Ejercicio 1

Creacion de los datos

library(dplyr)
X<-matrix(data = c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
                   1,1,1,216,283,237,203,259,374,342,301,365,
                   384,404,426,432,409,553,572,506,528,501,
                   628,677,602,630,652),
          nrow = 24, ncol = 2, byrow = FALSE)
colnames(X) <-c("cte","x")
Y<-matrix(data = c(6.1,9.1,7.2,7.5,6.9,11.5,10.3,9.5,9.2,
                   10.6,12.5,12.9,13.6,12.8,16.5,17.1,15,
                   16.2,15.8,19,19.4,19.1,18,20.2),
          nrow = 24)
XY<- cbind(Y,X)
print(XY)
##            cte   x
##  [1,]  6.1   1 216
##  [2,]  9.1   1 283
##  [3,]  7.2   1 237
##  [4,]  7.5   1 203
##  [5,]  6.9   1 259
##  [6,] 11.5   1 374
##  [7,] 10.3   1 342
##  [8,]  9.5   1 301
##  [9,]  9.2   1 365
## [10,] 10.6   1 384
## [11,] 12.5   1 404
## [12,] 12.9   1 426
## [13,] 13.6   1 432
## [14,] 12.8   1 409
## [15,] 16.5   1 553
## [16,] 17.1   1 572
## [17,] 15.0   1 506
## [18,] 16.2   1 528
## [19,] 15.8   1 501
## [20,] 19.0   1 628
## [21,] 19.4   1 677
## [22,] 19.1   1 602
## [23,] 18.0   1 630
## [24,] 20.2   1 652

Optención de la matriz A

A = \((X'.X)^{-1}*X'\)

#Matriz A 
A<-solve(t(X)%*%X)%*%t(X)
print(A)
##             [,1]          [,2]          [,3]          [,4]          [,5]
## cte  0.236906257  0.1776713023  0.2183400774  0.2483996068  0.1988897936
## x   -0.000446943 -0.0003113422 -0.0004044412 -0.0004732536 -0.0003599156
##              [,6]          [,7]          [,8]         [,9]        [,10]
## cte  0.0972178559  0.1255091777  0.1617574338  0.105174790  0.088376818
## x   -0.0001271679 -0.0001919325 -0.0002749121 -0.000145383 -0.000106929
##             [,11]         [,12]         [,13]         [,14]         [,15]
## cte  7.069474e-02  0.0512444579  4.593984e-02  6.627422e-02 -0.0610367256
## x   -6.645114e-05 -0.0000219255 -9.782148e-06 -5.633168e-05  0.0002351089
##             [,16]         [,17]         [,18]         [,19]         [,20]
## cte -0.0778346979 -0.0194838466 -0.0389341304 -0.0150633276 -0.1273445111
## x    0.0002735628  0.0001399859  0.0001845116  0.0001298665  0.0003869008
##             [,21]         [,22]         [,23]         [,24]
## cte -0.1706655976 -0.1043578121 -0.1291127187 -0.1485630024
## x    0.0004860716  0.0003342796  0.0003909486  0.0004354743

