matrizY<-matrix(data=c(6.1,9.1,7.2,7.5,6.9,11.5,10.3,9.5,9.2,10.6,12.5,12.9,13.6,12.8,16.5,17.1,15,16.2,15.8,19,19.4,19.1,18,20.2),nrow = 24,ncol=1,byrow=FALSE)
colnames(matrizY) <-c("matrizY")
print(matrizY)
##       matrizY
##  [1,]     6.1
##  [2,]     9.1
##  [3,]     7.2
##  [4,]     7.5
##  [5,]     6.9
##  [6,]    11.5
##  [7,]    10.3
##  [8,]     9.5
##  [9,]     9.2
## [10,]    10.6
## [11,]    12.5
## [12,]    12.9
## [13,]    13.6
## [14,]    12.8
## [15,]    16.5
## [16,]    17.1
## [17,]    15.0
## [18,]    16.2
## [19,]    15.8
## [20,]    19.0
## [21,]    19.4
## [22,]    19.1
## [23,]    18.0
## [24,]    20.2
matrizX<-cbind(rep(x = 1,24), 
matrix(data = c(216,283,237,203,259,374,342,301,365,384,404,426,432,409,553,572,506,528,501,628,677,602,630,652),nrow = 24,ncol = 1,byrow = FALSE))
colnames(matrizX)<-c("Cte","X1")
print(matrizX)
##       Cte  X1
##  [1,]   1 216
##  [2,]   1 283
##  [3,]   1 237
##  [4,]   1 203
##  [5,]   1 259
##  [6,]   1 374
##  [7,]   1 342
##  [8,]   1 301
##  [9,]   1 365
## [10,]   1 384
## [11,]   1 404
## [12,]   1 426
## [13,]   1 432
## [14,]   1 409
## [15,]   1 553
## [16,]   1 572
## [17,]   1 506
## [18,]   1 528
## [19,]   1 501
## [20,]   1 628
## [21,]   1 677
## [22,]   1 602
## [23,]   1 630
## [24,]   1 652

Parametros del modelo

sigmaMat<- t(matrizX)%*% matrizX
invSig<- solve(sigmaMat)
matProdCruz<- t(matrizX) %*% matrizY
Beta<- invSig %*% matProdCruz

Matrices

XX_transpuesta<- t(matrizX)%*%matrizX
inversaxtranspuesta <- solve(XX_transpuesta)
xtranspuestaY <- t(matrizX)%*%matrizY

