxl::excel_sheets(active_data)
##  [1] "INF"       "FAV"       "REC"       "SEL"       "CAL"      
##  [6] "NAT"       "GEO"       "NORM"      "FEC"       "STAT(REC)"
## [11] "STAT(NAT)" "REF"
#load sheets to mainspace
for (s in readxl::excel_sheets(active_data)) {
   assign(x = s %>% str_legalize(),
          value = readxl::read_excel(active_data, sheet = s))
}
## New names:
## * `` -> ...4
## * `` -> ...5
## * `` -> ...6
## * `` -> ...7
## * `` -> ...8
## * … and 4 more problems
## New names:
## * `` -> ...2
## * `` -> ...3
## * `` -> ...4
## * `` -> ...5
## * `` -> ...7
## * … and 36 more problems
## New names:
## * `` -> ...2
## * `` -> ...3
## * `` -> ...4
## * `` -> ...5
## * `` -> ...7
## * … and 36 more problems
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i =
## sheet, : Expecting logical in O1564 / R1564C15: got 'All'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i =
## sheet, : Expecting logical in N1565 / R1565C14: got 'Raw scores (WISC-
## R(DEU)1989)'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i =
## sheet, : Expecting logical in O1565 / R1565C15: got 'N'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i =
## sheet, : Expecting logical in P1565 / R1565C16: got 'Raw scores (WISC-
## R(DEU)1989)'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i =
## sheet, : Expecting logical in N2749 / R2749C14: got 'Mean SPM+ scores'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i =
## sheet, : Expecting logical in O2749 / R2749C15: got 'SD SPM+ scores'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i =
## sheet, : Expecting logical in P2749 / R2749C16: got 'LL SPM+ scores'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i =
## sheet, : Expecting logical in Q2749 / R2749C17: got 'UL SPM+ scores'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i =
## sheet, : Expecting logical in R2749 / R2749C18: got 'IQ (CPM(GBR)2007)'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i =
## sheet, : Expecting logical in N2765 / R2765C14: got 'Mean SPM+ scores'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i =
## sheet, : Expecting logical in O2765 / R2765C15: got 'SD SPM+ scores'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i =
## sheet, : Expecting logical in P2765 / R2765C16: got 'LL SPM+ scores'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i =
## sheet, : Expecting logical in Q2765 / R2765C17: got 'UL SPM+ scores'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i =
## sheet, : Expecting logical in R2765 / R2765C18: got 'IQ (CPM(GBR)2007)'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i =
## sheet, : Expecting logical in N2782 / R2782C14: got 'Mean SPM+ scores'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i =
## sheet, : Expecting logical in O2782 / R2782C15: got 'SD SPM+ scores'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i =
## sheet, : Expecting logical in P2782 / R2782C16: got 'LL SPM+ scores'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i =
## sheet, : Expecting logical in Q2782 / R2782C17: got 'UL SPM+ scores'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i =
## sheet, : Expecting logical in R2782 / R2782C18: got 'IQ (CPM(GBR)2007)'
## New names:
## * `` -> ...2
## * `` -> ...3
## * `` -> ...4
## * `` -> ...5
## * `` -> ...6
## * … and 12 more problems
## New names:
## * `` -> ...2
## * Demographics -> Demographics...3
## * `` -> ...5
## * `` -> ...7
## * `` -> ...8
## * … and 789 more problems
## New names:
## * `` -> ...2
## * `` -> ...6
## * `` -> ...7
## * `` -> ...8
## * `` -> ...9
## * … and 10 more problems
## New names:
## * `` -> ...2
## * `` -> ...4
## * `` -> ...5
## * `` -> ...6
## * `` -> ...7
## * … and 352 more problems
## New names:
## * `` -> ...2
## * `` -> ...3
## * `` -> ...4
## * `` -> ...5
## * `` -> ...6
## * … and 120 more problems
## New names:
## * `` -> ...5
## * `` -> ...7
## * `` -> ...8
## * `` -> ...10
## * `` -> ...11
## New names:
## * `` -> ...5
## * `` -> ...7
## * `` -> ...8
## * `` -> ...10
## * `` -> ...11
##FAV - national level results
colnames(FAV)[4:12] = FAV[1, 4:12] %>% str_replace_all("&", "") %>%  str_legalize()
FAV = FAV[-1, ]

#remove non-country rows
FAV = FAV[-c(which(FAV$Identification == "M"):nrow(FAV)), ] %>% map_df(parse_guess) %>% df_legalize_names()

##REC - sample level results
colnames(REC) = REC[1, ] %>% str_legalize()
REC = REC[-1, ]
REC = REC[-c(which(REC$ID == "M"):nrow(REC)), ] %>% map_df(function(x) {
  if (is.character(x)) return(parse_guess(x))
  x
})

Other national data

#mega compilation
mega = read_csv2("data/Megadataset_v2.0m.csv")
## Using ',' as decimal and '.' as grouping mark. Use read_delim() for more control.
## Parsed with column specification:
## cols(
##   .default = col_number(),
##   ID = col_character(),
##   MalePercentDenmark2012 = col_character(),
##   EthnicHeterogenityVanhanen2012 = col_double(),
##   EthnicConflictVanhanen2012 = col_double(),
##   HDI1980 = col_character(),
##   HDI1990 = col_character(),
##   HDI2000 = col_character(),
##   HDI2010 = col_character(),
##   HDI2013 = col_character(),
##   SlowTimePrefWangetal2011 = col_double(),
##   NorwayPusnishments2011 = col_character(),
##   NorwayPusnishments2012 = col_character(),
##   NorwayPunishedPersons2011 = col_character(),
##   NorwayPunishedPersons2012 = col_character(),
##   AlcoholConsumptionPerCapitaWHO = col_character(),
##   Math00Mean = col_double(),
##   Math00SD = col_double(),
##   Read00Mean = col_double(),
##   Read00SD = col_double(),
##   Sci00Mean = col_double()
##   # ... with 209 more columns
## )
## See spec(...) for full column specifications.
#join to national IQs
FAV = left_join(FAV, mega %>% select(ID, HDI2013), by = c("Identification" = "ID"))
## Warning: Column `Identification`/`ID` has different attributes on LHS and
## RHS of join
FAV$Identification %>% duplicated() %>% any() #no dups!
## [1] FALSE
#HDI
#http://hdr.undp.org/en/data#
HDI = read_csv("data/Human Development Index (HDI).csv", skip = 1)
## Warning: Missing column names filled in: 'X4' [4], 'X6' [6], 'X8' [8],
## 'X10' [10], 'X12' [12], 'X14' [14], 'X16' [16], 'X18' [18], 'X20' [20],
## 'X22' [22], 'X24' [24], 'X26' [26], 'X28' [28], 'X30' [30], 'X32' [32],
## 'X34' [34], 'X36' [36], 'X38' [38], 'X40' [40], 'X42' [42], 'X44' [44],
## 'X46' [46], 'X48' [48], 'X50' [50], 'X52' [52], 'X54' [54], 'X56' [56]
## Parsed with column specification:
## cols(
##   .default = col_double(),
##   Country = col_character(),
##   X4 = col_logical(),
##   X6 = col_logical(),
##   X8 = col_logical(),
##   X10 = col_logical(),
##   X12 = col_logical(),
##   X14 = col_logical(),
##   X16 = col_logical(),
##   X18 = col_logical(),
##   X20 = col_logical(),
##   X22 = col_logical(),
##   X24 = col_logical(),
##   X26 = col_logical(),
##   X28 = col_logical(),
##   X30 = col_logical(),
##   X32 = col_logical(),
##   X34 = col_logical(),
##   X36 = col_logical(),
##   X38 = col_logical(),
##   X40 = col_logical()
##   # ... with 8 more columns
## )
## See spec(...) for full column specifications.
HDI = HDI[names(HDI)[!str_detect(names(HDI), "^X")]]
names(HDI)[3:ncol(HDI)] = "HDI_" + names(HDI)[3:ncol(HDI)]
HDI$ISO3 = pu_translate(HDI$Country)

#join to national IQs
FAV = left_join(FAV, HDI %>% select(ISO3, HDI_1990:HDI_2017), by = c("Identification" = "ISO3"))
## Warning: Column `Identification`/`ISO3` has different attributes on LHS and
## RHS of join
FAV$Identification %>% duplicated() %>% any() #no dups!
## [1] FALSE
#putterman
putterman = read_excel("data/Putterman matrix version 1p1.xls")

#calculate European
euro_homelands = c("Albania", "Austria", "Belarus", "Belgium", "Bosnia and Herzegovina", "Bulgaria", "Croatia", "Cyprus", "Czech Republic", "Denmark", "Estonia", "Finland", "France", "Germany", "Greece", "Hungary", "Iceland", "Ireland", "Italy", "Latvia", "Lithuania", "Luxembourg", "Macedonia", "Malta", "Moldova", "Netherlands", "Norway", "Poland", "Portugal", "Romania", "Russia", "Serbia and Montenegro", "Slovakia", "Slovenia", "Spain", "Sweden", "Switzerland", "Ukraine", "United Kingdom")
euro_homelands_abbr = putterman %>% filter(wbname %in% euro_homelands) %>% pull(wbcode)

#African
african_homelands = c("Angola", "Belize", "Benin", "Botswana", "Burkina Faso", "Burundi", "Cameroon", "Central African Republic", "Chad", "Comoros", "Congo, Dem. Rep.", "Congo, Rep.", "Cote d'Ivoire", "Equatorial Guinea", "Eritrea", "Ethiopia", "Gabon", "Gambia", "Ghana", "Guinea", "Guinea-Bissau", "Lesotho", "Liberia", "Malawi", "Mali", "Mauritania", "Mozambique", "Namibia", "Niger", "Nigeria", "Rwanda", "Senegal", "Sierra Leone", "Somalia", "South Africa", "Sudan", "Swaziland", "Tanzania", "Togo", "Uganda", "Zambia", "Zimbabwe")
african_homelands_abbr = putterman %>% filter(wbname %in% african_homelands) %>% pull(wbcode)

#calculate European fraction
putterman$european = putterman %>% select(!!str_to_lower(euro_homelands_abbr)) %>% rowSums()
putterman$african = putterman %>% select(!!str_to_lower(african_homelands_abbr)) %>% rowSums()

#make new ISO, some of existing are wrong
putterman$wbname[76] = "Israel" #matching is incorrectly done to Palestine otherwise
putterman$ISO3 = pu_translate(putterman$wbname)
## No exact match: Hong Kong, China
## No exact match: Korea, Dem. Rep. (North)
## No exact match: Korea, Rep. (South)
## Best fuzzy match found: Hong Kong, China -> Hong Kong-China with distance 2.00
## Best fuzzy match found: Korea, Dem. Rep. (North) -> Korea, Dem. Rep. with distance 8.00
## Best fuzzy match found: Korea, Rep. (South) -> Korea, South with distance 7.00
putterman$ISO3 %>% duplicated() %>% any() #no dups!
## [1] FALSE
#join to national IQs
FAV = left_join(FAV, putterman %>% select(ISO3, european, african), by = c("Identification" = "ISO3"))
## Warning: Column `Identification`/`ISO3` has different attributes on LHS and
## RHS of join
FAV$Identification %>% duplicated() %>% any() #no dups!
## [1] FALSE

New and old values

#plot new and old
GG_scatter(FAV, "QNW_SAS_GEO", "LV12_GEO", case_names = "Identification") +
  xlab("Lynn & Becker 2019") +
  ylab("Lynn & Vanhanen 2012")

GG_save("figs/new_old.png")

#winsorize new
FAV$QNW_SAS_GEO_winsor = FAV$QNW_SAS_GEO %>% winsorise(lower = 60, upper = 999)
GG_scatter(FAV, "QNW_SAS_GEO_winsor", "LV12_GEO", case_names = "Identification")

#changes and ancestry
FAV$change = FAV$QNW_SAS_GEO - FAV$LV12_GEO
GG_scatter(FAV, "european", "change", case_names = "Identification")

wtd.cor(FAV$change, FAV$european)
##   correlation std.err t.value p.value
## Y        0.11  0.0791    1.39   0.165
GG_scatter(FAV, "african", "change", case_names = "Identification")

wtd.cor(FAV$change, FAV$african)
##   correlation std.err t.value p.value
## Y     -0.0266  0.0795  -0.335   0.738
#HDI
GG_scatter(FAV, "HDI_2017", "change", case_names = "Identification")

wtd.cor(FAV$change, FAV$HDI_2017)
##   correlation std.err t.value p.value
## Y       0.175   0.073     2.4  0.0174
#quantile regression
Rq(change ~ HDI_2017, data = FAV, tau = .75)
## Frequencies of Missing Values Due to Each Variable
##   change HDI_2017 
##        6       16 
## 
## Quantile Regression      tau: 0.75
##  
##  Rq(formula = change ~ HDI_2017, tau = 0.75, data = FAV)
##  
##  
##                        Discrimination    
##                            Index         
##  Obs            184    g        0.750    
##  p                2                      
##  Residual d.f.  182                      
##  mean |Y-Yhat| 5.56                      
##  
##            Coef    S.E.   t     Pr(>|t|)
##  Intercept  4.2862 3.1556  1.36 0.1760  
##  HDI_2017  -4.3335 3.6595 -1.18 0.2379  
## 
Rq(change ~ HDI_2017, data = FAV, tau = .25)
## Warning in quantreg::summary.rq(fit, covariance = TRUE, se = se, hs = hs):
## 1 non-positive fis
## Frequencies of Missing Values Due to Each Variable
##   change HDI_2017 
##        6       16 
## 
## Quantile Regression      tau: 0.25
##  
##  Rq(formula = change ~ HDI_2017, tau = 0.25, data = FAV)
##  
##  
##                        Discrimination    
##                            Index         
##  Obs            184    g        3.877    
##  p                2                      
##  Residual d.f.  182                      
##  mean |Y-Yhat| 5.84                      
##  
##            Coef     S.E.   t     Pr(>|t|)
##  Intercept -22.0741 3.5237 -6.26 <0.0001 
##  HDI_2017   22.3909 3.8684  5.79 <0.0001 
## 

HDI and IQ across time

#access data in ggplot

#new IQs
FAV %>% 
  gather(key = "year", value = "HDI", HDI_1990:HDI_2017) %>% 
  mutate(year = year %>% str_replace("HDI_", "") %>% as.Date("%Y")) %>% 
  ggplot(aes(QNW_SAS_GEO, HDI)) +
  transition_time(year) +
  geom_point() +
  theme_bw() +
  labs(x = 'National IQ\n(Lynn and Becker 2019)', y = 'HDI') +
  ggtitle(
    "Meritocracy of the world: national IQ and HDI", 
      subtitle = "Year: {format(frame_time, '%Y-%m')}"
    )
## Warning: Removed 61 rows containing missing values (geom_point).

