library(circlize)
library(ComplexHeatmap)
library(pheatmap)
library(dplyr)
library(gplots)
library(ggplot2)
library(genefilter)
library(RColorBrewer)
library(reshape2)
library(vegan)# set working directory to combined matrix state file from chromStatesMatrixforClustering_particularStates.pl output
setwd("/TCGA_ChromHMM/tiled_segment/")
# set chromatin state for analysis -- can be changed for each chromatin state
i = 6
# read in combined matrix state file from chromStatesMatrixforClustering_particularStates.pl output
dat <- read.table(paste("CombinedMatrix-",i,"-10000bps.txt",sep =""),header = FALSE,sep = "\t",quote = "",
row.names = 1, na.strings = FALSE, stringsAsFactors = FALSE)
colnames(dat) <- c("BRAF-M137","BRAF-M233","BRAF-M263","BRAF-M275",
"BRAF-M305","BRAF-M306","BRAF-M357","BRAF-M409",
"BRAF-M527","BRAF-M721","BRAF-M749","BRAF-M762",
"BRAF-M807","RAS-M028","RAS-M399","RAS-M642",
"RAS-M852","WT-M035","WT-M822","WT-M857")
head(dat)## BRAF-M137 BRAF-M233 BRAF-M263 BRAF-M275 BRAF-M305
## chr1:1000000-1009999 0 1 0 0 0
## chr1:100250000-100259999 0 0 0 0 0
## chr1:100260000-100269999 0 0 0 0 0
## chr1:100270000-100279999 0 0 0 0 0
## chr1:100990000-100999999 0 0 0 0 0
## chr1:1010000-1019999 0 0 0 0 0
## BRAF-M306 BRAF-M357 BRAF-M409 BRAF-M527 BRAF-M721
## chr1:1000000-1009999 0 0 0 3 0
## chr1:100250000-100259999 0 0 0 0 0
## chr1:100260000-100269999 0 0 0 0 0
## chr1:100270000-100279999 0 0 0 0 0
## chr1:100990000-100999999 0 0 0 0 0
## chr1:1010000-1019999 0 0 0 0 0
## BRAF-M749 BRAF-M762 BRAF-M807 RAS-M028 RAS-M399
## chr1:1000000-1009999 0 0 0 8 0
## chr1:100250000-100259999 0 0 0 0 0
## chr1:100260000-100269999 0 0 0 0 0
## chr1:100270000-100279999 0 0 0 0 0
## chr1:100990000-100999999 0 0 0 0 0
## chr1:1010000-1019999 0 0 0 2 0
## RAS-M642 RAS-M852 WT-M035 WT-M822 WT-M857
## chr1:1000000-1009999 0 0 4 0 0
## chr1:100250000-100259999 0 0 0 2 0
## chr1:100260000-100269999 0 0 0 2 0
## chr1:100270000-100279999 0 0 0 2 0
## chr1:100990000-100999999 0 0 0 2 0
## chr1:1010000-1019999 0 0 1 0 0
# sample type labels for plot
mutation.type <- factor(c(rep("BRAF",13), rep("RAS",4), rep("WT", 3)))
RNA.type <- factor(c("Keratin", "Immune", "Immune","Immune","Immune","Immune","Immune","Immune",
"MITF-low","Keratin","Immune","MITF-low","Immune","MITF-low","Immune","Immune",
"Keratin","Keratin","Keratin", "Immune"))
Methylation.type <- factor(c("CpG", "Normal", "Hyper","Normal", "Normal","Hyper","Hyper","CpG",
"Hyper","Hypo","Hyper","Normal","Hypo","Hypo","CpG","Hypo",
"CpG","Hyper","Hyper","CpG"))
# filtering low variable regions -- Change be changed for RNA-expression or DNA-methylation
dat.state1 <- varFilter(as.matrix(dat), var.cutoff = 0.5)
mut.gene <- factor(paste(RNA.type, sep = "-"))
print(dim(dat.state1))## [1] 3922 20
d <- dist(t(dat.state1), method = "binary")
mds.plot <- cmdscale(d = d, eig = T, k = 2)
mdsDist <- data.frame(genotypes = mutation.type, x = mds.plot$points[,1], y = mds.plot$points[,2],
subtype = RNA.type)
print(ggplot(mdsDist, aes(x = x, y = y, color = genotypes, shape = subtype)) + geom_point(size = 8) +
ylab("MDS Coordinate 2") + xlab("MDS Coordinate 1") + theme_grey() +
theme(legend.text = element_text(size = 18, face = "bold"),
legend.title = element_text(size = 18, colour = "black", face = "bold"),
axis.title = element_text(size = 18, face = "bold"),
axis.text.x = element_text(size = 18, face = "bold", color = "black"),
axis.text.y = element_text(size = 18, face = "bold", color = "black"),
plot.margin = unit(c(0.5,0.5,0.5,0.5), "cm"))) Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.