##Matriz A
matrizA <- inversaxtranspuesta%*% t(matrizX)
print(matrizA)
##             [,1]          [,2]          [,3]          [,4]          [,5]
## Cte  0.236906257  0.1776713023  0.2183400774  0.2483996068  0.1988897936
## X1  -0.000446943 -0.0003113422 -0.0004044412 -0.0004732536 -0.0003599156
##              [,6]          [,7]          [,8]         [,9]        [,10]
## Cte  0.0972178559  0.1255091777  0.1617574338  0.105174790  0.088376818
## X1  -0.0001271679 -0.0001919325 -0.0002749121 -0.000145383 -0.000106929
##             [,11]         [,12]         [,13]         [,14]         [,15]
## Cte  7.069474e-02  0.0512444579  4.593984e-02  6.627422e-02 -0.0610367256
## X1  -6.645114e-05 -0.0000219255 -9.782148e-06 -5.633168e-05  0.0002351089
##             [,16]         [,17]         [,18]         [,19]         [,20]
## Cte -0.0778346979 -0.0194838466 -0.0389341304 -0.0150633276 -0.1273445111
## X1   0.0002735628  0.0001399859  0.0001845116  0.0001298665  0.0003869008
##             [,21]         [,22]         [,23]         [,24]
## Cte -0.1706655976 -0.1043578121 -0.1291127187 -0.1485630024
## X1   0.0004860716  0.0003342796  0.0003909486  0.0004354743
##Matriz P
matrizP <- matrizX%*%matrizA
print(matrizP)
##                [,1]          [,2]         [,3]         [,4]          [,5]
##  [1,]  0.1403665742  0.1104213947  0.130980772  0.146176833  0.1211480262
##  [2,]  0.1104213947  0.0895614697  0.103883209  0.114468843  0.0970336816
##  [3,]  0.1309807717  0.1038832092  0.122487506  0.136238508  0.1135897988
##  [4,]  0.1461768329  0.1144688428  0.136238508  0.152329129  0.1258269288
##  [5,]  0.1211480262  0.0970336816  0.113589799  0.125826929  0.1056716558
##  [6,]  0.0697495838  0.0612293327  0.067079057  0.071402767  0.0642813629
##  [7,]  0.0840517590  0.0711922820  0.080021177  0.086546881  0.0757986618
##  [8,]  0.1023764211  0.0839573107  0.096603267  0.105950278  0.0905552010
##  [9,]  0.0737720706  0.0640314122  0.070719028  0.075662049  0.0675206032
## [10,]  0.0652801540  0.0581159110  0.063034645  0.066670231  0.0606822070
## [11,]  0.0563412944  0.0518890677  0.054945820  0.057205159  0.0534838952
## [12,]  0.0465085489  0.0450395401  0.046048113  0.046793580  0.0455657522
## [13,]  0.0438268911  0.0431714871  0.043621466  0.043954059  0.0434062587
## [14,]  0.0541065795  0.0503323569  0.052923614  0.054838891  0.0516843173
## [15,] -0.0102532092  0.0054990852 -0.005315923 -0.013309625 -0.0001435277
## [16,] -0.0187451258 -0.0004164159 -0.013000306 -0.022301443 -0.0069819239
## [17,]  0.0107531107  0.0201321669  0.013692815  0.008933294  0.0167725050
## [18,]  0.0009203652  0.0132826393  0.004795108 -0.001478285  0.0088543620
## [19,]  0.0129878256  0.0216888778  0.015715021  0.011299562  0.0185720830
## [20,] -0.0437739325 -0.0178515772 -0.035649015 -0.048803643 -0.0271371970
## [21,] -0.0656741384 -0.0331073432 -0.055466635 -0.071993069 -0.0447730609
## [22,] -0.0321534151 -0.0097566809 -0.025133543 -0.036499050 -0.0177793916
## [23,] -0.0446678185 -0.0184742615 -0.036457898 -0.049750150 -0.0278570282
## [24,] -0.0545005640 -0.0253237891 -0.045355605 -0.060161729 -0.0357751712
##             [,6]          [,7]         [,8]        [,9]      [,10]
##  [1,] 0.06974958  0.0840517590  0.102376421 0.073772071 0.06528015
##  [2,] 0.06122933  0.0711922820  0.083957311 0.064031412 0.05811591
##  [3,] 0.06707906  0.0800211767  0.096603267 0.070719028 0.06303464
##  [4,] 0.07140277  0.0865468815  0.105950278 0.075662049 0.06667023
##  [5,] 0.06428136  0.0757986618  0.090555201 0.067520603 0.06068221
##  [6,] 0.04965705  0.0537264250  0.058940310 0.050801563 0.04838537
##  [7,] 0.05372643  0.0598682648  0.067737497 0.055453817 0.05180710
##  [8,] 0.05894031  0.0677374971  0.079008893 0.061414519 0.05619119
##  [9,] 