## Warning: Removed 61 rows containing missing values (geom_point).

## Warning: Removed 61 rows containing missing values (geom_point).

## Warning: Removed 61 rows containing missing values (geom_point).

## Warning: Removed 61 rows containing missing values (geom_point).
## Warning: Removed 60 rows containing missing values (geom_point).
## Warning: Removed 63 rows containing missing values (geom_point).

## Warning: Removed 63 rows containing missing values (geom_point).

## Warning: Removed 63 rows containing missing values (geom_point).

## Warning: Removed 63 rows containing missing values (geom_point).

## Warning: Removed 63 rows containing missing values (geom_point).

## Warning: Removed 63 rows containing missing values (geom_point).
## Warning: Removed 60 rows containing missing values (geom_point).

## Warning: Removed 60 rows containing missing values (geom_point).

## Warning: Removed 60 rows containing missing values (geom_point).

## Warning: Removed 60 rows containing missing values (geom_point).

## Warning: Removed 60 rows containing missing values (geom_point).

## Warning: Removed 60 rows containing missing values (geom_point).

## Warning: Removed 60 rows containing missing values (geom_point).
## Warning: Removed 56 rows containing missing values (geom_point).

## Warning: Removed 56 rows containing missing values (geom_point).

## Warning: Removed 56 rows containing missing values (geom_point).

## Warning: Removed 56 rows containing missing values (geom_point).

## Warning: Removed 56 rows containing missing values (geom_point).

## Warning: Removed 56 rows containing missing values (geom_point).

## Warning: Removed 56 rows containing missing values (geom_point).

## Warning: Removed 56 rows containing missing values (geom_point).

## Warning: Removed 56 rows containing missing values (geom_point).

## Warning: Removed 56 rows containing missing values (geom_point).

## Warning: Removed 56 rows containing missing values (geom_point).

## Warning: Removed 56 rows containing missing values (geom_point).

## Warning: Removed 56 rows containing missing values (geom_point).

## Warning: Removed 56 rows containing missing values (geom_point).

## Warning: Removed 56 rows containing missing values (geom_point).
## Warning: Removed 53 rows containing missing values (geom_point).

## Warning: Removed 53 rows containing missing values (geom_point).

## Warning: Removed 53 rows containing missing values (geom_point).

## Warning: Removed 53 rows containing missing values (geom_point).
## Warning: Removed 33 rows containing missing values (geom_point).

## Warning: Removed 33 rows containing missing values (geom_point).

## Warning: Removed 33 rows containing missing values (geom_point).

## Warning: Removed 33 rows containing missing values (geom_point).

## Warning: Removed 33 rows containing missing values (geom_point).

## Warning: Removed 33 rows containing missing values (geom_point).

## Warning: Removed 33 rows containing missing values (geom_point).
## Warning: Removed 31 rows containing missing values (geom_point).

## Warning: Removed 31 rows containing missing values (geom_point).

## Warning: Removed 31 rows containing missing values (geom_point).

## Warning: Removed 31 rows containing missing values (geom_point).
## Warning: Removed 29 rows containing missing values (geom_point).

## Warning: Removed 29 rows containing missing values (geom_point).

## Warning: Removed 29 rows containing missing values (geom_point).
## Warning: Removed 26 rows containing missing values (geom_point).

## Warning: Removed 26 rows containing missing values (geom_point).

## Warning: Removed 26 rows containing missing values (geom_point).

## Warning: Removed 26 rows containing missing values (geom_point).
## Warning: Removed 21 rows containing missing values (geom_point).

## Warning: Removed 21 rows containing missing values (geom_point).

## Warning: Removed 21 rows containing missing values (geom_point).

## Warning: Removed 21 rows containing missing values (geom_point).

## Warning: Removed 21 rows containing missing values (geom_point).

## Warning: Removed 21 rows containing missing values (geom_point).

## Warning: Removed 21 rows containing missing values (geom_point).

## Warning: Removed 21 rows containing missing values (geom_point).

## Warning: Removed 21 rows containing missing values (geom_point).

## Warning: Removed 21 rows containing missing values (geom_point).

## Warning: Removed 21 rows containing missing values (geom_point).

## Warning: Removed 21 rows containing missing values (geom_point).

## Warning: Removed 21 rows containing missing values (geom_point).

## Warning: Removed 21 rows containing missing values (geom_point).

## Warning: Removed 21 rows containing missing values (geom_point).

## Warning: Removed 21 rows containing missing values (geom_point).

## Warning: Removed 21 rows containing missing values (geom_point).

## Warning: Removed 21 rows containing missing values (geom_point).
## Warning: Removed 19 rows containing missing values (geom_point).

## Warning: Removed 19 rows containing missing values (geom_point).

## Warning: Removed 19 rows containing missing values (geom_point).

## Warning: Removed 19 rows containing missing values (geom_point).

## Warning: Removed 19 rows containing missing values (geom_point).

## Warning: Removed 19 rows containing missing values (geom_point).

## Warning: Removed 19 rows containing missing values (geom_point).

## Warning: Removed 19 rows containing missing values (geom_point).

## Warning: Removed 19 rows containing missing values (geom_point).

## Warning: Removed 19 rows containing missing values (geom_point).

## Warning: Removed 19 rows containing missing values (geom_point).

## Warning: Removed 19 rows containing missing values (geom_point).

## Warning: Removed 19 rows containing missing values (geom_point).

## Warning: Removed 19 rows containing missing values (geom_point).

## Warning: Removed 19 rows containing missing values (geom_point).

## Warning: Removed 19 rows containing missing values (geom_point).

## Warning: Removed 19 rows containing missing values (geom_point).

## Warning: Removed 19 rows containing missing values (geom_point).

## Warning: Removed 19 rows containing missing values (geom_point).

## Warning: Removed 19 rows containing missing values (geom_point).

## Warning: Removed 19 rows containing missing values (geom_point).

## Warning: Removed 19 rows containing missing values (geom_point).

## Warning: Removed 19 rows containing missing values (geom_point).

## Warning: Removed 19 rows containing missing values (geom_point).

## Warning: Removed 19 rows containing missing values (geom_point).

## Warning: Removed 19 rows containing missing values (geom_point).
## Warning: Removed 18 rows containing missing values (geom_point).

gganimate::anim_save("figs/HDI_IQb.gif")

#seems not possible to do the correlation in each frame with gganimate
#but we can use oldschool approach
frames = list()
FAV_HDI_long = FAV %>% 
  gather(key = "year", value = "HDI", HDI_1990:HDI_2017) %>% 
  mutate(year = year %>% str_replace("HDI_", ""),
         year_date = year %>% as.Date("%Y"))

for (y in unique(FAV_HDI_long$year)) {
  y_data = frames[[y]] = FAV_HDI_long %>% 
    filter(year == y)
  
  y_cor = wtd.cor(y_data$QNW_SAS_GEO, y_data$HDI)
  
  y_plot = y_data %>% 
    ggplot(aes(QNW_SAS_GEO, HDI)) +
    geom_point() +
    geom_smooth(method = lm, se = F) +
    theme_bw() +
    ggtitle(
      "National IQ and HDI over time", 
      str_glue("Year: {format(y_data$year_date[1], '%Y')}\nr = {format(round(y_cor, 3), digits = 3, nsmall = 3, scientific = F)}")
    )
  
  frames[[y]] = y_plot
}

#make a gif
saveGIF({
    walk(frames, print)
}, interval = 0.5, movie.name = "IQ_HDI.gif")
## Warning: Removed 61 rows containing non-finite values (stat_smooth).
## Warning: Removed 61 rows containing missing values (geom_point).
## Warning: Removed 60 rows containing non-finite values (stat_smooth).
## Warning: Removed 60 rows containing missing values (geom_point).
## Warning: Removed 63 rows containing non-finite values (stat_smooth).
## Warning: Removed 63 rows containing missing values (geom_point).
## Warning: Removed 60 rows containing non-finite values (stat_smooth).
## Warning: Removed 60 rows containing missing values (geom_point).
## Warning: Removed 60 rows containing non-finite values (stat_smooth).
## Warning: Removed 60 rows containing missing values (geom_point).
## Warning: Removed 56 rows containing non-finite values (stat_smooth).
## Warning: Removed 56 rows containing missing values (geom_point).
## Warning: Removed 56 rows containing non-finite values (stat_smooth).
## Warning: Removed 56 rows containing missing values (geom_point).
## Warning: Removed 56 rows containing non-finite values (stat_smooth).
## Warning: Removed 56 rows containing missing values (geom_point).
## Warning: Removed 56 rows containing non-finite values (stat_smooth).
## Warning: Removed 56 rows containing missing values (geom_point).
## Warning: Removed 53 rows containing non-finite values (stat_smooth).
## Warning: Removed 53 rows containing missing values (geom_point).
## Warning: Removed 33 rows containing non-finite values (stat_smooth).
## Warning: Removed 33 rows containing missing values (geom_point).
## Warning: Removed 33 rows containing non-finite values (stat_smooth).
## Warning: Removed 33 rows containing missing values (geom_point).
## Warning: Removed 31 rows containing non-finite values (stat_smooth).
## Warning: Removed 31 rows containing missing values (geom_point).
## Warning: Removed 29 rows containing non-finite values (stat_smooth).
## Warning: Removed 29 rows containing missing values (geom_point).
## Warning: Removed 26 rows containing non-finite values (stat_smooth).
## Warning: Removed 26 rows containing missing values (geom_point).
## Warning: Removed 21 rows containing non-finite values (stat_smooth).
## Warning: Removed 21 rows containing missing values (geom_point).
## Warning: Removed 21 rows containing non-finite values (stat_smooth).
## Warning: Removed 21 rows containing missing values (geom_point).
## Warning: Removed 21 rows containing non-finite values (stat_smooth).
## Warning: Removed 21 rows containing missing values (geom_point).
## Warning: Removed 21 rows containing non-finite values (stat_smooth).
## Warning: Removed 21 rows containing missing values (geom_point).
## Warning: Removed 21 rows containing non-finite values (stat_smooth).
## Warning: Removed 21 rows containing missing values (geom_point).
## Warning: Removed 19 rows containing non-finite values (stat_smooth).
## Warning: Removed 19 rows containing missing values (geom_point).
## Warning: Removed 19 rows containing non-finite values (stat_smooth).
## Warning: Removed 19 rows containing missing values (geom_point).
## Warning: Removed 19 rows containing non-finite values (stat_smooth).
## Warning: Removed 19 rows containing missing values (geom_point).
## Warning: Removed 19 rows containing non-finite values (stat_smooth).
## Warning: Removed 19 rows containing missing values (geom_point).
## Warning: Removed 19 rows containing non-finite values (stat_smooth).
## Warning: Removed 19 rows containing missing values (geom_point).
## Warning: Removed 19 rows containing non-finite values (stat_smooth).
## Warning: Removed 19 rows containing missing values (geom_point).
## Warning: Removed 19 rows containing non-finite values (stat_smooth).
## Warning: Removed 19 rows containing missing values (geom_point).
## Warning: Removed 18 rows containing non-finite values (stat_smooth).
## Warning: Removed 18 rows containing missing values (geom_point).
## Output at: IQ_HDI.gif
## [1] TRUE