Calculando la matriz P

#Matriz P 
P<-X%*%A
N <- nrow(P)
Iden<-diag(x=1,N,N)
head(P,6)
##            [,1]       [,2]       [,3]       [,4]       [,5]       [,6]
## [1,] 0.14036657 0.11042139 0.13098077 0.14617683 0.12114803 0.06974958
## [2,] 0.11042139 0.08956147 0.10388321 0.11446884 0.09703368 0.06122933
## [3,] 0.13098077 0.10388321 0.12248751 0.13623851 0.11358980 0.06707906
## [4,] 0.14617683 0.11446884 0.13623851 0.15232913 0.12582693 0.07140277
## [5,] 0.12114803 0.09703368 0.11358980 0.12582693 0.10567166 0.06428136
## [6,] 0.06974958 0.06122933 0.06707906 0.07140277 0.06428136 0.04965705
##            [,7]       [,8]       [,9]      [,10]      [,11]      [,12]
## [1,] 0.08405176 0.10237642 0.07377207 0.06528015 0.05634129 0.04650855
## [2,] 0.07119228 0.08395731 0.06403141 0.05811591 0.05188907 0.04503954
## [3,] 0.08002118 0.09660327 0.07071903 0.06303464 0.05494582 0.04604811
## [4,] 0.08654688 0.10595028 0.07566205 0.06667023 0.05720516 0.04679358
## [5,] 0.07579866 0.09055520 0.06752060 0.06068221 0.05348390 0.04556575
## [6,] 0.05372643 0.05894031 0.05080156 0.04838537 0.04584201 0.04304432
##           [,13]      [,14]         [,15]         [,16]       [,17]
## [1,] 0.04382689 0.05410658 -0.0102532092 -0.0187451258 0.010753111
## [2,] 0.04317149 0.05033236  0.0054990852 -0.0004164159 0.020132167
## [3,] 0.04362147 0.05292361 -0.0053159229 -0.0130003063 0.013692815
## [4,] 0.04395406 0.05483889 -0.0133096246 -0.0223014426 0.008933294
## [5,] 0.04340626 0.05168432 -0.0001435277 -0.0069819239 0.016772505
## [6,] 0.04228131 0.04520617  0.0268939925  0.0244778019 0.032870885
##              [,18]      [,19]       [,20]       [,21]        [,22]
## [1,]  0.0009203652 0.01298783 -0.04377393 -0.06567414 -0.032153415
## [2,]  0.0132826393 0.02168888 -0.01785158 -0.03310734 -0.009756681
## [3,]  0.0047951078 0.01571502 -0.03564902 -0.05546664 -0.025133543
## [4,] -0.0014782850 0.01129956 -0.04880364 -0.07199307 -0.036499050
## [5,]  0.0088543620 0.01857208 -0.02713720 -0.04477306 -0.017779392
## [6,]  0.0300731907 0.03350672  0.01735640  0.01112517  0.020662764
##            [,23]       [,24]
## [1,] -0.04466782 -0.05450056
## [2,] -0.01847426 -0.02532379
## [3,] -0.03645790 -0.04535560
## [4,] -0.04975015 -0.06016173
## [5,] -0.02785703 -0.03577517
## [6,]  0.01710206  0.01430437

Calculando la matriz M

#Matriz M
M<- (Iden-P)
head(M,6)
##             [,1]        [,2]        [,3]        [,4]        [,5]
## [1,]  0.85963343 -0.11042139 -0.13098077 -0.14617683 -0.12114803
## [2,] -0.11042139  0.91043853 -0.10388321 -0.11446884 -0.09703368
## [3,] -0.13098077 -0.10388321  0.87751249 -0.13623851 -0.11358980
## [4,] -0.14617683 -0.11446884 -0.13623851  0.84767087 -0.12582693
## [5,] -0.12114803 -0.09703368 -0.11358980 -0.12582693  0.89432834
## [6,] -0.06974958 -0.06122933 -0.06707906 -0.07140277 -0.06428136
##             [,6]        [,7]        [,8]        [,9]       [,10]
## [1,] -0.06974958 -0.08405176 -0.10237642 -0.07377207 -0.06528015
## [2,] -0.06122933 -0.07119228 -0.08395731 -0.06403141 -0.05811591
## [3,] -0.06707906 -0.08002118 -0.09660327 -0.07071903 -0.06303464
## [4,] -0.07140277 -0.08654688 -0.10595028 -0.07566205 -0.06667023
## [5,] -0.06428136 -0.07579866 -0.09055520 -0.06752060 -0.06068221
## [6,]  0.95034295 -0.05372643 -0.05894031 -0.05080156 -0.04838537
##            [,11]       [,12]       [,13]       [,14]         [,15]
## [1,] -0.05634129 -0.04650855 -0.04382689 -0.05410658  0.0102532092
## [2,] -0.05188907 -0.04503954 -0.04317149 -0.05033236 -0.0054990852
## [3,] -0.05494582 -0.04604811 -0.04362147 -0.05292361  0.0053159229
## [4,] -0.05720516 -0.04679358 -0.04395406 -0.05483889  0.0133096246
## [5,] -0.05348390 -0.04556575 -0.04340626 -0.05168432  0.0001435277
## [6,] -0.04584201 -0.04304432 -0.04228131 -0.04520617 -0.0268939925
##              [,16]        [,17]         [,18]       [,19]       [,20]
## [1,]  0.0187451258 -0.010753111 -0.0009203652 -0.01298783  0.04377393
## [2,]  0.0004164159 -0.020132167 -0.0132826393 -0.02168888  0.01785158
## [3,]  0.0130003063 -0.013692815 -0.0047951078 -0.01571502  0.03564902
## [4,]  0.0223014426 -0.008933294  0.0014782850 -0.01129956  0.04880364
## [5,]  0.0069819239 -0.016772505 -0.0088543620 -0.01857208  0.02713720
## [6,] -0.0244778019 -0.032870885 -0.0300731907 -0.03350672 -0.01735640
##            [,21]        [,22]       [,23]       [,24]
## [1,]  0.06567414  0.032153415  0.04466782  0.05450056
## [2,]  0.03310734  0.009756681  0.01847426  0.02532379
## [3,]  0.05546664  0.025133543  0.03645790  0.04535560
## [4,]  0.07199307  0.036499050  0.04975015  0.06016173
## [5,]  0.04477306  0.017779392  0.02785703  0.03577517
## [6,] -0.01112517 -0.020662764 -0.01710206 -0.01430437