0.05080156  0.0554538175  0.061414519 0.052110009 0.04934773
## [10,] 0.04838537  0.0518071001  0.056191189 0.049347733 0.04731608
## [11,] 0.04584201  0.0479684502  0.050692947 0.046440074 0.04517750
## [12,] 0.04304432  0.0437459353  0.044644881 0.043241649 0.04282506
## [13,] 0.04228131  0.0425943404  0.042995408 0.042369351 0.04218349
## [14,] 0.04520617  0.0470087877  0.049318387 0.045713159 0.04464286
## [15,] 0.02689399  0.0193705086  0.009731045 0.024778013 0.02924508
## [16,] 0.02447780  0.0157237913  0.004507715 0.022015736 0.02721343
## [17,] 0.03287089  0.0283913359  0.022651913 0.031611012 0.03427074
## [18,] 0.03007319  0.0241688210  0.016603847 0.028412587 0.03191831
## [19,] 0.03350672  0.0293509983  0.024026474 0.032337927 0.03480539
## [20,] 0.01735640  0.0049755716 -0.010887362 0.013874291 0.02122541
## [21,] 0.01112517 -0.0044291206 -0.024358055 0.006750526 0.01598589
## [22,] 0.02066276  0.0099658165 -0.003739648 0.017654248 0.02400556
## [23,] 0.01710206  0.0045917066 -0.011437186 0.013583525 0.02101155
## [24,] 0.01430437  0.0003691918 -0.017485253 0.010385100 0.01865911
##            [,11]      [,12]      [,13]      [,14]         [,15]
##  [1,] 0.05634129 0.04650855 0.04382689 0.05410658 -0.0102532092
##  [2,] 0.05188907 0.04503954 0.04317149 0.05033236  0.0054990852
##  [3,] 0.05494582 0.04604811 0.04362147 0.05292361 -0.0053159229
##  [4,] 0.05720516 0.04679358 0.04395406 0.05483889 -0.0133096246
##  [5,] 0.05348390 0.04556575 0.04340626 0.05168432 -0.0001435277
##  [6,] 0.04584201 0.04304432 0.04228131 0.04520617  0.0268939925
##  [7,] 0.04796845 0.04374594 0.04259434 0.04700879  0.0193705086
##  [8,] 0.05069295 0.04464488 0.04299541 0.04931839  0.0097310449
##  [9,] 0.04644007 0.04324165 0.04236935 0.04571316  0.0247780127
## [10,] 0.04517750 0.04282506 0.04218349 0.04464286  0.0292450813
## [11,] 0.04384848 0.04238655 0.04198785 0.04351622  0.0339472587
## [12,] 0.04238655 0.04190419 0.04177264 0.04227693  0.0391196539
## [13,] 0.04198785 0.04177264 0.04171395 0.04193894  0.0405303071
## [14,] 0.04351622 0.04227693 0.04193894 0.04323457  0.0351228031
## [15,] 0.03394726 0.03911965 0.04053031 0.03512280  0.0689784806
## [16,] 0.03268469 0.03870307 0.04034445 0.03405250  0.0734455492
## [17,] 0.03707046 0.04015015 0.04099007 0.03777039  0.0579283636
## [18,] 0.03560854 0.03966779 0.04077486 0.03653110  0.0631007588
## [19,] 0.03740272 0.04025978 0.04103898 0.03805205  0.0567528193
## [20,] 0.02896342 0.03747524 0.03979665 0.03089793  0.0866116460
## [21,] 0.02570732 0.03640089 0.03931732 0.02813767  0.0981319807
## [22,] 0.03069115 0.03804530 0.04005098 0.03236255  0.0804988153
## [23,] 0.02883052 0.03743139 0.03977708 0.03078526  0.0870818638
## [24,] 0.02736860 0.03694903 0.03956187 0.02954597  0.0922542589
##               [,16]       [,17]         [,18]      [,19]        [,20]
##  [1,] -0.0187451258 0.010753111  0.0009203652 0.01298783 -0.043773933
##  [2,] -0.0004164159 0.020132167  0.0132826393 0.02168888 -0.017851577
##  [3,] -0.0130003063 0.013692815  0.0047951078 0.01571502 -0.035649015
##  [4,] -0.0223014426 0.008933294 -0.0014782850 0.01129956 -0.048803643
##  [5,] -0.0069819239 0.016772505  0.0088543620 0.01857208 -0.027137197
##  [6,]  0.0244778019 0.032870885  0.0300731907 0.03350672  0.017356398
##  [7,]  0.0157237913 0.028391336  0.0241688210 0.02935100  0.004975572
##  [8,]  0.0045077151 0.022651913  0.0166038473 0.02402647 -0.010887362
##  [9,]  0.0220157364 0.031611012  0.0284125867 0.03233793  0.013874291
## [10,]  0.0272134303 0.034270744  0.0319183062 0.03480539  0.021225406
## [11,]  0.0326846870 0.037070462  0.0356085373 0.03740272  0.028963423
## [12,]  0.0387030693 0.040150153  0.0396677915 0.04025978  0.037475241
## [13,]  0.0403444463 0.040990068  0.0407748608 0.04103898  