Missing/imputed data

#is missing
FAV$imputed = is.na(FAV$QNW)
FAV$imputed %>% table2()
#what predicts imputed
lrm(imputed ~ standardize(QNW_SAS_GEO), data = FAV)
## Frequencies of Missing Values Due to Each Variable
##     imputed QNW_SAS_GEO 
##           0           2 
## 
## Logistic Regression Model
##  
##  lrm(formula = imputed ~ standardize(QNW_SAS_GEO), data = FAV)
##  
##  
##                       Model Likelihood     Discrimination    Rank Discrim.    
##                          Ratio Test           Indexes           Indexes       
##  Obs           201    LR chi2      6.57    R2       0.044    C       0.617    
##   FALSE        130    d.f.            1    g        0.430    Dxy     0.234    
##   TRUE          71    Pr(> chi2) 0.0104    gr       1.537    gamma   0.235    
##  max |deriv| 4e-08                         gp       0.097    tau-a   0.108    
##                                            Brier    0.222                     
##  
##              Coef    S.E.   Wald Z Pr(>|Z|)
##  Intercept   -0.6238 0.1507 -4.14  <0.0001 
##  QNW_SAS_GEO -0.3816 0.1514 -2.52  0.0117  
## 
lrm(imputed ~ standardize(R), data = FAV)
## Frequencies of Missing Values Due to Each Variable
## imputed       R 
##       0       4 
## 
## Logistic Regression Model
##  
##  lrm(formula = imputed ~ standardize(R), data = FAV)
##  
##  
##                        Model Likelihood     Discrimination    Rank Discrim.    
##                           Ratio Test           Indexes           Indexes       
##  Obs           199    LR chi2      17.75    R2       0.117    C       0.676    
##   FALSE        129    d.f.             1    g        0.757    Dxy     0.352    
##   TRUE          70    Pr(> chi2) <0.0001    gr       2.132    gamma   0.353    
##  max |deriv| 2e-11                          gp       0.162    tau-a   0.161    
##                                             Brier    0.210                     
##  
##            Coef    S.E.   Wald Z Pr(>|Z|)
##  Intercept -0.6718 0.1580 -4.25  <0.0001 
##  R         -0.6586 0.1644 -4.00  <0.0001 
## 

