Nếu chỉ so sánh 2 biến thì chỉ cần dùng so sánh 2 số trung bình

b= read.csv ("C:/Users/ADMIN/Desktop/SO LIEU TONG GD1.csv")
head (b)
##   id type time PTs1 PTs2 PT.1 PT.2 PTr1 PTr2 aPTTs1 aPTTs2 aPTTr1 aPTTr2
## 1  2    1    0 11.5 11.7  100   97 1.00 1.02   37.7   38.0   1.16   1.17
## 2  3    1    0 11.9 11.7   95   97 1.04 1.02   38.2   38.9   1.17   1.19
## 3 10    1    0 12.0 11.9   93   95 1.04 1.04   38.4   38.4   1.18   1.18
## 4 29    1    0 12.0 11.8   93   96 1.04 1.03   39.9   39.8   1.22   1.22
## 5 36    1    0 12.0 12.0   93   93 1.04 1.04   38.8   38.6   1.19   1.18
## 6 49    1    0 12.0 11.5   93  100 1.04 1.00   38.2   38.2   1.17   1.17
##   Fib1 Fib2  TT1  TT2 TTr1 TTr2
## 1 2.39 2.32 18.7 18.5 1.36 1.35
## 2 2.26 2.53 18.2 18.2 1.33 1.33
## 3 2.37 2.11 18.6 18.6 1.36 1.36
## 4 2.26 2.22 18.6 18.9 1.36 1.38
## 5 2.22 2.18 18.6 18.6 1.36 1.36
## 6 2.32 2.28 18.8 18.8 1.37 1.37
#Tính phương sai của PTs1 và PTs2
library (DescTools)
Desc (b$PTs1)
## ------------------------------------------------------------------------- 
## b$PTs1 (numeric)
## 
##      length          n        NAs     unique         0s        mean
##       3e+01      3e+01          0      1e+01          0   1.167e+01
##                 100.0%       0.0%                  0.0%            
##                                                                    
##         .05        .10        .25     median        .75         .90
##   1.110e+01  1.120e+01  1.128e+01  1.180e+01  1.200e+01   1.210e+01
##                                                                    
##       range         sd      vcoef        mad        IQR        skew
##   1.300e+00  3.854e-01  3.302e-02  4.448e-01  7.250e-01  -4.016e-01
##                                                                    
##       meanCI
##    1.153e+01
##    1.181e+01
##             
##          .95
##    1.210e+01
##             
##         kurt
##   -1.356e+00
##             
## 
##     level   freq   perc  cumfreq  cumperc
## 1    10.9  1e+00   3.1%    1e+00     3.1%
## 2    11.1  2e+00   6.2%    3e+00     9.4%
## 3    11.2  5e+00  15.6%    8e+00    25.0%
## 4    11.3  2e+00   6.2%    1e+01    31.2%
## 5    11.5  2e+00   6.2%    1e+01    37.5%
## 6    11.6  1e+00   3.1%    1e+01    40.6%
## 7    11.7  1e+00   3.1%    1e+01    43.8%
## 8    11.8  4e+00  12.5%    2e+01    56.2%
## 9    11.9  4e+00  12.5%    2e+01    68.8%
## 10     12  4e+00  12.5%    3e+01    81.2%
## 11   12.1  5e+00  15.6%    3e+01    96.9%
## 12   12.2  1e+00   3.1%    3e+01   100.0%

Tính phương sai của PTs2

Desc (b$PTs2)
## ------------------------------------------------------------------------- 
## b$PTs2 (numeric)
## 
##      length          n        NAs     unique         0s       mean
##       3e+01      3e+01          0      1e+01          0  1.167e+01
##                 100.0%       0.0%                  0.0%           
##                                                                   
##         .05        .10        .25     median        .75        .90
##   1.130e+01  1.140e+01  1.147e+01  1.170e+01  1.190e+01  1.200e+01
##                                                                   
##       range         sd      vcoef        mad        IQR       skew
##   1.200e+00  2.892e-01  2.479e-02  2.965e-01  4.250e-01  3.407e-01
##                                                                   
##       meanCI
##    1.156e+01
##    1.177e+01
##             
##          .95
##    1.214e+01
##             
##         kurt
##   -7.487e-01
##             
## 
##     level   freq   perc  cumfreq  cumperc
## 1    11.1  1e+00   3.1%    1e+00     3.1%
## 2    11.3  2e+00   6.2%    3e+00     9.4%
## 3    11.4  5e+00  15.6%    8e+00    25.0%
## 4    11.5  7e+00  21.9%    2e+01    46.9%
## 5    11.7  7e+00  21.9%    2e+01    68.8%
## 6    11.8  1e+00   3.1%    2e+01    71.9%
## 7    11.9  2e+00   6.2%    2e+01    78.1%
## 8      12  4e+00  12.5%    3e+01    90.6%
## 9    12.1  1e+00   3.1%    3e+01    93.8%
## 10   12.2  1e+00   3.1%    3e+01    96.9%
## 11   12.3  1e+00   3.1%    3e+01   100.0%

Tính phương sai giữa PTs1 và PTs2

lấy PTs1 trừ PTs2

length (b$PTs1); length (b$PTs2)
## [1] 32
## [1] 32
PT= b$PTs1 - b$PTs2
Desc (PT) 
## ------------------------------------------------------------------------- 
## PT (numeric)
## 
##      length          n        NAs    unique        0s      mean     meanCI
##       3e+01      3e+01          0     1e+01     3e+00  6.25e-03  -7.86e-02
##                 100.0%       0.0%                9.4%             9.11e-02
##                                                                           
##         .05        .10        .25    median       .75       .90        .95
##   -3.00e-01  -2.90e-01  -2.00e-01      0.00  2.00e-01  2.90e-01   4.00e-01
##                                                                           
##       range         sd      vcoef       mad       IQR      skew       kurt
##    9.00e-01   2.35e-01   3.77e+01  2.97e-01  4.00e-01  2.15e-01  -1.05e+00
##                                                                           
## lowest : -4.00e-01, -3.00e-01 (3e+00), -2.00e-01 (5e+00), -2.00e-01 (3e+00), -1.00e-01 (2e+00)
## highest: 2.00e-01 (3e+00), 2.00e-01 (3e+00), 3.00e-01, 4.00e-01 (2e+00), 5.00e-01

Kiểm định sự khác biệt giữa PTs1 và PTs2

wilcox.test(b$PTs1 , b$PTs2) #không thấy có sự khác biệt
## Warning in wilcox.test.default(b$PTs1, b$PTs2): cannot compute exact p-
## value with ties
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  b$PTs1 and b$PTs2
## W = 538.5, p-value = 0.7257
## alternative hypothesis: true location shift is not equal to 0
#Nếu muốn dùng anova thì về kỹ thuật xử lý như sau
x1= c(b$aPTTs1, b$PTs2)
x2= c(rep('s1', length(b$PTs1)), rep('s2', length(b$PTs2)))
x= data.frame (x1, x2)
summary (aov (lm (x$x1 ~ x$x2)))
##             Df Sum Sq Mean Sq F value Pr(>F)    
## x$x2         1   8949    8949    1798 <2e-16 ***
## Residuals   62    309       5                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Tính sự khác biệt giữa PTs1 và PTs2

TukeyHSD(aov(x$x1 ~ x$x2))
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = x$x1 ~ x$x2)
## 
## $`x$x2`
##         diff       lwr       upr p adj
## s2-s1 -23.65 -24.76492 -22.53508     0