0.039796646
## [14,]  0.0340525011 0.037770392  0.0365310951 0.03805205  0.030897927
## [15,]  0.0734455492 0.057928364  0.0631007588 0.05675282  0.086611646
## [16,]  0.0786432430 0.060588096  0.0666064783 0.05922028  0.093962762
## [17,]  0.0605880960 0.051349026  0.0544287158 0.05064910  0.068427307
## [18,]  0.0666064783 0.054428716  0.0584879700 0.05350616  0.076939125
## [19,]  0.0592202818 0.050649096  0.0535061580 0.04999976  0.066492803
## [20,]  0.0939627617 0.068427307  0.0769391254 0.06649280  0.115629208
## [21,]  0.1073673406 0.075286617  0.0859801915 0.07285626  0.134587349
## [22,]  0.0868501280 0.064787673  0.0721418250 0.06311628  0.105569787
## [23,]  0.0945098874 0.068707279  0.0773081485 0.06675254  0.116403010
## [24,]  0.1005282697 0.071786969  0.0813674026 0.06960960  0.124914828
##              [,21]        [,22]        [,23]         [,24]
##  [1,] -0.065674138 -0.032153415 -0.044667818 -0.0545005640
##  [2,] -0.033107343 -0.009756681 -0.018474261 -0.0253237891
##  [3,] -0.055466635 -0.025133543 -0.036457898 -0.0453556047
##  [4,] -0.071993069 -0.036499050 -0.049750150 -0.0601617293
##  [5,] -0.044773061 -0.017779392 -0.027857028 -0.0357751712
##  [6,]  0.011125170  0.020662764  0.017102062  0.0143043678
##  [7,] -0.004429121  0.009965816  0.004591707  0.0003691918
##  [8,] -0.024358055 -0.003739648 -0.011437186 -0.0174852526
##  [9,]  0.006750526  0.017654248  0.013583525  0.0103850996
## [10,]  0.015985885  0.024005560  0.021011548  0.0186591104
## [11,]  0.025707317  0.030691153  0.028830521  0.0273685954
## [12,]  0.036400891  0.038045304  0.037431390  0.0369490289
## [13,]  0.039317321  0.040050982  0.039777082  0.0395618744
## [14,]  0.028137675  0.032362551  0.030785264  0.0295459667
## [15,]  0.098131981  0.080498815  0.087081864  0.0922542589
## [16,]  0.107367341  0.086850128  0.094509887  0.1005282697
## [17,]  0.075286617  0.064787673  0.068707279  0.0717869691
## [18,]  0.085980191  0.072141825  0.077308148  0.0813674026
## [19,]  0.072856259  0.063116275  0.066752536  0.0696095978
## [20,]  0.134587349  0.105569787  0.116403010  0.1249148278
## [21,]  0.158404855  0.121949488  0.135559492  0.1462530662
## [22,]  0.121949488  0.096878517  0.106238346  0.1135924973
## [23,]  0.135559492  0.106238346  0.117184907  0.1257857764
## [24,]  0.146253066  0.113592497  0.125785776  0.1353662099
##Matriz M
identidad <- diag(1, 24)
matrizM <- identidad - matrizP
print(matrizM)
##                [,1]          [,2]         [,3]         [,4]          [,5]
##  [1,]  0.8596334258 -0.1104213947 -0.130980772 -0.146176833 -0.1211480262
##  [2,] -0.1104213947  0.9104385303 -0.103883209 -0.114468843 -0.0970336816
##  [3,] -0.1309807717 -0.1038832092  0.877512494 -0.136238508 -0.1135897988
##  [4,] -0.1461768329 -0.1144688428 -0.136238508  0.847670871 -0.1258269288
##  [5,] -0.1211480262 -0.0970336816 -0.113589799 -0.125826929  0.8943283442
##  [6,] -0.0697495838 -0.0612293327 -0.067079057 -0.071402767 -0.0642813629
##  [7,] -0.0840517590 -0.0711922820 -0.080021177 -0.086546881 -0.0757986618
##  [8,] -0.1023764211 -0.0839573107 -0.096603267 -0.105950278 -0.0905552010
##  [9,] -0.0737720706 -0.0640314122 -0.070719028 -0.075662049 -0.0675206032
## [10,] -0.0652801540 -0.0581159110 -0.063034645 -0.066670231 -0.0606822070
## [11,] -0.0563412944 -0.0518890677 -0.054945820 -0.057205159 -0.0534838952
## [12,] -0.0465085489 -0.0450395401 -0.046048113 -0.046793580 -0.0455657522
## [13,] -0.0438268911 -0.0431714871 -0.043621466 -0.043954059 -0.0434062587
## [14,] -0.0541065795 -0.0503323569 -0.052923614 -0.054838891 -0.0516843173
## [15,]  0.0102532092 -0.0054990852  0.005315923  0.013309625  0.0001435277
## [16,]  0.0187451258  0.0004164159  0.013000306  0.022301443  0.0069819239
## [17,] -0.0107531107 -0.0201321669 -0.013692815 -0.008933294 -0.0167725050
## [18,] -0.0009203652 -0.0132826393 -0.004795108  0.001478285 -0.0088543620
## [19,] -0.0129878256 -0.0216888778 -0.015715021 -0.011299562 -0.0185720830
## [20,]  0.0437739325  0.0178515772  0.035649015  0.048803643  0.0271371970
## [21,]  0.0656741384  0.0331073432  0.055466635  0.071993069  0.0447730609
## [22,]  0.0321534151  0.0097566809  0.025133543  0.036499050  0.0177793916
## [23,]  0.0446678185  0.0184742615  0.036457898  0.049750150  0.0278570282
## [24,]  0.0545005640  0.0253237891  0.045355605  0.060161729  0.0357751712
##              [,6]          [,7]         [,8]         [,9]       [,10]
##  [1,] -0.06974958 -0.0840517590 -0.102376421 -0.073772071 -0.06528015
##  [2,] -0.06122933 -0.0711922820 -0.083957311 -0.064031412 -0.05811591
##  [3,] -0.06707906 -0.0800211767 -0.096603267 -0.070719028 -0.06303464
##  [4,] -0.07140277 -0.0865468815 -0.105950278 -0.075662049 -0.06667023
##  [5,] -0.06428136 -0.0757986618 -0.090555201 -0.067520603 -0.06068221
##  [6,]  0.95034295 -0.0537264250 -0.058940310 -0.050801563 -0.04838537
##  [7,] -0.05372643  0.9401317352 -0.067737497 -0.055453817 -0.05180710
##  [8,] -0.05894031 -0.0677374971  0.920991107 -0.061414519 -0.05619119
##  [9,] -0.05080156 -0.0554538175 -0.061414519  0.947889991 -0.04934773
## [10,] -0.04838537 -0.0518071001 -0.056191189 -0.049347733  0.95268392
## [11,] -0.04584201 -0.0479684502 -0.050692947 -0.046440074 -0.04517750
## [12,] -0.04304432 -0.0437459353 -0.044644881 -0.043241649 -0.04282506
## [13,] -0.04228131 -0.0425943404 -0.042995408 -0.042369351 -0.04218349
## [14,] -0.04520617 -0.0470087877 -0.049318387 -0.045713159 -0.04464286
## [15,] -0.02689399 -0.0193705086 -0.009731045 -0.024778013 -0.02924508
## [16,] -0.02447780 -0.0157237913 -0.004507715 -0.022015736 -0.02721343
## [17,] -0.03287089 -0.0283913359 -0.022651913 -0.031611012 -0.03427074
## [18,] -0.03007319 -0.0241688210 -0.016603847 -0.028412587 -0.03191831
## [19,] -0.03350672 -0.0293509983 -0.024026474 -0.032337927 -0.03480539
## [20,] -0.01735640 -0.0049755716  0.010887362 -0.013874291 -0.02122541
## [21,] -0.01112517  0.0044291206  0.024358055 -0.006750526 -0.01598589
## [22,] -0.02066276 -0.0099658165  0.003739648 -0.017654248 -0.02400556
## [23,] -0.01710206 -0.0045917066  0.011437186 -0.013583525 -0.02101155
## [24,] -0.01430437 -0.0003691918  0.017485253 -0.010385100 -0.01865911
##             [,11]       [,12]       [,13]       [,14]         [,15]
##  [1,] -0.05634129 -0.04650855 -0.04382689 -0.05410658  0.0102532092
##  [2,] -0.05188907 -0.04503954 -0.04317149 -0.05033236 -0.0054990852
##  [3,] -0.05494582 -0.04604811 -0.04362147 -0.05292361  0.0053159229
##  [4,] -0.05720516 -0.04679358 -0.04395406 -0.05483889  0.0133096246
##  [5,] -0.05348390 -0.04556575 -0.04340626 -0.05168432  0.0001435277
##  [6,] -0.04584201 -0.04304432 -0.04228131 -0.04520617 -0.0268939925
##  [7,] -0.04796845 -0.04374594 -0.04259434 -0.04700879 -0.0193705086
##  [8,] -0.05069295 -0.04464488 -0.04299541 -0.04931839 -0.0097310449
##  [9,] -0.04644007 -0.04324165 -0.04236935 -0.04571316 -0.0247780127
## [10,] -0.04517750 -0.04282506 -0.04218349 -0.04464286 -0.0292450813
## [11,]  0.95615152 -0.04238655 -0.04198785 -0.04351622 -0.0339472587
## [12,] -0.04238655  0.95809581 -0.04177264 -0.04227693 -0.0391196539
## [13,] -0.04198785 -0.04177264  0.95828605 -0.04193894 -0.0405303071
## [14,] -0.04351622 -0.04227693 -0.04193894  0.95676543 -0.0351228031
## [15,] -0.03394726 -0.03911965 -0.04053031 -0.03512280  0.9310215194
## [16,] -0.03268469 -0.03870307 -0.04034445 -0.03405250 -0.0734455492
## [17,] -0.03707046 -0.04015015 -0.04099007 -0.03777039 -0.0579283636
## [18,] -0.03560854 -0.03966779 -0.04077486 -0.03653110 -0.0631007588
## [19,] -0.03740272 -0.04025978 -0.04103898 -0.03805205 -0.0567528193
## [20,] -0.02896342 -0.03747524 -0.03979665 -0.03089793 -0.0866116460
## [21,] -0.02570732 -0.03640089 -0.03931732 -0.02813767 -0.0981319807
## [22,] -0.03069115 -0.03804530 -0.04005098 -0.03236255 -0.0804988153
## [23,] -0.02883052 -0.03743139 -0.03977708 -0.03078526 -0.0870818638
## [24,] -0.02736860 -0.03694903 -0.03956187 -0.02954597 -0.0922542589
##               [,16]        [,17]         [,18]       [,19]        [,20]
##  [1,]  0.0187451258 -0.010753111 -0.0009203652 -0.01298783  0.043773933
##  [2,]  0.0004164159 -0.020132167 -0.0132826393 -0.02168888  0.017851577
##  [3,]  0.0130003063 -0.013692815 -0.0047951078 -0.01571502  0.035649015
##  [4,]  0.0223014426 -0.008933294  0.0014782850 -0.01129956  0.048803643
##  [5,]  0.0069819239 -0.016772505 -0.0088543620 -0.01857208  0.027137197
##  [6,] -0.0244778019 -0.032870885 -0.0300731907 -0.03350672 -0.017356398
##  [7,] -0.0157237913 -0.028391336 -0.0241688210 -0.02935100 -0.004975572
##  [8,] -0.0045077151 -0.022651913 -0.0166038473 -0.02402647  0.010887362
##  [9,] -0.0220157364 -0.031611012 -0.0284125867 -0.03233793 -0.013874291
## [10,] -0.0272134303 -0.034270744 -0.0319183062 -0.03480539 -0.021225406
## [11,] -0.0326846870 -0.037070462 -0.0356085373 -0.03740272 -0.028963423
## [12,] -0.0387030693 -0.040150153 -0.0396677915 -0.04025978 -0.037475241
## [13,] -0.0403444463 -0.040990068 -0.0407748608 -0.04103898 -0.039796646
## [14,] -0.0340525011 -0.037770392 -0.0365310951 -0.03805205 -0.030897927
## [15,] -0.0734455492 -0.057928364 -0.0631007588 -0.05675282 -0.086611646
## [16,]  0.9213567570 -0.060588096 -0.0666064783 -0.05922028 -0.093962762
## [17,] -0.0605880960  0.948650974 -0.0544287158 -0.05064910 -0.068427307
## [18,] -0.0666064783 -0.054428716  0.9415120300 -0.05350616 -0.076939125
## [19,] -0.0592202818 -0.050649096 -0.0535061580  0.95000024 -0.066492803
## [20,] -0.0939627617 -0.068427307 -0.0769391254 -0.06649280  0.884370792
## [21,] -0.1073673406 -0.075286617 -0.0859801915 -0.07285626 -0.134587349
## [22,] -0.0868501280 -0.064787673 -0.0721418250 -0.06311628 -0.105569787
## [23,] -0.0945098874 -0.068707279 -0.0773081485 -0.06675254 -0.116403010
## [24,] -0.1005282697 -0.071786969 -0.0813674026 -0.06960960 -0.124914828
##              [,21]        [,22]        [,23]         [,24]
##  [1,]  0.065674138  0.032153415  0.044667818  0.0545005640
##  [2,]  0.033107343  0.009756681  0.018474261  0.0253237891
##  [3,]  0.055466635  0.025133543  0.036457898  0.0453556047
##  [4,]  0.071993069  0.036499050  0.049750150  0.0601617293
##  [5,]  0.044773061  0.017779392  0.027857028  0.0357751712
##  [6,] -0.011125170 -0.020662764 -0.017102062 -0.0143043678
##  [7,]  0.004429121 -0.009965816 -0.004591707 -0.0003691918
##  [8,]  0.024358055  0.003739648  0.011437186  0.0174852526
##  [9,] -0.006750526 -0.017654248 -0.013583525 -0.0103850996
## [10,] -0.015985885 -0.024005560 -0.021011548 -0.0186591104
## [11,] -0.025707317 -0.030691153 -0.028830521 -0.0273685954
## [12,] -0.036400891 -0.038045304 -0.037431390 -0.0369490289
## [13,] -0.039317321 -0.040050982 -0.039777082 -0.0395618744
## [14,] -0.028137675 -0.032362551 -0.030785264 -0.0295459667
## [15,] -0.098131981 -0.080498815 -0.087081864 -0.0922542589
## [16,] -0.107367341 -0.086850128 -0.094509887 -0.1005282697
## [17,] -0.075286617 -0.064787673 -0.068707279 -0.0717869691
## [18,] -0.085980191 -0.072141825 -0.077308148 -0.0813674026
## [19,] -0.072856259 -0.063116275 -0.066752536 -0.0696095978
## [20,] -0.134587349 -0.105569787 -0.116403010 -0.1249148278
## [21,]  0.841595145 -0.121949488 -0.135559492 -0.1462530662
## [22,] -0.121949488  0.903121483 -0.106238346 -0.1135924973
## [23,] -0.135559492 -0.106238346  0.882815093 -0.1257857764
## [24,] -0.146253066 -0.113592497 -0.125785776  0.8646337901