Effect sizes

#OLS
(sample_ols_1 = ols(IQ_cor ~ Country_name, data = REC))
## Linear Regression Model
##  
##  ols(formula = IQ_cor ~ Country_name, data = REC)
##  
##                 Model Likelihood     Discrimination    
##                    Ratio Test           Indexes        
##  Obs     669    LR chi2    876.93    R2       0.730    
##  sigma8.7435    d.f.          129    R2 adj   0.666    
##  d.f.    539    Pr(> chi2) 0.0000    g       14.165    
##  
##  Residuals
##  
##         Min         1Q     Median         3Q        Max 
##  -3.421e+01 -4.565e+00  3.527e-15  4.150e+00  2.801e+01 
##  
##  
##                                                 Coef     S.E.    t    
##  Intercept                                       75.1000  8.7435  8.59
##  Country_name=Argentina                          19.8594  9.5781  2.07
##  Country_name=Australia                          23.6386  9.4441  2.50
##  Country_name=Austria                            25.0006  9.7756  2.56
##  Country_name=Bahamas, The                        9.1200 10.7086  0.85
##  Country_name=Bahrain                            11.7191 12.3652  0.95
##  Country_name=Bangladesh                          1.7104  9.5781  0.18
##  Country_name=Barbados                           16.2658 10.7086  1.52
##  Country_name=Belarus                            26.5000 10.7086  2.47
##  Country_name=Belgium                            20.0181 10.0962  1.98
##  Country_name=Benin                              -4.7410 12.3652 -0.38
##  Country_name=Bermuda                            17.3475  9.7756  1.77
##  Country_name=Bolivia                             8.6867 10.0962  0.86
##  Country_name=Bosnia and Herzegovina             15.8236 10.7086  1.48
##  Country_name=Botswana                            0.9616 12.3652  0.08
##  Country_name=Brazil                             12.7651  8.9316  1.43
##  Country_name=Bulgaria                           11.7386 10.7086  1.10
##  Country_name=Burkina Faso                       -1.3000 12.3652 -0.11
##  Country_name=Cambodia                            4.8880 10.0962  0.48
##  Country_name=Canada                             16.0498  9.1703  1.75
##  Country_name=Chile                              12.7988  9.5781  1.34
##  Country_name=China                              29.2461  9.4441  3.10
##  Country_name=Colombia                            4.2728 10.0962  0.42
##  Country_name=Congo, Democratic Republic of the -11.9531  9.2739 -1.29
##  Country_name=Congo, Republic of the            -12.1337 12.3652 -0.98
##  Country_name=Costa Rica                         12.3510 10.7086  1.15
##  Country_name=Croatia                            17.7766 10.0962  1.76
##  Country_name=Cuba                                7.7202 10.0962  0.76
##  Country_name=Cyprus                             20.4145 10.7086  1.91
##  Country_name=Czechia                            15.5200 12.3652  1.26
##  Country_name=Denmark                            19.1033 10.7086  1.78
##  Country_name=Djibouti                          -22.9622 12.3652 -1.86
##  Country_name=Dominica                           -9.0621 10.7086 -0.85
##  Country_name=Dominican Republic                 14.0500 12.3652  1.14
##  Country_name=Ecuador                             1.6420  9.7756  0.17
##  Country_name=Egypt                               5.6166  9.2165  0.61
##  Country_name=Eritrea                            -3.2499  9.7756 -0.33
##  Country_name=Estonia                            24.0494 10.0962  2.38
##  Country_name=Ethiopia                           -6.2715  9.4441 -0.66
##  Country_name=Finland                            21.0282 10.0962  2.08
##  Country_name=France                             23.4128  9.5781  2.44
##  Country_name=Gambia, The                       -24.5286  9.4441 -2.60
##  Country_name=Gaza Strip                          6.0586  9.5781  0.63
##  Country_name=Germany                            25.5998  9.1006  2.81
##  Country_name=Ghana                             -10.4404  9.5781 -1.09
##  Country_name=Greece                             11.3645 10.0962  1.13
##  Country_name=Guatemala                         -24.3866  9.3472 -2.61
##  Country_name=Haiti                              -4.0574 10.7086 -0.38
##  Country_name=Hong Kong                          35.2129  9.2739  3.80
##  Country_name=Hungary                            19.9435 10.7086  1.86
##  Country_name=Iceland                            24.8933 10.7086  2.32
##  Country_name=India                              -0.5450  8.9594 -0.06
##  Country_name=Indonesia                           4.6032  8.9831  0.51
##  Country_name=Iran                                4.2992 10.0962  0.43
##  Country_name=Iraq                               12.7417 10.0962  1.26
##  Country_name=Ireland                            14.4907 10.0962  1.44
##  Country_name=Israel                             17.0813  9.4441  1.81
##  Country_name=Italy                              17.1852  9.5781  1.79
##  Country_name=Jamaica                            -1.4095  9.0126 -0.16
##  Country_name=Japan                              33.2499  9.4441  3.52
##  Country_name=Jordan                              2.7514  9.7756  0.28
##  Country_name=Kazakhstan                         14.3917 10.0962  1.43
##  Country_name=Kenya                              -1.2859  9.2739 -0.14
##  Country_name=Korea, South                       26.4094  9.7756  2.70
##  Country_name=Kuwait                             13.9260  9.7756  1.42
##  Country_name=Kyrgyzstan                         11.8356 12.3652  0.96
##  Country_name=Laos                               10.3438  9.7756  1.06
##  Country_name=Latvia                             16.0446 12.3652  1.30
##  Country_name=Lebanon                             8.0000 10.7086  0.75
##  Country_name=Libya                               3.3663  9.2165  0.37
##  Country_name=Lithuania                          18.3612 10.0962  1.82
##  Country_name=Malawi                             -5.3960 12.3652 -0.44
##  Country_name=Malaysia                           10.9500 12.3652  0.89
##  Country_name=Mali                              -15.3400 12.3652 -1.24
##  Country_name=Malta                              16.8341 10.0962  1.67
##  Country_name=Marshall Isands                     8.8600 12.3652  0.72
##  Country_name=Mauritius                          11.7200 12.3652  0.95
##  Country_name=Mexico                             15.2366  9.7756  1.56
##  Country_name=Mongolia                           24.2580 12.3652  1.96
##  Country_name=Morocco                            -1.5988  9.3472 -0.17
##  Country_name=Namibia                            -8.9056 12.3652 -0.72
##  Country_name=Nepal                             -32.3089  9.2165 -3.51
##  Country_name=Netherlands                        25.7898  9.1323  2.82
##  Country_name=Netherlands Antilles                4.9145 12.3652  0.40
##  Country_name=New Zealand                        21.2174  9.5781  2.22
##  Country_name=Nicaragua                         -19.0708 10.0962 -1.89
##  Country_name=Nigeria                            -2.4396  9.1703 -0.27
##  Country_name=Norway                             22.8251 10.0962  2.26
##  Country_name=Oman                               10.0610  9.4441  1.07
##  Country_name=Pakistan                            6.7564  9.2739  0.73
##  Country_name=Peru                                6.4905  9.2165  0.70
##  Country_name=Philippines                        15.0084 10.0962  1.49
##  Country_name=Poland                             22.1480  9.2165  2.40
##  Country_name=Portugal                           14.7881 10.0962  1.46
##  Country_name=Puerto Rico                        12.8731  8.9400  1.44
##  Country_name=Qatar                              10.4762 12.3652  0.85
##  Country_name=Romania                            13.3337 10.0962  1.32
##  Country_name=Russia                             17.1348 10.0962  1.70
##  Country_name=Saint Vincent and the Grenadines  -11.6791 12.3652 -0.94
##  Country_name=Saudi Arabia                        3.4728  9.2739  0.37
##  Country_name=Serbia                             12.1813  9.1006  1.34
##  Country_name=Seychelles                          3.6600 12.3652  0.30
##  Country_name=Sierra Leone                      -29.5944 10.7086 -2.76
##  Country_name=Singapore                          26.8931  9.5781  2.81
##  Country_name=Slovakia                           20.2182 12.3652  1.64
##  Country_name=Slovenia                           22.4635  9.3472  2.40
##  Country_name=Somalia                            -7.4251 12.3652 -0.60
##  Country_name=South Africa                       -0.0567  9.0303 -0.01
##  Country_name=South Sudan                       -15.4788  9.5781 -1.62
##  Country_name=Spain                              17.1934  9.3472  1.84
##  Country_name=Sri Lanka                          16.2137 10.0962  1.61
##  Country_name=Sudan                               1.9575  8.9831  0.22
##  Country_name=Sweden                             20.2800 10.7086  1.89
##  Country_name=Switzerland                        23.2715  9.5781  2.43
##  Country_name=Syria                              -2.2455  9.4441 -0.24
##  Country_name=Taiwan                             31.8419  9.3472  3.41
##  Country_name=Tajikistan                         12.6148 12.3652  1.02
##  Country_name=Tanzania                           -3.7693  9.5781 -0.39
##  Country_name=Thailand                           11.9458  8.9970  1.33
##  Country_name=Turkey                             11.5569 12.3652  0.93
##  Country_name=Uganda                             -7.3680 10.0962 -0.73
##  Country_name=Ukraine                            13.5066 12.3652  1.09
##  Country_name=United Arab Emirates                4.3752 12.3652  0.35
##  Country_name=United Kingdom                     21.8468  9.4441  2.31
##  Country_name=United States                      17.6365  8.8186  2.00
##  Country_name=Uzbekistan                         13.9064 12.3652  1.12
##  Country_name=Venezuela                           5.9467 10.0962  0.59
##  Country_name=Vietnam                             2.2943 10.0962  0.23
##  Country_name=Yemen                              -1.9309 10.7086 -0.18
##  Country_name=Zimbabwe                           -1.0938 12.3652 -0.09
##                                                 Pr(>|t|)
##  Intercept                                      <0.0001 
##  Country_name=Argentina                         0.0386  
##  Country_name=Australia                         0.0126  
##  Country_name=Austria                           0.0108  
##  Country_name=Bahamas, The                      0.3948  
##  Country_name=Bahrain                           0.3437  
##  Country_name=Bangladesh                        0.8583  
##  Country_name=Barbados                          0.1294  
##  Country_name=Belarus                           0.0136  
##  Country_name=Belgium                           0.0479  
##  Country_name=Benin                             0.7016  
##  Country_name=Bermuda                           0.0765  
##  Country_name=Bolivia                           0.3900  
##  Country_name=Bosnia and Herzegovina            0.1401  
##  Country_name=Botswana                          0.9380  
##  Country_name=Brazil                            0.1535  
##  Country_name=Bulgaria                          0.2735  
##  Country_name=Burkina Faso                      0.9163  
##  Country_name=Cambodia                          0.6285  
##  Country_name=Canada                            0.0807  
##  Country_name=Chile                             0.1820  
##  Country_name=China                             0.0021  
##  Country_name=Colombia                          0.6723  
##  Country_name=Congo, Democratic Republic of the 0.1980  
##  Country_name=Congo, Republic of the            0.3269  
##  Country_name=Costa Rica                        0.2493  
##  Country_name=Croatia                           0.0789  
##  Country_name=Cuba                              0.4448  
##  Country_name=Cyprus                            0.0571  
##  Country_name=Czechia                           0.2100  
##  Country_name=Denmark                           0.0750  
##  Country_name=Djibouti                          0.0639  
##  Country_name=Dominica                          0.3978  
##  Country_name=Dominican Republic                0.2564  
##  Country_name=Ecuador                           0.8667  
##  Country_name=Egypt                             0.5425  
##  Country_name=Eritrea                           0.7397  
##  Country_name=Estonia                           0.0176  
##  Country_name=Ethiopia                          0.5069  
##  Country_name=Finland                           0.0377  
##  Country_name=France                            0.0148  
##  Country_name=Gambia, The                       0.0097  
##  Country_name=Gaza Strip                        0.5273  
##  Country_name=Germany                           0.0051  
##  Country_name=Ghana                             0.2762  
##  Country_name=Greece                            0.2608  
##  Country_name=Guatemala                         0.0093  
##  Country_name=Haiti                             0.7049  
##  Country_name=Hong Kong                         0.0002  
##  Country_name=Hungary                           0.0631  
##  Country_name=Iceland                           0.0205  
##  Country_name=India                             0.9515  
##  Country_name=Indonesia                         0.6086  
##  Country_name=Iran                              0.6704  
##  Country_name=Iraq                              0.2075  
##  Country_name=Ireland                           0.1518  
##  Country_name=Israel                            0.0711  
##  Country_name=Italy                             0.0733  
##  Country_name=Jamaica                           0.8758  
##  Country_name=Japan                             0.0005  
##  Country_name=Jordan                            0.7785  
##  Country_name=Kazakhstan                        0.1546  
##  Country_name=Kenya                             0.8898  
##  Country_name=Korea, South                      0.0071  
##  Country_name=Kuwait                            0.1549  
##  Country_name=Kyrgyzstan                        0.3389  
##  Country_name=Laos                              0.2905  
##  Country_name=Latvia                            0.1950  
##  Country_name=Lebanon                           0.4554  
##  Country_name=Libya                             0.7151  
##  Country_name=Lithuania                         0.0695  
##  Country_name=Malawi                            0.6627  
##  Country_name=Malaysia                          0.3763  
##  Country_name=Mali                              0.2153  
##  Country_name=Malta                             0.0960  
##  Country_name=Marshall Isands                   0.4740  
##  Country_name=Mauritius                         0.3436  
##  Country_name=Mexico                            0.1197  
##  Country_name=Mongolia                          0.0503  
##  Country_name=Morocco                           0.8643  
##  Country_name=Namibia                           0.4717  
##  Country_name=Nepal                             0.0005  
##  Country_name=Netherlands                       0.0049  
##  Country_name=Netherlands Antilles              0.6912  
##  Country_name=New Zealand                       0.0272  
##  Country_name=Nicaragua                         0.0594  
##  Country_name=Nigeria                           0.7903  
##  Country_name=Norway                            0.0242  
##  Country_name=Oman                              0.2872  
##  Country_name=Pakistan                          0.4666  
##  Country_name=Peru                              0.4816  
##  Country_name=Philippines                       0.1377  
##  Country_name=Poland                            0.0166  
##  Country_name=Portugal                          0.1436  
##  Country_name=Puerto Rico                       0.1505  
##  Country_name=Qatar                             0.3972  
##  Country_name=Romania                           0.1872  
##  Country_name=Russia                            0.0902  
##  Country_name=Saint Vincent and the Grenadines  0.3453  
##  Country_name=Saudi Arabia                      0.7082  
##  Country_name=Serbia                            0.1813  
##  Country_name=Seychelles                        0.7674  
##  Country_name=Sierra Leone                      0.0059  
##  Country_name=Singapore                         0.0052  
##  Country_name=Slovakia                          0.1026  
##  Country_name=Slovenia                          0.0166  
##  Country_name=Somalia                           0.5484  
##  Country_name=South Africa                      0.9950  
##  Country_name=South Sudan                       0.1067  
##  Country_name=Spain                             0.0664  
##  Country_name=Sri Lanka                         0.1089  
##  Country_name=Sudan                             0.8276  
##  Country_name=Sweden                            0.0588  
##  Country_name=Switzerland                       0.0154  
##  Country_name=Syria                             0.8121  
##  Country_name=Taiwan                            0.0007  
##  Country_name=Tajikistan                        0.3081  
##  Country_name=Tanzania                          0.6941  
##  Country_name=Thailand                          0.1848  
##  Country_name=Turkey                            0.3504  
##  Country_name=Uganda                            0.4658  
##  Country_name=Ukraine                           0.2752  
##  Country_name=United Arab Emirates              0.7236  
##  Country_name=United Kingdom                    0.0211  
##  Country_name=United States                     0.0460  
##  Country_name=Uzbekistan                        0.2612  
##  Country_name=Venezuela                         0.5561  
##  Country_name=Vietnam                           0.8203  
##  Country_name=Yemen                             0.8570  
##  Country_name=Zimbabwe                          0.9295  
## 
(sample_ols_2 = ols(IQ_cor ~ Country_name + Test_meas, data = REC))
