library(ggplot2)
library(readxl)
data <- read_excel('C:/Users/xwb/Desktop/Data Analysis/Final/transactions.xlsx')
data <- as.data.frame(data)
data$Date <- as.numeric(data$Date)
data$interv <- rep(c("No", "Yes"), each=14)
p <- ggplot(data, aes(x=Date, y=Transaction, fill=interv))
p <- p + geom_bar(stat='identity')+geom_vline(xintercept=14.5,linetype="dashed") +geom_text(x=5,y=120, label="premean=27.25214")+geom_text(x=20,y=120, label="postmean=30.98357")

data <- read_excel('C:/Users/xwb/Desktop/Data Analysis/Final/steps.xlsx')
data <- as.data.frame(data)
data$Date <- as.numeric(data$Date)
data$interv <- rep(c("No", "Yes"), each=14)
# average
group1 <- data$Steps[1:14]
group2 <- data$Steps[15:28]
# average

p <- ggplot(data, aes(x=Date, y=Steps, group=interv))
p <- p + geom_point(aes(col=data$interv)) + geom_vline(xintercept=14.5, linetype='dashed')
p <- p + geom_smooth(method="lm", col='red', fullrange=F, data=data[1:14,])
p <- p + geom_smooth(method="lm", col='blue', fullrange=F, data=data[15:28,]) +
  geom_text(x=5,y=10000, label="premean=5825.571")+geom_text(x=20,y=10000, label="postmean=5489.286")

data <- read_excel('C:/Users/xwb/Desktop/Data Analysis/Final/bed_time.xlsx')
data <- as.data.frame(data)
# convert time to time difference in minutes
# ref time 22:30
bed_time <- as.character(data[, 2])
time_diff <- rep(0, length(bed_time))
for (i in 1:length(bed_time)){
  time <- as.character(bed_time[i])
  hour <- as.numeric(substr(time, 12, 13))
  if (hour < 20){
    hour <- hour + 24
  }
  min <- as.numeric(substr(time, 15, 16))
  time_diff[i] <- 60 * (hour - 22) + min - 30
}
data$time_diff <- time_diff
data$Date <- as.numeric(data$Date)
data$interv <- rep(c("No", "Yes"), each=14)

p <- ggplot(data, aes(x=interv, y=time_diff))
p <- p + geom_boxplot()
p <- p + ggtitle("Sleep time") + xlab("Intervention") + ylab("Difference in time (min)") +geom_text(x=1,y=105, label="premean=100 min")+geom_text(x=2,y=80, label="postmean=75 min")