Calculado los residuos del modelo

#Residuos E = (I-P)*Y
u_i<- M%*%Y
print(u_i)
##              [,1]
##  [1,] -0.50716765
##  [2,]  0.50270510
##  [3,] -0.03093888
##  [4,]  1.27897644
##  [5,] -0.98441350
##  [6,]  0.19969645
##  [7,] -0.04979501
##  [8,]  0.36804405
##  [9,] -1.83297302
## [10,] -0.99733747
## [11,]  0.30859470
## [12,]  0.05512008
## [13,]  0.57689973
## [14,]  0.46007774
## [15,] -0.11721068
## [16,] -0.08157512
## [17,] -0.22115126
## [18,]  0.32537412
## [19,]  0.72736569
## [20,]  0.15503494
## [21,] -0.90043126
## [22,]  1.02732313
## [23,] -0.90437184
## [24,]  0.64215354

Aplicación de las pruebas de normalidad

** Prueba de jarque Bera **

library(normtest)
jb.norm.test(u_i)
## 
##  Jarque-Bera test for normality
## 
## data:  u_i
## JB = 1.5606, p-value = 0.222

P-value(0.243) > ??(0.05) Observamos que el P-valor de resultado es mayor que el nivel de significancia por lo que concluimos que NO SE RECHAZA LA HIPOTESIS NULA POR LO QUE HAY EVIDENCIA QUE LOS RESIDUOS SIGUEN UNA DISTRIBUCION NORMAL

** Prueba de Kolmogorov Smirnov **

library(nortest)
lillie.test(u_i)
## 
##  Lilliefors (Kolmogorov-Smirnov) normality test
## 
## data:  u_i
## D = 0.14418, p-value = 0.2209

P-value(0.2209) > ??(0.05) Observamos que el P-valor de resultado es mayor que el nivel de significancia por lo que concluimos que NO SE RECHAZA LA HIPOTESIS NULA POR LO QUE HAY EVIDENCIA QUE LOS RESIDUOS SIGUEN UNA DISTRIBUCION NORMAL

Prueba de Shapiro - Wilk

shapiro.test(u_i)
## 
##  Shapiro-Wilk normality test
## 
## data:  u_i
## W = 0.95746, p-value = 0.3895

P-value(0.3895) > ??(0.05) Observamos que el P-valor de resultado es mayor que el nivel de significancia por lo que concluimos que NO SE RECHAZA LA HIPOTESIS NULA POR LO QUE HAY EVIDENCIA QUE LOS RESIDUOS SIGUEN UNA DISTRIBUCION NORMAL

Ejercicio 2

Creando la Matriz de Correlación

#Matriz R
R<-matrix(data = c(1,-0.8,0.68,0.74,-0.57,-0.75,-0.8, 1, -0.71, -0.87, 0.69,0.8,
                   0.68,-0.71,1,.81,-.77,-.82,.74,-.87,.81,1,.8,-.84,-.57,.69,-.77,
                   -.8,1,.64,-.75,.8,-.82,-.84,.64,1),
          nrow = 6, ncol = 6, byrow = TRUE)
colnames(R) <-c("Prn","Pac","rezago","nini", "educ", "ips")
rownames(R)<-c("Prn","Pac","rezago","nini", "educ", "ips")
print(R)
##          Prn   Pac rezago  nini  educ   ips
## Prn     1.00 -0.80   0.68  0.74 -0.57 -0.75
## Pac    -0.80  1.00  -0.71 -0.87  0.69  0.80
## rezago  0.68 -0.71   1.00  0.81 -0.77 -0.82
## nini    0.74 -0.87   0.81  1.00  0.80 -0.84
## educ   -0.57  0.69  -0.77 -0.80  1.00  0.64
## ips    -0.75  0.80  -0.82 -0.84  0.64  1.00
determinante_R<- det(R)

Prueba de Farrar Glauder