## Linear Regression Model
##  
##  ols(formula = IQ_cor ~ Country_name + Test_meas, data = REC)
##  
##                 Model Likelihood     Discrimination    
##                    Ratio Test           Indexes        
##  Obs     669    LR chi2    944.08    R2       0.756    
##  sigma8.5154    d.f.          154    R2 adj   0.683    
##  d.f.    514    Pr(> chi2) 0.0000    g       14.489    
##  
##  Residuals
##  
##         Min         1Q     Median         3Q        Max 
##  -3.488e+01 -3.953e+00 -4.427e-14  4.064e+00  2.670e+01 
##  
##  
##                                                 Coef     S.E.    t    
##  Intercept                                       76.7936  9.5271  8.06
##  Country_name=Argentina                          26.0304 10.0854  2.58
##  Country_name=Australia                          26.8296  9.9787  2.69
##  Country_name=Austria                            31.8982 10.2621  3.11
##  Country_name=Bahamas, The                       17.6920 12.8184  1.38
##  Country_name=Bahrain                            23.3611 12.8184  1.82
##  Country_name=Bangladesh                          1.4861 11.0445  0.13
##  Country_name=Barbados                           18.6384 11.6253  1.60
##  Country_name=Belarus                            23.4926 13.0876  1.80
##  Country_name=Belgium                            28.4513 10.6012  2.68
##  Country_name=Benin                              -1.2225 12.8961 -0.09
##  Country_name=Bermuda                            25.6990 10.3854  2.47
##  Country_name=Bolivia                            15.2718 10.7830  1.42
##  Country_name=Bosnia and Herzegovina             22.3529 11.1161  2.01
##  Country_name=Botswana                            7.4909 12.6421  0.59
##  Country_name=Brazil                             17.5012  9.5198  1.84
##  Country_name=Bulgaria                           21.5331 11.2662  1.91
##  Country_name=Burkina Faso                        6.4526 12.7301  0.51
##  Country_name=Cambodia                           11.5020 10.5957  1.09
##  Country_name=Canada                             20.4168  9.4441  2.16
##  Country_name=Chile                              21.6427 10.2068  2.12
##  Country_name=China                              31.8667 10.1068  3.15
##  Country_name=Colombia                           13.1708 10.6448  1.24
##  Country_name=Congo, Democratic Republic of the  -5.6455 10.0876 -0.56
##  Country_name=Congo, Republic of the             -5.6044 12.6421 -0.44
##  Country_name=Costa Rica                         17.9843 11.1133  1.62
##  Country_name=Croatia                            25.3943 10.5599  2.40
##  Country_name=Cuba                               14.2495 10.5585  1.35
##  Country_name=Cyprus                             26.9438 11.1161  2.42
##  Country_name=Czechia                            25.3145 12.7744  1.98
##  Country_name=Denmark                            27.2652 11.1364  2.45
##  Country_name=Djibouti                          -19.4437 12.8961 -1.51
##  Country_name=Dominica                           -2.5328 11.1161 -0.23
##  Country_name=Dominican Republic                 15.4616 12.9287  1.20
##  Country_name=Ecuador                             6.3795 10.2916  0.62
##  Country_name=Egypt                              11.4854  9.7567  1.18
##  Country_name=Eritrea                             2.8314 10.2632  0.28
##  Country_name=Estonia                            30.5787 10.5585  2.90
##  Country_name=Ethiopia                           -0.3395  9.9643 -0.03
##  Country_name=Finland                            26.9679 10.6242  2.54
##  Country_name=France                             29.9534  9.8191  3.05
##  Country_name=Gambia, The                       -19.1939  9.9723 -1.92
##  Country_name=Gaza Strip                         12.1158 10.0804  1.20
##  Country_name=Germany                            30.8357  9.6650  3.19
##  Country_name=Ghana                              -4.3332 10.0900 -0.43
##  Country_name=Greece                             22.6902 10.5766  2.15
##  Country_name=Guatemala                         -18.1133  9.8788 -1.83
##  Country_name=Haiti                               1.5760 11.1133  0.14
##  Country_name=Hong Kong                          41.1224  9.8096  4.19
##  Country_name=Hungary                            26.6000 11.2192  2.37
##  Country_name=Iceland                            31.4226 11.1161  2.83
##  Country_name=India                               5.4966  9.5221  0.58
##  Country_name=Indonesia                           9.7389  9.5657  1.02
##  Country_name=Iran                               10.2313 10.5534  0.97
##  Country_name=Iraq                               18.6737 10.5534  1.77
##  Country_name=Ireland                            22.3305 10.7043  2.09
##  Country_name=Israel                             23.3119  9.9654  2.34
##  Country_name=Italy                              22.9340 10.1014  2.27
##  Country_name=Jamaica                             5.2458  9.5729  0.55
##  Country_name=Japan                              38.4753 10.0076  3.84
##  Country_name=Jordan                              5.1693 10.2992  0.50
##  Country_name=Kazakhstan                         17.9102 10.8614  1.65
##  Country_name=Kenya                               3.4516  9.8414  0.35
##  Country_name=Korea, South                       34.4612 10.2928  3.35
##  Country_name=Kuwait                             20.0073 10.2632  1.95
##  Country_name=Kyrgyzstan                         18.3649 12.6421  1.45
##  Country_name=Laos                               19.5802 10.4322  1.88
##  Country_name=Latvia                             22.5739 12.6421  1.79
##  Country_name=Lebanon                            15.7526 11.2160  1.40
##  Country_name=Libya                               9.0992  9.7613  0.93
##  Country_name=Lithuania                          25.4002 10.5707  2.40
##  Country_name=Malawi                             -0.6585 12.6610 -0.05
##  Country_name=Malaysia                           15.6875 12.6610  1.24
##  Country_name=Mali                               -8.8107 12.6421 -0.70
##  Country_name=Malta                              22.7661 10.5534  2.16
##  Country_name=Marshall Isands                    18.6545 12.7744  1.46
##  Country_name=Mauritius                          24.2606 12.7500  1.90
##  Country_name=Mexico                             21.3179 10.2632  2.08
##  Country_name=Mongolia                           28.9954 12.6610  2.29
##  Country_name=Morocco                             4.9305  9.8828  0.50
##  Country_name=Namibia                            -4.1682 12.6610 -0.33
##  Country_name=Nepal                             -27.5714  9.7901 -2.82
##  Country_name=Netherlands                        32.1927  9.5391  3.37
##  Country_name=Netherlands Antilles               11.4437 12.6421  0.91
##  Country_name=New Zealand                        28.7254 10.1480  2.83
##  Country_name=Nicaragua                         -14.0451 10.6068 -1.32
##  Country_name=Nigeria                             3.1188  9.7709  0.32
##  Country_name=Norway                             30.5433 10.6030  2.88
##  Country_name=Oman                               14.3239  9.9690  1.44
##  Country_name=Pakistan                           12.8377  9.8117  1.31
##  Country_name=Peru                               11.7620  9.7711  1.20
##  Country_name=Philippines                        17.9241 11.3707  1.58
##  Country_name=Poland                             25.4310  9.7894  2.60
##  Country_name=Portugal                           21.8085 10.5596  2.07
##  Country_name=Puerto Rico                        20.2181  9.5148  2.12
##  Country_name=Qatar                              17.0054 12.6421  1.35
##  Country_name=Romania                            16.8521 10.8614  1.55
##  Country_name=Russia                             23.6641 10.5585  2.24
##  Country_name=Saint Vincent and the Grenadines   -6.9417 12.6610 -0.55
##  Country_name=Saudi Arabia                        9.6258  9.8190  0.98
##  Country_name=Serbia                             18.6887  9.6500  1.94
##  Country_name=Seychelles                         15.3020 12.8184  1.19
##  Country_name=Sierra Leone                      -24.8569 11.1376 -2.23
##  Country_name=Singapore                          31.7778 10.0899  3.15
##  Country_name=Slovakia                           24.9557 12.6610  1.97
##  Country_name=Slovenia                           27.3505  9.8816  2.77
##  Country_name=Somalia                            -3.9066 12.8961 -0.30
##  Country_name=South Africa                        6.1579  9.5875  0.64
##  Country_name=South Sudan                        -9.3079 10.0854 -0.92
##  Country_name=Spain                              21.8258  9.6761  2.26
##  Country_name=Sri Lanka                          20.5448 10.5980  1.94
##  Country_name=Sudan                               8.4045  9.5483  0.88
##  Country_name=Sweden                             30.9982 11.1805  2.77
##  Country_name=Switzerland                        29.1933 10.1064  2.89
##  Country_name=Syria                               4.2837  9.9698  0.43
##  Country_name=Taiwan                             37.1731  9.8840  3.76
##  Country_name=Tajikistan                         16.1332 12.8961  1.25
##  Country_name=Tanzania                            0.1549 10.0995  0.02
##  Country_name=Thailand                           17.3562  9.5648  1.81
##  Country_name=Turkey                             18.0862 12.6421  1.43
##  Country_name=Uganda                             -2.6305 10.5811 -0.25
##  Country_name=Ukraine                            20.0359 12.6421  1.58
##  Country_name=United Arab Emirates                9.1127 12.6610  0.72
##  Country_name=United Kingdom                     26.6539  9.9683  2.67
##  Country_name=United States                      25.7713  9.3962  2.74
##  Country_name=Uzbekistan                         17.4249 12.8961  1.35
##  Country_name=Venezuela                          17.5887 10.7689  1.63
##  Country_name=Vietnam                             7.0317 10.5811  0.66
##  Country_name=Yemen                               2.1971 11.1892  0.20
##  Country_name=Zimbabwe                            5.4355 12.6421  0.43
##  Test_meas=APM-                                  -3.3124  9.2177 -0.36
##  Test_meas=CFT                                  -11.4881  2.8677 -4.01
##  Test_meas=CPM                                   -6.4310  2.1512 -2.99
##  Test_meas=CRT-C2                                -1.2165  9.4121 -0.13
##  Test_meas=KABC                                  -8.5244  3.8293 -2.23
##  Test_meas=MMSE                                   3.7803  8.6686  0.44
##  Test_meas=NNAT                                  -1.3666 10.8997 -0.13
##  Test_meas=OLSAT                                 -7.1956 12.4579 -0.58
##  Test_meas=SBIS                                 -10.2448  3.1495 -3.25
##  Test_meas=SON-R                                 -0.2881  8.9276 -0.03
##  Test_meas=SPM                                   -8.2229  2.0903 -3.93
##  Test_meas=SPM+                                  -5.2121  3.1817 -1.64
##  Test_meas=WAIS                                  -3.1052  3.6847 -0.84
##  Test_meas=WAIS-III                              -1.6936  4.2724 -0.40
##  Test_meas=WAIS-IV                               -3.1890  4.6313 -0.69
##  Test_meas=WAIS-R                               -10.5062  4.1976 -2.50
##  Test_meas=WASI                                   1.3138  7.5420  0.17
##  Test_meas=WASI-II                               -1.4149  8.8951 -0.16
##  Test_meas=WISC                                 -14.2342  2.8473 -5.00
##  Test_meas=WISC-III                             -13.3356  3.1898 -4.18
##  Test_meas=WISC-IV                               -7.2957  3.7677 -1.94
##  Test_meas=WISC-R                                -9.4462  2.7172 -3.48
##  Test_meas=WPPSI                                 -8.8893  5.7494 -1.55
##  Test_meas=WPPSI-III                             -4.2381  5.2833 -0.80
##  Test_meas=WPPSI-R                              -14.0094  4.7495 -2.95
##                                                 Pr(>|t|)
##  Intercept                                      <0.0001 
##  Country_name=Argentina                         0.0101  
##  Country_name=Australia                         0.0074  
##  Country_name=Austria                           0.0020  
##  Country_name=Bahamas, The                      0.1681  
##  Country_name=Bahrain                           0.0690  
##  Country_name=Bangladesh                        0.8930  
##  Country_name=Barbados                          0.1095  
##  Country_name=Belarus                           0.0732  
##  Country_name=Belgium                           0.0075  
##  Country_name=Benin                             0.9245  
##  Country_name=Bermuda                           0.0137  
##  Country_name=Bolivia                           0.1573  
##  Country_name=Bosnia and Herzegovina            0.0449  
##  Country_name=Botswana                          0.5538  
##  Country_name=Brazil                            0.0666  
##  Country_name=Bulgaria                          0.0565  
##  Country_name=Burkina Faso                      0.6125  
##  Country_name=Cambodia                          0.2782  
##  Country_name=Canada                            0.0311  
##  Country_name=Chile                             0.0344  
##  Country_name=China                             0.0017  
##  Country_name=Colombia                          0.2165  
##  Country_name=Congo, Democratic Republic of the 0.5760  
##  Country_name=Congo, Republic of the            0.6577  
##  Country_name=Costa Rica                        0.1062  
##  Country_name=Croatia                           0.0165  
##  Country_name=Cuba                              0.1777  
##  Country_name=Cyprus                            0.0157  
##  Country_name=Czechia                           0.0480  
##  Country_name=Denmark                           0.0147  
##  Country_name=Djibouti                          0.1322  
##  Country_name=Dominica                          0.8199  
##  Country_name=Dominican Republic                0.2323  
##  Country_name=Ecuador                           0.5356  
##  Country_name=Egypt                             0.2397  
##  Country_name=Eritrea                           0.7828  
##  Country_name=Estonia                           0.0039  
##  Country_name=Ethiopia                          0.9728  
##  Country_name=Finland                           0.0114  
##  Country_name=France                            0.0024  
##  Country_name=Gambia, The                       0.0548  
##  Country_name=Gaza Strip                        0.2299  
##  Country_name=Germany                           0.0015  
##  Country_name=Ghana                             0.6678  
##  Country_name=Greece                            0.0324  
##  Country_name=Guatemala                         0.0673  
##  Country_name=Haiti                             0.8873  
##  Country_name=Hong Kong                         <0.0001 
##  Country_name=Hungary                           0.0181  
##  Country_name=Iceland                           0.0049  
##  Country_name=India                             0.5640  
##  Country_name=Indonesia                         0.3091  
##  Country_name=Iran                              0.3328  
##  Country_name=Iraq                              0.0774  
##  Country_name=Ireland                           0.0375  
##  Country_name=Israel                            0.0197  
##  Country_name=Italy                             0.0236  
##  Country_name=Jamaica                           0.5839  
##  Country_name=Japan                             0.0001  
##  Country_name=Jordan                            0.6159  
##  Country_name=Kazakhstan                        0.0998  
##  Country_name=Kenya                             0.7259  
##  