Residuos del modelo

Ygorro<- matrizX %*% Beta
Residuos<- matrizY - Ygorro
print(Residuos)
##           matrizY
##  [1,] -0.50716765
##  [2,]  0.50270510
##  [3,] -0.03093888
##  [4,]  1.27897644
##  [5,] -0.98441350
##  [6,]  0.19969645
##  [7,] -0.04979501
##  [8,]  0.36804405
##  [9,] -1.83297302
## [10,] -0.99733747
## [11,]  0.30859470
## [12,]  0.05512008
## [13,]  0.57689973
## [14,]  0.46007774
## [15,] -0.11721068
## [16,] -0.08157512
## [17,] -0.22115126
## [18,]  0.32537412
## [19,]  0.72736569
## [20,]  0.15503494
## [21,] -0.90043126
## [22,]  1.02732313
## [23,] -0.90437184
## [24,]  0.64215354

Aplicando Pruebas de normalidad

Jarque Bera

library(normtest) 
jb.norm.test(Residuos) 
## 
##  Jarque-Bera test for normality
## 
## data:  Residuos
## JB = 1.5606, p-value = 0.2385
#El P value es mayor al 5%, no rechazamos la hipotesis nula y concluimos que los residuos tienen una districucion normal

Kolmogorov-Smirnov

library(nortest)  
lillie.test(Residuos) 
## 
##  Lilliefors (Kolmogorov-Smirnov) normality test
## 
## data:  Residuos
## D = 0.14418, p-value = 0.2209
#El P value es mayor al 5%, no rechazamos la hipotesis nula y concluimos que los residuos tienen una distribucion normal.

