library(circlize)
library(ComplexHeatmap)
library(pheatmap)
library(dplyr)
library(gplots)
library(ggplot2)
library(genefilter)
library(RColorBrewer)
library(reshape2)
library(vegan)# set working directory to combined matrix state file from chromStatesMatrixforClustering_particularStates.pl outputsummary
setwd("~/Desktop/KS_SMINT_ChromXR/")
# set chromatin state for analysis -- can be changed for each chromatin state
i = 3
# read in combined matrix state file from chromStatesMatrixforClustering_particularStates.pl output
dat <- read.table(paste("CombinedMatrix-",i,"-10000bps.txt",sep =""),header = FALSE,sep = "\t",quote = "",
row.names = 1, na.strings = FALSE, stringsAsFactors = FALSE)
colnames(dat) <- c("NMRL-10F1-1","NMRL-11F4-1","NMRL-10S2-1","NMRL-11S5-1")
# sample type labels for plot
condition.type <- factor(c(rep("FED",2), rep("FASTED",2)))
# filtering low variable regions
dat.state1 <- varFilter(as.matrix(dat), var.cutoff = 0.9)
print(dim(dat.state1))## [1] 700 4
# Annotation Data frame
df1 <- data.frame(Condition = condition.type)
mut.gene.cols <- brewer.pal(7, "Accent")[5:6]
condition.cols.assigned <- setNames(mut.gene.cols, unique(levels(df1$Condition)))
annot1 <- HeatmapAnnotation(df = df1, col = list(Condition = condition.cols.assigned))print(Heatmap(log2(dat.state1+1), name = "Frequency", show_row_names = FALSE, show_column_names = TRUE,
row_dend_reorder = FALSE, column_dend_reorder = TRUE, clustering_distance_rows = "pearson",
clustering_distance_columns = "euclidean", clustering_method_rows = "complete",
clustering_method_columns = "complete", top_annotation = annot1))Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.