Country_name=Korea, South                      0.0009  
##  Country_name=Kuwait                            0.0518  
##  Country_name=Kyrgyzstan                        0.1469  
##  Country_name=Laos                              0.0611  
##  Country_name=Latvia                            0.0748  
##  Country_name=Lebanon                           0.1608  
##  Country_name=Libya                             0.3517  
##  Country_name=Lithuania                         0.0166  
##  Country_name=Malawi                            0.9585  
##  Country_name=Malaysia                          0.2159  
##  Country_name=Mali                              0.4862  
##  Country_name=Malta                             0.0314  
##  Country_name=Marshall Isands                   0.1448  
##  Country_name=Mauritius                         0.0576  
##  Country_name=Mexico                            0.0383  
##  Country_name=Mongolia                          0.0224  
##  Country_name=Morocco                           0.6181  
##  Country_name=Namibia                           0.7421  
##  Country_name=Nepal                             0.0050  
##  Country_name=Netherlands                       0.0008  
##  Country_name=Netherlands Antilles              0.3658  
##  Country_name=New Zealand                       0.0048  
##  Country_name=Nicaragua                         0.1860  
##  Country_name=Nigeria                           0.7497  
##  Country_name=Norway                            0.0041  
##  Country_name=Oman                              0.1514  
##  Country_name=Pakistan                          0.1913  
##  Country_name=Peru                              0.2292  
##  Country_name=Philippines                       0.1156  
##  Country_name=Poland                            0.0097  
##  Country_name=Portugal                          0.0394  
##  Country_name=Puerto Rico                       0.0341  
##  Country_name=Qatar                             0.1792  
##  Country_name=Romania                           0.1214  
##  Country_name=Russia                            0.0254  
##  Country_name=Saint Vincent and the Grenadines  0.5837  
##  Country_name=Saudi Arabia                      0.3274  
##  Country_name=Serbia                            0.0533  
##  Country_name=Seychelles                        0.2331  
##  Country_name=Sierra Leone                      0.0261  
##  Country_name=Singapore                         0.0017  
##  Country_name=Slovakia                          0.0493  
##  Country_name=Slovenia                          0.0058  
##  Country_name=Somalia                           0.7621  
##  Country_name=South Africa                      0.5210  
##  Country_name=South Sudan                       0.3565  
##  Country_name=Spain                             0.0245  
##  Country_name=Sri Lanka                         0.0531  
##  Country_name=Sudan                             0.3792  
##  Country_name=Sweden                            0.0058  
##  Country_name=Switzerland                       0.0040  
##  Country_name=Syria                             0.6676  
##  Country_name=Taiwan                            0.0002  
##  Country_name=Tajikistan                        0.2115  
##  Country_name=Tanzania                          0.9878  
##  Country_name=Thailand                          0.0702  
##  Country_name=Turkey                            0.1531  
##  Country_name=Uganda                            0.8038  
##  Country_name=Ukraine                           0.1136  
##  Country_name=United Arab Emirates              0.4720  
##  Country_name=United Kingdom                    0.0077  
##  Country_name=United States                     0.0063  
##  Country_name=Uzbekistan                        0.1772  
##  Country_name=Venezuela                         0.1030  
##  Country_name=Vietnam                           0.5066  
##  Country_name=Yemen                             0.8444  
##  Country_name=Zimbabwe                          0.6674  
##  Test_meas=APM-                                 0.7195  
##  Test_meas=CFT                                  <0.0001 
##  Test_meas=CPM                                  0.0029  
##  Test_meas=CRT-C2                               0.8972  
##  Test_meas=KABC                                 0.0264  
##  Test_meas=MMSE                                 0.6630  
##  Test_meas=NNAT                                 0.9003  
##  Test_meas=OLSAT                                0.5638  
##  Test_meas=SBIS                                 0.0012  
##  Test_meas=SON-R                                0.9743  
##  Test_meas=SPM                                  <0.0001 
##  Test_meas=SPM+                                 0.1020  
##  Test_meas=WAIS                                 0.3998  
##  Test_meas=WAIS-III                             0.6920  
##  Test_meas=WAIS-IV                              0.4914  
##  Test_meas=WAIS-R                               0.0126  
##  Test_meas=WASI                                 0.8618  
##  Test_meas=WASI-II                              0.8737  
##  Test_meas=WISC                                 <0.0001 
##  Test_meas=WISC-III                             <0.0001 
##  Test_meas=WISC-IV                              0.0534  
##  Test_meas=WISC-R                               0.0006  
##  Test_meas=WPPSI                                0.1227  
##  Test_meas=WPPSI-III                            0.4228  
##  Test_meas=WPPSI-R                              0.0033  
## 
(sample_ols_3 = ols(IQ_cor ~ Country_name + Test_meas + rcs(Year_meas), data = REC))
## Linear Regression Model
##  
##  ols(formula = IQ_cor ~ Country_name + Test_meas + rcs(Year_meas), 
##      data = REC)
##  
##                 Model Likelihood     Discrimination    
##                    Ratio Test           Indexes        
##  Obs     669    LR chi2    949.40    R2       0.758    
##  sigma8.5148    d.f.          158    R2 adj   0.683    
##  d.f.    510    Pr(> chi2) 0.0000    g       14.518    
##  
##  Residuals
##  
##         Min         1Q     Median         3Q        Max 
##  -3.624e+01 -4.083e+00 -1.521e-15  4.097e+00  2.716e+01 
##  
##  
##                                                 Coef      S.E.     t    
##  Intercept                                      -253.9245 207.9515 -1.22
##  Country_name=Argentina                           28.4796  10.2384  2.78
##  Country_name=Australia                           27.1242  10.0052  2.71
##  Country_name=Austria                             33.0137  10.3209  3.20
##  Country_name=Bahamas, The                        18.9911  12.9149  1.47
##  Country_name=Bahrain                             23.3680  12.8423  1.82
##  Country_name=Bangladesh                           3.0226  11.1306  0.27
##  Country_name=Barbados                            18.4407  11.6649  1.58
##  Country_name=Belarus                             24.6394  13.2220  1.86
##  Country_name=Belgium                             29.8457  10.6863  2.79
##  Country_name=Benin                               -0.9759  12.9264 -0.08
##  Country_name=Bermuda                             24.8253  10.4663  2.37
##  Country_name=Bolivia                             16.1552  10.8633  1.49
##  Country_name=Bosnia and Herzegovina              24.1696  11.2064  2.16
##  Country_name=Botswana                             8.7331  12.7467  0.69
##  Country_name=Brazil                              18.9989   9.5980  1.98
##  Country_name=Bulgaria                            22.2009  11.3193  1.96
##  Country_name=Burkina Faso                         7.7831  12.7798  0.61
##  Country_name=Cambodia                            12.3567  10.6700  1.16
##  Country_name=Canada                              21.2391   9.5325  2.23
##  Country_name=Chile                               23.3677  10.2803  2.27
##  Country_name=China                               32.0521  10.1631  3.15
##  Country_name=Colombia                            13.7917  10.6950  1.29
##  Country_name=Congo, Democratic Republic of the   -4.3284  10.1768 -0.43
##  Country_name=Congo, Republic of the              -4.5772  12.7391 -0.36
##  Country_name=Costa Rica                          19.4924  11.1813  1.74
##  Country_name=Croatia                             26.4891  10.5895  2.50
##  Country_name=Cuba                                15.5030  10.6405  1.46
##  Country_name=Cyprus                              28.7085  11.2033  2.56
##  Country_name=Czechia                             26.3692  12.8205  2.06
##  Country_name=Denmark                             28.7317  11.2123  2.56
##  Country_name=Djibouti                           -19.1970  12.9264 -1.49
##  Country_name=Dominica                            -0.6673  11.2093 -0.06
##  Country_name=Dominican Republic                  15.2984  12.9870  1.18
##  Country_name=Ecuador                              7.8609  10.3597  0.76
##  Country_name=Egypt                               12.1723   9.8184  1.24
##  Country_name=Eritrea                              3.9014  10.3791  0.38
##  Country_name=Estonia                             32.6269  10.6871  3.05
##  Country_name=Ethiopia                             1.0750  10.0448  0.11
##  Country_name=Finland                             28.0284  10.6862  2.62
##  Country_name=France                              31.1872   9.9139  3.15
##  Country_name=Gambia, The                        -17.5975  10.0419 -1.75
##  Country_name=Gaza Strip                          12.8831  10.0984  1.28
##  Country_name=Germany                             31.8745   9.7425  3.27
##  Country_name=Ghana                               -3.6977  10.1284 -0.37
##  Country_name=Greece                              24.3045  10.6522  2.28
##  Country_name=Guatemala                          -16.4854   9.9737 -1.65
##  Country_name=Haiti                                1.8271  11.1855  0.16
##  Country_name=Hong Kong                           41.5498   9.8838  4.20
##  Country_name=Hungary                             28.0031  11.3297  2.47
##  Country_name=Iceland                             33.4293  11.2460  2.97
##  Country_name=India                                6.6840   9.6121  0.70
##  Country_name=Indonesia                           10.8415   9.6429  1.12
##  Country_name=Iran                                11.1603  10.6087  1.05
##  Country_name=Iraq                                19.7362  10.6050  1.86
##  Country_name=Ireland                             22.2134  10.7861  2.06
##  Country_name=Israel                              23.7792  10.0457  2.37
##  Country_name=Italy                               23.8572  10.1563  2.35
##  Country_name=Jamaica                              6.0737   9.6433  0.63
##  Country_name=Japan                               38.9698  10.0510  3.88
##  Country_name=Jordan                               6.1886  10.3207  0.60
##  Country_name=Kazakhstan                          18.7676  10.8934  1.72
##  Country_name=Kenya                                4.6427   9.9137  0.47
##  Country_name=Korea, South                        35.0068  10.3712  3.38
##  Country_name=Kuwait                              21.4614  10.3579  2.07
##  Country_name=Kyrgyzstan                          18.8565  12.6888  1.49
##  Country_name=Laos                                20.9896  10.5430  1.99
##  Country_name=Latvia                              23.6060  12.6603  1.86
##  Country_name=Lebanon                             17.4700  11.2961  1.55
##  Country_name=Libya                               10.3895   9.8038  1.06
##  Country_name=Lithuania                           27.1141  10.6675  2.54
##  Country_name=Malawi                               0.6981  12.7091  0.05
##  Country_name=Malaysia                            17.0441  12.7091  1.34
##  Country_name=Mali                                -8.4550  12.7120 -0.67
##  Country_name=Malta                               23.5971  10.5853  2.23
##  Country_name=Marshall Isands                     21.6976  12.9029  1.68
##  Country_name=Mauritius                           23.9947  12.8073  1.87
##  Country_name=Mexico                              23.0491  10.3577  2.23
##  Country_name=Mongolia                            30.9483  12.7497  2.43
##  Country_name=Morocco                              6.2150   9.9266  0.63
##  Country_name=Namibia                             -2.2153  12.7497 -0.17
##  Country_name=Nepal                              -26.7145   9.8498 -2.71
##  Country_name=Netherlands                         33.0574   9.6100  3.44
##  Country_name=Netherlands Antilles                13.4505  12.7563  1.05
##  Country_name=New Zealand                         29.4539  10.2112  2.88
##  Country_name=Nicaragua                          -12.8549  10.6941 -1.20
##  Country_name=Nigeria                              3.8065   9.8046  0.39
##  Country_name=Norway                              32.1490  10.6728  3.01
##  Country_name=Oman                                15.8038  10.0286  1.58
##  Country_name=Pakistan                            14.3128   9.8814  1.45
##  Country_name=Peru                                13.4203   9.8680  1.36
##  Country_name=Philippines                         19.1657  11.4479  1.67
##  Country_name=Poland                              26.5647   9.8424  2.70
##  Country_name=Portugal                            23.0704  10.6321  2.17
##  Country_name=Puerto Rico                         21.0199   9.5816  2.19
##  Country_name=Qatar                               18.5440  12.7016  1.46
##  Country_name=Romania                             18.8462  11.0443  1.71
##  Country_name=Russia                              24.4453  10.6235  2.30
##  Country_name=Saint Vincent and the Grenadines    -4.9542  12.7552 -0.39
##  Country_name=Saudi Arabia                        10.6007   9.8525  1.08
##  Country_name=Serbia                              20.0461   9.7108  2.06
##  Country_name=Seychelles                          14.8047  12.8954  1.15
##  Country_name=Sierra Leone                       -22.8722  11.2873 -2.03
##  Country_name=Singapore                           32.6614  10.1707  3.21
##  Country_name=Slovakia                            24.6385  12.7258  1.94
##  Country_name=Slovenia                            28.5025   9.9854  2.85
##  Country_name=Somalia                             -3.3201  12.9087 -0.26
##  Country_name=South Africa                         7.5522   9.6703  0.78
##  Country_name=South Sudan                         -8.5101  10.1092 -0.84
##  Country_name=Spain                               22.8658   9.7152  2.35
##  Country_name=Sri Lanka                           21.9469  10.6720  2.06
##  Country_name=Sudan                                9.8021   9.6024  1.02
##  Country_name=Sweden                              32.2222  11.2436  2.87
##  Country_name=Switzerland                         29.9829  10.1528  2.95
##  Country_name=Syria                                5.8612  10.0330  0.58
##  Country_name=Taiwan                              37.9058   9.9662  3.80
##  Country_name=Tajikistan                          16.5838  12.9110  1.28
##  Country_name=Tanzania                             1.3926  10.1751  0.14
##  Country_name=Thailand                            18.7997   9.6444  1.95
##  Country_name=Turkey                              18.7868  12.7277  1.48
##  Country_name=Uganda                              -1.5682  10.6114 -0.15
##  Country_name=Ukraine                             21.5745  12.7016  1.70
##  Country_name=United Arab Emirates                10.6839  12.7689  0.84
##  Country_name=United Kingdom                      27.2691  10.0172  2.72
##  Country_name=United States                       26.4096   9.4639  2.79
##  Country_name=Uzbekistan                          18.2823  12.9229  1.41
##  Country_name=Venezuela                           18.8350  10.8309  1.74
##  Country_name=Vietnam                              8.7104  10.6578  0.82
##  Country_name=Yemen                                3.2970  11.2259  0.29
##  Country_name=Zimbabwe                             8.1501  12.8182  0.64
##  Test_meas=APM-                                   -3.1102   9.2328 -0.34
##  Test_meas=CFT                                   -12.1260   3.0904 -3.92
##  Test_meas=CPM                                    -6.5124   2.1726 -3.00
##  Test_meas=CRT-C2                                  0.2206   9.4986  0.02
##  Test_meas=KABC                                   -8.8839   3.8462 -2.31
##  Test_meas=MMSE                                    3.4477   8.7085  0.40
##  Test_meas=NNAT                                   -0.9858  10.9390 -0.09
##  Test_meas=OLSAT                                  -8.7156  12.5119 -0.70
##  Test_meas=SBIS                                   -9.3396   3.2691 -2.86
##  Test_meas=SON-R                                   0.0226   8.9382  0.00
##  Test_meas=SPM                                    -8.3652   2.1342 -3.92
##  Test_meas=SPM+                                   -5.3133   3.2198 -1.65
##  Test_meas=WAIS                                   -3.2990   3.7884 -0.87
##  Test_meas=WAIS-III                               -0.9374   4.2959 -0.22
##  Test_meas=WAIS-IV                                -3.3180   4.7169 -0.70
##  Test_meas=WAIS-R                                -10.7282   4.2174 -2.54
##  Test_meas=WASI                                    2.0102   7.5936  0.26
##  Test_meas=WASI-II                                -1.2970   8.9395 -0.15
##  Test_meas=WISC                                  -14.2240   2.9908 -4.76
##  Test_meas=WISC-III                              -12.8573   3.2192 -3.99
##  Test_meas=WISC-IV                                -6.8339   3.8592 -1.77
##  Test_meas=WISC-R                                 -9.4403   2.7524 -3.43
##  Test_meas=WPPSI                                  -7.2129   5.9793 -1.21
##  Test_meas=WPPSI-III                              -3.8359   5.2951 -0.72
##  Test_meas=WPPSI-R                               -14.1768   4.7668 -2.97
##  Year_meas                                         0.1673   0.1050  1.59
##  Year_meas'                                       -0.6243   0.3692 -1.69
##  Year_meas''                                       2.9880   2.4173  1.24
##  Year_meas'''                                     -4.4203   7.9245 -0.56
##                                                 Pr(>|t|)
##  Intercept                                      0.2226  
##  Country_name=Argentina                         0.0056  
##  Country_name=Australia                         0.0069  
##  Country_name=Austria                           0.0015  
##  Country_name=Bahamas, The                      0.1420  
##  Country_name=Bahrain                           0.0694  
##  Country_name=Bangladesh                        0.7861  
##  Country_name=Barbados                          0.1145  
##  Country_name=Belarus                           0.0630  
##  Country_name=Belgium                           0.0054  
##  Country_name=Benin                             0.9399  
##  Country_name=Bermuda                           0.0181  
##  Country_name=Bolivia                           0.1376  
##  Country_name=Bosnia and Herzegovina            0.0315  
##  Country_name=Botswana                          0.4936  
##  Country_name=Brazil                            0.0483  
##  Country_name=Bulgaria                          0.0504  
##  Country_name=Burkina Faso                      0.5428  
##  Country_name=Cambodia                          0.2474  
##  Country_name=Canada                            0.0263  
##  Country_name=Chile                             0.0234  
##  Country_name=China                             0.0017  
##  Country_name=Colombia                          0.1978  
##  Country_name=Congo, Democratic Republic of the 0.6708  
##  Country_name=Congo, Republic of the            0.7195  
##  Country_name=Costa Rica                        0.0819  
##  Country_name=Croatia                           0.0127  
##  Country_name=Cuba                              0.1457  
##  Country_name=Cyprus                            0.0107  
##  Country_name=Czechia                           0.0402  
##  Country_name=Denmark                           0.0107  
##  Country_name=Djibouti                          0.1381  
##  Country_name=Dominica                          0.9526  
##  Country_name=Dominican Republic                0.2394  
##  Country_name=Ecuador                           0.4483  
##  Country_name=Egypt                             0.2156  
##  Country_name=Eritrea                           0.7072  
##  Country_name=Estonia                           0.0024  
##  Country_name=Ethiopia                          0.9148  
##  Country_name=Finland                           0.0090  
##  Country_name=France                            0.0018  
##  Country_name=Gambia, The                       0.0803  
##  Country_name=Gaza Strip                        0.2026  
##  Country_name=Germany                           0.0011  
##  Country_name=Ghana                             0.7152  
##  Country_name=Greece                            0.0229  
##  Country_name=Guatemala                         0.0990  
##  Country_name=Haiti                             0.8703  
##  Country_name=Hong Kong                         <0.0001 
##  Country_name=Hungary                           0.0138  
##  Country_name=Iceland                           0.0031  
##  Country_name=India                             0.4871  
##  Country_name=Indonesia                         0.2614  
##  Country_name=Iran                              0.2933  
##  Country_name=Iraq                              0.0633  
##  Country_name=Ireland                           0.0400  
##  Country_name=Israel                            0.0183  
##  Country_name=Italy                             0.0192  
##  Country_name=Jamaica                           0.5291  
##  Country_name=Japan                             0.0001  
##  Country_name=Jordan                            0.5490  
##  Country_name=Kazakhstan                        0.0855  
##  Country_name=Kenya                             0.6398  
##  Country_name=Korea, South                      0.0008  
##  Country_name=Kuwait                            0.0388  
##  Country_name=Kyrgyzstan                        0.1379  
##  Country_name=Laos                              0.0470  
##  Country_name=Latvia                            0.0628  
##  Country_name=Lebanon                           0.1226  
##  Country_name=Libya                             0.2898  
##  Country_name=Lithuania                         0.0113  
##  Country_name=Malawi                            0.9562  
##  Country_name=Malaysia                          0.1805  
##  Country_name=Mali                              0.5063  
##  Country_name=Malta                             0.0262  
##  Country_name=Marshall Isands                   0.0933  
##  Country_name=Mauritius                         0.0616  
##  Country_name=Mexico                            0.0265  
##  Country_name=Mongolia                          0.0156  
##  Country_name=Morocco                           0.5315  
##  Country_name=Namibia                           0.8621  
##  Country_name=Nepal                             0.0069  
##  Country_name=Netherlands                       0.0006  
##  Country_name=Netherlands Antilles              0.2922  
##  Country_name=New Zealand                       0.0041  
##  Country_name=Nicaragua                         0.2299  
##  Country_name=Nigeria                           0.6980  
##  Country_name=Norway                            0.0027  
##  Country_name=Oman                              0.1157  
##  Country_name=Pakistan                          0.1481  
##  Country_name=Peru                              0.1744  
##  Country_name=Philippines                       0.0947  
##  Country_name=Poland                            0.0072  
##  Country_name=Portugal                          0.0305  
##  Country_name=Puerto Rico                       0.0287  
##  Country_name=Qatar                             0.1449  
##  Country_name=Romania                           0.0885  
##  Country_name=Russia                            0.0218  
##  Country_name=Saint Vincent and the Grenadines  0.6979  
##  Country_name=Saudi Arabia                      0.2825  
##  Country_name=Serbia                            0.0395  
##  Country_name=Seychelles                        0.2515  
##  Country_name=Sierra Leone                      0.0432  
##  Country_name=Singapore                         0.0014  
##  Country_name=Slovakia                          0.0534  
##  Country_name=Slovenia                          0.0045  
##  Country_name=Somalia                           0.7971  
##  Country_name=South Africa                      0.4352  
##  Country_name=South Sudan                       0.4003  
##  Country_name=Spain                             0.0190  
##  Country_name=Sri Lanka                         0.0402  
##  Country_name=Sudan                             0.3078  
##  Country_name=Sweden                            0.0043  
##  Country_name=Switzerland                       0.0033  
##  Country_name=Syria                             0.5593  
##  Country_name=Taiwan                            0.0002  
##  Country_name=Tajikistan                        0.1996  
##  Country_name=Tanzania                          0.8912  
##  Country_name=Thailand                          0.0518  
##  Country_name=Turkey                            0.1405  
##  Country_name=Uganda                            0.8826  
##  Country_name=Ukraine                           0.0900  
##  Country_name=United Arab Emirates              0.4031  
##  Country_name=United Kingdom                    0.0067  
##  Country_name=United States                     0.0055  
##  Country_name=Uzbekistan                        0.1578  
##  Country_name=Venezuela                         0.0826  
##  Country_name=Vietnam                           0.4141  
##  Country_name=Yemen                             0.7691  
##  Country_name=Zimbabwe                          0.5252  
##  Test_meas=APM-                                 0.7364  
##  Test_meas=CFT                                  <0.0001 
##  Test_meas=CPM                                  0.0029  
##  Test_meas=CRT-C2                               0.9815  
##  Test_meas=KABC                                 0.0213  
##  Test_meas=MMSE                                 0.6923  
##  Test_meas=NNAT                                 0.9282  
##  Test_meas=OLSAT                                0.4864  
##  Test_meas=SBIS                                 0.0045  
##  Test_meas=SON-R                                0.9980  
##  Test_meas=SPM                                  0.0001  
##  Test_meas=SPM+                                 0.0995  
##  Test_meas=WAIS                                 0.3843  
##  Test_meas=WAIS-III                             0.8274  
##  Test_meas=WAIS-IV                              0.4821  
##  Test_meas=WAIS-R                               0.0113  
##  Test_meas=WASI                                 0.7913  
##  Test_meas=WASI-II                              0.8847  
##  Test_meas=WISC                                 <0.0001 
##  Test_meas=WISC-III                             <0.0001 
##  Test_meas=WISC-IV                              0.0772  
##  Test_meas=WISC-R                               0.0007  
##  Test_meas=WPPSI                                0.2283  
##  Test_meas=WPPSI-III                            0.4691  
##  Test_meas=WPPSI-R                              0.0031  
##  Year_meas                                      0.1118  
##  Year_meas'                                     0.0915  
##  Year_meas''                                    0.2170  
##  Year_meas'''                                   0.5772  
## 
(sample_ols_4 = ols(IQ_cor ~ Country_name + Test_meas + rcs(Year_meas) + SES, data = REC))
## Linear Regression Model
##  
##  ols(formula = IQ_cor ~ Country_name + Test_meas + rcs(Year_meas) + 
##      SES, data = REC)
##  
##                 Model Likelihood     Discrimination    
##                    Ratio Test           Indexes        
##  Obs     669    LR chi2    988.35    R2       0.772    
##  sigma8.2868    d.f.          160    R2 adj   0.700    
##  d.f.    508    Pr(> chi2) 0.0000    g       14.682    
##  
##  Residuals
##  
##         Min         1Q     Median         3Q        Max 
##  -2.908e+01 -3.942e+00  8.330e-15  3.914e+00  2.733e+01 
##  
##  
##                                                 Coef      S.E.     t    
##  Intercept                                      -274.3886 203.2454 -1.35
##  Country_name=Argentina                           27.1012   9.9676  2.72
##  Country_name=Australia                           25.9787   9.7395  2.67
##  Country_name=Austria                             31.7423  10.0471  3.16
##  Country_name=Bahamas, The                        17.1910  12.5733  1.37
##  Country_name=Bahrain                             22.2643  12.5000  1.78
##  Country_name=Bangladesh                           1.7484  10.8351  0.16
##  Country_name=Barbados                            17.4515  11.3545  1.54
##  Country_name=Belarus                             24.1961  12.8682  1.88
##  Country_name=Belgium                             27.7086  10.4080  2.66
##  Country_name=Benin                               -2.9594  12.5855 -0.24
##  Country_name=Bermuda                             22.1200  10.2011  2.17
##  Country_name=Bolivia                             14.8169  10.5781  1.40
##  Country_name=Bosnia and Herzegovina              23.0050  10.9084  2.11
##  Country_name=Botswana                             6.8915  12.4099  0.56
##  Country_name=Brazil                              17.6224   9.3443  1.89
##  Country_name=Bulgaria                            20.6995  11.0197  1.88
##  Country_name=Burkina Faso                         6.2219  12.4421  0.50
##  Country_name=Cambodia                            10.3794  10.3906  1.00
##  Country_name=Canada                              22.0670   9.2785  2.38
##  Country_name=Chile                               21.2126  10.0127  2.12
##  Country_name=China                               30.7778   9.8936  3.11
##  Country_name=Colombia                            14.8140  10.4105  1.42
##  Country_name=Congo, Democratic Republic of the   -7.8678   9.9259 -0.79
##  Country_name=Congo, Republic of the              -6.3597  12.4021 -0.51
##  Country_name=Costa Rica                          18.4277  10.8836  1.69
##  Country_name=Croatia                             25.3234  10.3081  2.46
##  Country_name=Cuba                                14.3899  10.3576  1.39
##  Country_name=Cyprus                              27.5956  10.9051  2.53
##  Country_name=Czechia                             24.9601  12.4798  2.00
##  Country_name=Denmark                             27.6909  10.9138  2.54
##  Country_name=Djibouti                           -21.1806  12.5855 -1.68
##  Country_name=Dominica                            -1.8891  10.9113 -0.17
##  Country_name=Dominican Republic                  14.6450  12.6571  1.16
##  Country_name=Ecuador                              6.2616  10.0865  0.62
##  Country_name=Egypt                               12.4081   9.5567  1.30
##  Country_name=Eritrea                              2.0920  10.1065  0.21
##  Country_name=Estonia                             30.8986  10.4056  2.97
##  Country_name=Ethiopia                            -0.4626   9.7797 -0.05
##  Country_name=Finland                             27.5387  10.4022  2.65
##  Country_name=France                              29.6877   9.6522  3.08
##  Country_name=Gambia, The                        -18.9875   9.7762 -1.94
##  Country_name=Gaza Strip                          11.7011   9.8304  1.19
##  Country_name=Germany                             30.0356   9.4885  3.17
##  Country_name=Ghana                               -5.0552   9.8603 -0.51
##  Country_name=Greece                              22.7205  10.3710  2.19
##  Country_name=Guatemala                          -17.8526   9.7098 -1.84
##  Country_name=Haiti                                0.8866  10.8873  0.08
##  Country_name=Hong Kong                           40.3711   9.6215  4.20
##  Country_name=Hungary                             26.0206  11.0322  2.36
##  Country_name=Iceland                             31.6092  10.9498  2.89
##  Country_name=India                                5.1888   9.3587  0.55
##  Country_name=Indonesia                           11.9847   9.3905  1.28
##  Country_name=Iran                                10.2684  10.3259  0.99
##  Country_name=Iraq                                18.8573  10.3223  1.83
##  Country_name=Ireland                             20.5239  10.5018  1.95
##  Country_name=Israel                              22.6022   9.7989  2.31
##  Country_name=Italy                               22.4634   9.8876  2.27
##  Country_name=Jamaica                              5.2078   9.3865  0.55
##  Country_name=Japan                               37.1832   9.7874  3.80
##  Country_name=Jordan                               5.2669  10.0457  0.52
##  Country_name=Kazakhstan                          17.0523  10.6064  1.61
##  Country_name=Kenya                                3.0633   9.6525  0.32
##  Country_name=Korea, South                        33.9249  10.0976  3.36
##  Country_name=Kuwait                              19.9324  10.0843  1.98
##  Country_name=Kyrgyzstan                          17.6128  12.3510  1.43
##  Country_name=Laos                                17.9326  10.2759  1.75
##  Country_name=Latvia                              22.5879  12.3227  1.83
##  Country_name=Lebanon                             15.6545  10.9999  1.42
##  Country_name=Libya                                9.2624   9.5435  0.97
##  Country_name=Lithuania                           25.4604  10.3862  2.45
##  Country_name=Malawi                              -0.4268  12.3704 -0.03
##  Country_name=Malaysia                            