Shapiro-Wilk

shapiro.test(Residuos)
## 
##  Shapiro-Wilk normality test
## 
## data:  Residuos
## W = 0.95746, p-value = 0.3895
#El P value es mayot al 5%, no rechazamos la hipotesis nula y concluimos que los residuos tienen una distribucion normal.

EJERCICIO 2: matriz de correlacion de los regresores:

R<-matrix(data = c(1,-0.8,0.68,0.74,-0.57,-0.75,-0.8,1,-0.71,-0.87,
                   0.69,0.80,0.68,-0.71,1,0.81,-0.77,-0.82,0.74,-0.87,
                   0.81,1,-0.8,-0.84,-0.57,0.69,-0.77,-0.80,1,0.64,-0.75,
                   0.8,-0.82,-0.84,0.64,1),
                nrow = 6,
                ncol = 6,
                byrow = TRUE)
colnames(R)<-c("porcentajeprn","porcentajepac","rezago","nini","educ_superior","ips")
rownames(R)<-c("porcentajeprn","porcentajepac","rezago","nini","educ_superior","ips")
print(R)
##               porcentajeprn porcentajepac rezago  nini educ_superior   ips
## porcentajeprn          1.00         -0.80   0.68  0.74         -0.57 -0.75
## porcentajepac         -0.80          1.00  -0.71 -0.87          0.69  0.80
## rezago                 0.68         -0.71   1.00  0.81         -0.77 -0.82
## nini                   0.74         -0.87   0.81  1.00         -0.80 -0.84
## educ_superior         -0.57          0.69  -0.77 -0.80          1.00  0.64
## ips                   -0.75          0.80  -0.82 -0.84          0.64  1.00

Calcular \(|R|\)

determinante_R<-det(R)
print(determinante_R)
## [1] 0.001684439

Aplicando la prueba de Farrer Glaubar (Bartlett)

Estadistico \(X^2_{FG}\)

m<-ncol(R)
n<-nrow(R)
chi_FG<--(n-1-(2*m+5)/6)*log(determinante_R)
print(chi_FG)
## [1] 13.83703

Valor critico.

gl<-m*(m-1)/2
VC<-qchisq(p = 0.95,df = gl)
print(VC)
## [1] 24.99579

como el valor de Farrer Glaubar es menor que el valor critico, no se rechaza Ho, por lo tanto no hay colinealidad en los regresores.

Cálculando VIF’s para el modelo estimado

##Inversa: matriz de correlación $R^{-1}$:
options(scipen = 999)
inversa_R<-solve(R)
print(inversa_R)
##               porcentajeprn porcentajepac     rezago        nini
## porcentajeprn    3.12989194     1.8066302 -0.5430948  0.01312674
## porcentajepac    1.80663016     5.5207504 -0.8728955  3.04065276
## rezago          -0.54309484    -0.8728955  4.6100427 -0.68684569
## nini             0.01312674     3.0406528 -0.6868457  7.70048852
## educ_superior   -0.28728369    -0.4001754  1.7897206  2.22245739
## ips              0.65166508    -0.9671414  2.3488587  2.06014702
##               educ_superior        ips
## porcentajeprn    -0.2872837  0.6516651
## porcentajepac    -0.4001754 -0.9671414
## rezago            1.7897206  2.3488587
## nini              2.2224574  2.0601470
## educ_superior     3.5016734  1.1980416
## ips               1.1980416  5.1523030

VIF’s para el modelo estimado:

VIFs<-diag(inversa_R)
print(VIFs)
## porcentajeprn porcentajepac        rezago          nini educ_superior 
##      3.129892      5.520750      4.610043      7.700489      3.501673 
##           ips 
##      5.152303

si tomamos en cuenta que a partir de 2 las variables representan un grando de colinealidad, significa en este caso que todas las variables poseen colinealidad.