15.9192  12.3704  1.29
##  Country_name=Mali                                -9.7595  12.3738 -0.79
##  Country_name=Malta                               22.1993  10.3049  2.15
##  Country_name=Marshall Isands                     20.4658  12.5595  1.63
##  Country_name=Mauritius                           21.7460  12.4721  1.74
##  Country_name=Mexico                              21.3824  10.0848  2.12
##  Country_name=Mongolia                            29.3010  12.4118  2.36
##  Country_name=Morocco                              5.0586   9.6630  0.52
##  Country_name=Namibia                             -3.8626  12.4118 -0.31
##  Country_name=Nepal                              -27.8990   9.5884 -2.91
##  Country_name=Netherlands                         31.6793   9.3565  3.39
##  Country_name=Netherlands Antilles                11.6304  12.4191  0.94
##  Country_name=New Zealand                         27.9335   9.9420  2.81
##  Country_name=Nicaragua                          -14.4282  10.4120 -1.39
##  Country_name=Nigeria                              2.4405   9.5453  0.26
##  Country_name=Norway                              29.9402  10.3949  2.88
##  Country_name=Oman                                14.4756   9.7630  1.48
##  Country_name=Pakistan                            12.8899   9.6202  1.34
##  Country_name=Peru                                15.4657   9.6165  1.61
##  Country_name=Philippines                         18.1448  11.1430  1.63
##  Country_name=Poland                              25.0832   9.5826  2.62
##  Country_name=Portugal                            21.5805  10.3509  2.08
##  Country_name=Puerto Rico                         18.8565   9.3344  2.02
##  Country_name=Qatar                               17.5620  12.3627  1.42
##  Country_name=Romania                             16.6494  10.7560  1.55
##  Country_name=Russia                              22.9397  10.3426  2.22
##  Country_name=Saint Vincent and the Grenadines    -6.7316  12.4178 -0.54
##  Country_name=Saudi Arabia                         9.4391   9.5910  0.98
##  Country_name=Serbia                              18.9229   9.4530  2.00
##  Country_name=Seychelles                          13.4638  12.5524  1.07
##  Country_name=Sierra Leone                       -23.6957  10.9865 -2.16
##  Country_name=Singapore                           31.4249   9.9009  3.17
##  Country_name=Slovakia                            23.4555  12.3869  1.89
##  Country_name=Slovenia                            26.8166   9.7228  2.76
##  Country_name=Somalia                              3.1932  12.6406  0.25
##  Country_name=South Africa                         5.9550   9.4159  0.63
##  Country_name=South Sudan                         -1.3397   9.9554 -0.13
##  Country_name=Spain                               21.7239   9.4573  2.30
##  Country_name=Sri Lanka                           19.9722  10.3924  1.92
##  Country_name=Sudan                                8.4860   9.3483  0.91
##  Country_name=Sweden                              30.8162  10.9455  2.82
##  Country_name=Switzerland                         28.8004   9.8834  2.91
##  Country_name=Syria                                4.5977   9.7670  0.47
##  Country_name=Taiwan                              36.5067   9.7026  3.76
##  Country_name=Tajikistan                          14.6914  12.5700  1.17
##  Country_name=Tanzania                             1.8771   9.9051  0.19
##  Country_name=Thailand                            18.9589   9.3873  2.02
##  Country_name=Turkey                              17.1145  12.3905  1.38
##  Country_name=Uganda                              -2.6363  10.3290 -0.26
##  Country_name=Ukraine                             20.5925  12.3627  1.67
##  Country_name=United Arab Emirates                 8.6109  12.4326  0.69
##  Country_name=United Kingdom                      26.0604   9.7514  2.67
##  Country_name=United States                       25.0881   9.2152  2.72
##  Country_name=Uzbekistan                          16.5671  12.5808  1.32
##  Country_name=Venezuela                           17.5554  10.5434  1.67
##  Country_name=Vietnam                              9.8554  10.3775  0.95
##  Country_name=Yemen                                1.8377  10.9285  0.17
##  Country_name=Zimbabwe                             7.5498  12.4762  0.61
##  Test_meas=APM-                                   -2.5236   8.9864 -0.28
##  Test_meas=CFT                                   -11.2702   3.0139 -3.74
##  Test_meas=CPM                                    -6.1082   2.1166 -2.89
##  Test_meas=CRT-C2                                  0.6207   9.2446  0.07
##  Test_meas=KABC                                   -6.2299   3.7799 -1.65
##  Test_meas=MMSE                                    3.0953   8.4755  0.37
##  Test_meas=NNAT                                   -0.8391  10.6461 -0.08
##  Test_meas=OLSAT                                  -7.9797  12.1776 -0.66
##  Test_meas=SBIS                                   -7.1390   3.2242 -2.21
##  Test_meas=SON-R                                   0.2896   8.6991  0.03
##  Test_meas=SPM                                    -8.1263   2.0781 -3.91
##  Test_meas=SPM+                                   -4.4258   3.1390 -1.41
##  Test_meas=WAIS                                   -3.3835   3.7554 -0.90
##  Test_meas=WAIS-III                               -1.7651   4.1836 -0.42
##  Test_meas=WAIS-IV                                -4.8578   4.6478 -1.05
##  Test_meas=WAIS-R                                 -7.7957   4.1422 -1.88
##  Test_meas=WASI                                    1.2773   7.3918  0.17
##  Test_meas=WASI-II                                -0.8032   8.7017 -0.09
##  Test_meas=WISC                                  -12.6600   2.9335 -4.32
##  Test_meas=WISC-III                              -12.6975   3.1335 -4.05
##  Test_meas=WISC-IV                                -7.0393   3.7691 -1.87
##  Test_meas=WISC-R                                 -8.6079   2.6919 -3.20
##  Test_meas=WPPSI                                  -6.2382   5.8232 -1.07
##  Test_meas=WPPSI-III                              -3.7151   5.1534 -0.72
##  Test_meas=WPPSI-R                               -11.9923   4.6574 -2.57
##  Year_meas                                         0.1817   0.1025  1.77
##  Year_meas'                                       -0.4930   0.3605 -1.37
##  Year_meas''                                       1.6416   2.3664  0.69
##  Year_meas'''                                      0.1689   7.7581  0.02
##  SES=low                                         -15.8636   3.5619 -4.45
##  SES=normal                                       -7.5188   3.2169 -2.34
##                                                 Pr(>|t|)
##  Intercept                                      0.1776  
##  Country_name=Argentina                         0.0068  
##  Country_name=Australia                         0.0079  
##  Country_name=Austria                           0.0017  
##  Country_name=Bahamas, The                      0.1721  
##  Country_name=Bahrain                           0.0755  
##  Country_name=Bangladesh                        0.8719  
##  Country_name=Barbados                          0.1249  
##  Country_name=Belarus                           0.0606  
##  Country_name=Belgium                           0.0080  
##  Country_name=Benin                             0.8142  
##  Country_name=Bermuda                           0.0306  
##  Country_name=Bolivia                           0.1619  
##  Country_name=Bosnia and Herzegovina            0.0354  
##  Country_name=Botswana                          0.5789  
##  Country_name=Brazil                            0.0599  
##  Country_name=Bulgaria                          0.0609  
##  Country_name=Burkina Faso                      0.6172  
##  Country_name=Cambodia                          0.3183  
##  Country_name=Canada                            0.0178  
##  Country_name=Chile                             0.0346  
##  Country_name=China                             0.0020  
##  Country_name=Colombia                          0.1554  
##  Country_name=Congo, Democratic Republic of the 0.4283  
##  Country_name=Congo, Republic of the            0.6083  
##  Country_name=Costa Rica                        0.0910  
##  Country_name=Croatia                           0.0144  
##  Country_name=Cuba                              0.1653  
##  Country_name=Cyprus                            0.0117  
##  Country_name=Czechia                           0.0460  
##  Country_name=Denmark                           0.0115  
##  Country_name=Djibouti                          0.0930  
##  Country_name=Dominica                          0.8626  
##  Country_name=Dominican Republic                0.2478  
##  Country_name=Ecuador                           0.5350  
##  Country_name=Egypt                             0.1948  
##  Country_name=Eritrea                           0.8361  
##  Country_name=Estonia                           0.0031  
##  Country_name=Ethiopia                          0.9623  
##  Country_name=Finland                           0.0084  
##  Country_name=France                            0.0022  
##  Country_name=Gambia, The                       0.0527  
##  Country_name=Gaza Strip                        0.2345  
##  Country_name=Germany                           0.0016  
##  Country_name=Ghana                             0.6084  
##  Country_name=Greece                            0.0289  
##  Country_name=Guatemala                         0.0666  
##  Country_name=Haiti                             0.9351  
##  Country_name=Hong Kong                         <0.0001 
##  Country_name=Hungary                           0.0187  
##  Country_name=Iceland                           0.0041  
##  Country_name=India                             0.5795  
##  Country_name=Indonesia                         0.2024  
##  Country_name=Iran                              0.3205  
##  Country_name=Iraq                              0.0683  
##  Country_name=Ireland                           0.0512  
##  Country_name=Israel                            0.0215  
##  Country_name=Italy                             0.0235  
##  Country_name=Jamaica                           0.5793  
##  Country_name=Japan                             0.0002  
##  Country_name=Jordan                            0.6003  
##  Country_name=Kazakhstan                        0.1085  
##  Country_name=Kenya                             0.7511  
##  Country_name=Korea, South                      0.0008  
##  Country_name=Kuwait                            0.0486  
##  Country_name=Kyrgyzstan                        0.1545  
##  Country_name=Laos                              0.0816  
##  Country_name=Latvia                            0.0674  
##  Country_name=Lebanon                           0.1553  
##  Country_name=Libya                             0.3322  
##  Country_name=Lithuania                         0.0146  
##  Country_name=Malawi                            0.9725  
##  Country_name=Malaysia                          0.1987  
##  Country_name=Mali                              0.4306  
##  Country_name=Malta                             0.0317  
##  Country_name=Marshall Isands                   0.1038  
##  Country_name=Mauritius                         0.0818  
##  Country_name=Mexico                            0.0345  
##  Country_name=Mongolia                          0.0186  
##  Country_name=Morocco                           0.6009  
##  Country_name=Namibia                           0.7558  
##  Country_name=Nepal                             0.0038  
##  Country_name=Netherlands                       0.0008  
##  Country_name=Netherlands Antilles              0.3495  
##  Country_name=New Zealand                       0.0052  
##  Country_name=Nicaragua                         0.1664  
##  Country_name=Nigeria                           0.7983  
##  Country_name=Norway                            0.0041  
##  Country_name=Oman                              0.1388  
##  Country_name=Pakistan                          0.1809  
##  Country_name=Peru                              0.1084  
##  Country_name=Philippines                       0.1041  
##  Country_name=Poland                            0.0091  
##  Country_name=Portugal                          0.0376  
##  Country_name=Puerto Rico                       0.0439  
##  Country_name=Qatar                             0.1561  
##  Country_name=Romania                           0.1223  
##  Country_name=Russia                            0.0270  
##  Country_name=Saint Vincent and the Grenadines  0.5880  
##  Country_name=Saudi Arabia                      0.3255  
##  Country_name=Serbia                            0.0458  
##  Country_name=Seychelles                        0.2840  
##  Country_name=Sierra Leone                      0.0315  
##  Country_name=Singapore                         0.0016  
##  Country_name=Slovakia                          0.0588  
##  Country_name=Slovenia                          0.0060  
##  Country_name=Somalia                           0.8007  
##  Country_name=South Africa                      0.5274  
##  Country_name=South Sudan                       0.8930  
##  Country_name=Spain                             0.0220  
##  Country_name=Sri Lanka                         0.0552  
##  Country_name=Sudan                             0.3644  
##  Country_name=Sweden                            0.0051  
##  Country_name=Switzerland                       0.0037  
##  Country_name=Syria                             0.6380  
##  Country_name=Taiwan                            0.0002  
##  Country_name=Tajikistan                        0.2430  
##  Country_name=Tanzania                          0.8498  
##  Country_name=Thailand                          0.0439  
##  Country_name=Turkey                            0.1678  
##  Country_name=Uganda                            0.7986  
##  Country_name=Ukraine                           0.0964  
##  Country_name=United Arab Emirates              0.4889  
##  Country_name=United Kingdom                    0.0078  
##  Country_name=United States                     0.0067  
##  Country_name=Uzbekistan                        0.1885  
##  Country_name=Venezuela                         0.0965  
##  Country_name=Vietnam                           0.3427  
##  Country_name=Yemen                             0.8665  
##  Country_name=Zimbabwe                          0.5454  
##  Test_meas=APM-                                 0.7790  
##  Test_meas=CFT                                  0.0002  
##  Test_meas=CPM                                  0.0041  
##  Test_meas=CRT-C2                               0.9465  
##  Test_meas=KABC                                 0.0999  
##  Test_meas=MMSE                                 0.7151  
##  Test_meas=NNAT                                 0.9372  
##  Test_meas=OLSAT                                0.5126  
##  Test_meas=SBIS                                 0.0273  
##  Test_meas=SON-R                                0.9735  
##  Test_meas=SPM                                  0.0001  
##  Test_meas=SPM+                                 0.1592  
##  Test_meas=WAIS                                 0.3680  
##  Test_meas=WAIS-III                             0.6733  
##  Test_meas=WAIS-IV                              0.2964  
##  Test_meas=WAIS-R                               0.0604  
##  Test_meas=WASI                                 0.8629  
##  Test_meas=WASI-II                              0.9265  
##  Test_meas=WISC                                 <0.0001 
##  Test_meas=WISC-III                             <0.0001 
##  Test_meas=WISC-IV                              0.0624  
##  Test_meas=WISC-R                               0.0015  
##  Test_meas=WPPSI                                0.2846  
##  Test_meas=WPPSI-III                            0.4713  
##  Test_meas=WPPSI-R                              0.0103  
##  Year_meas                                      0.0769  
##  Year_meas'                                     0.1721  
##  Year_meas''                                    0.4882  
##  Year_meas'''                                   0.9826  
##  SES=low                                        <0.0001 
##  SES=normal                                     0.0198  
## 
#ANOVA variance decomposition
lm(IQ_cor ~ Country_name, data = REC) %>% 
  car::Anova() %>%
  sjstats::anova_stats()
lm(IQ_cor ~ Country_name + Test_meas + rcs(Year_meas) + SES, data = REC) %>% 
  car::Anova() %>%
  sjstats::anova_stats()
#using rms package plot
plot(anova(sample_ols_4), pl=T, what = "proportion R2") %>% print()

## Country_name    Test_meas          SES    Year_meas 
##      0.77981      0.02584      0.01773      0.00262
plot(anova(sample_ols_4), pl=T, what = "partial R2") %>% print()

## Country_name    Test_meas          SES    Year_meas 
##      0.60182      0.01995      0.01368      0.00203

References

REF$`Found?` %>% table2()