1 연속분포


1.1 균일분포(Uniform distribution)

1.1.1 균일 분포

특정 구간 [a,b]에서 확률밀도함수가 일정한 분포

확률변수 X의 표본공간 : \(\Omega=\{x|0\le x\le b \}\)

확률 변수 X에 대한 \(\color{salmon}{\text{pdf}}\)

\(f(x;a,b)\)

  • \(\frac{1}{b-a}, (a\le x \le b)\)
  • \(0, (otherwise)\)

\(X \sim U(a,b)\)라고 표현

plot(seq(-5,15,len=1000),dunif(seq(-5,15,len=1000),min=0,max=10),type='l',xlab='x',ylab='y',main='Uniform Distribution',sub='X~U(0,10)')


누적밀도함수

\(X\sim U(a,b)\)의 cdf

\(F(x;a,b)\)

  • \(0 (x\lt a)\)
  • \(\frac{x-a}{b-a} (a\le x\lt b)\)
  • \(1 (b\le x)\)
plot(seq(-5,15,len=1000),punif(seq(-5,15,len=1000),min=0,max=10),type='l',xlab='x',ylab='y',main='Uniform Distribution',sub='X~U(0,10)')


cdf 증명

pf)

\(F(x)=P(X\le x)=\int^{x}_{a}f(t)dt=\int^{x}_{a}\frac{1}{b-a}dt=\frac{1}{b-a}[t]^x_a=\frac{x-a}{b-a}\)


적률생성함수

\(M_x(t)\)

  • \(\frac{e^{tb}-e^{ta}}{t(b-a)} (t \ne 0)\)
  • \(1 (t = 0)\)

pf)

\(M_x(t)=E(e^{tX})=\int^{\infty}_{0} e^{tx}f(x)dx=\frac{1}{b-a}\int^{b}_{a}e^{tx}dx \\ =\frac{1}{b-a}[\frac{1}{t}e^{tx}]^b_a=\frac{1}{t(b-a)}\times (e^{tb}-e^{ta})\)

\(\color{salmon}{\text{적률생성함수로 구하려 했으나 t=0이 될 수 없으므로 평균 분산은 일반적으로 증명}}\)


평균 증명

\(\mu=E(X)=\frac{a+b}{2}\)

\(E(X)=\int^b_a xf(x)dx=\frac{1}{b-a}\int^b_axdx=\frac{1}{b-a}(\frac{x^2}{2})^b=\frac{b^2-a^2}{2(b-a)}=\frac{(b-a)(b+a)}{2(b-a)}=\frac{b+a}{2}\)


분산 증명

\(Var(X)=\frac{(b-a)^2}{12}\)

\(Var(X)=E(X^2)-\mu^2\)

  • \(E(X^2)=\int^b_a x^2 f(x)dx=\frac{1}{b-a}\int^b_a x^2dx=\frac{1}{b-a}[\frac{x^3}{3}]^b_a=\frac{b^3-a^3}{3(b-a)}=\frac{(b-a)(b^2+ab+a^2)}{3(b-a)}=\frac{b^2+ab+a^2}{3}\)
  • \(E(X^2)-\mu^2=\frac{b^2+ab+a^2}{3}-(\frac{a+b}{2})^2=\frac{(b-a)^2}{12}=\frac{4b^2+4ab+4a^2-3(a^2+2ab+b^2)}{12}=\frac{a^2-2ab+b^2}{12}=\frac{(b-a)^2}{12}\)

1.1.2 예제 6.2.1

어떤 사람이 자기 집에서 회사까지 직접 운전을하여 출근하는데 걸리는 시간(단위 : 분) X는 (30,50)에서 균일분포를 따른다고 하자. 그의 회사 출근시간은 아침 8시까지이다. 그의 집에서 매일 아침 7시 15분에 출발한다면, 지각할 확률은 얼마인가?

\(\color{gray}{\text{solution)}}\)

\(X\sim U(30,50)\)

\(F(x;a,b)=\frac{x-30}{20}, 30<x<50\) \(P[X\gt 45]=-P[X\le 45]=1-F(45;30,50)=1-\frac{45-30}{20}=\frac{1}{4}\)

# x=seq(0,1, len=1000000)
# curve(dunif(x,30,50), type='l', xlim=c(20,55), ylab='f(x)')
plot(seq(20,60,len=1000),dunif(seq(20,60,len=1000),min=30,max=50),type='l',xlab='x',ylab='y',main='Uniform Distribution',sub='X~U(30,50)')
polygon(c(45,seq(45,50,len=1000),50),c(0,dunif(seq(45,50,len=1000),30,50),0),col=alpha('red',.5))


1.1.3 예제 6.2.2

남녀가 오후 12시 30분에 어떤 장소에서 만나기로 악속했다. 남자와 여자의 도착시간은 서로 독립이며 남자의 도착시간은 12시 15분과 12시 45분 사이에서 균일분포를 따르고, 여자의 도착시간은 12시와 1시 사이에서 균일분포를 따른다.

  1. 먼저 도착한사람이 5분이상 기다리지 않을 확률은 얼마인가?

  2. 남자가 먼저 도착할 확률은 얼마인가?

\(\color{gray}{\text{solution)}}\)

\(x,y \in [0,60]\) X를 남자의 확률변수 Y를 여자의 확률변수라 하자 . \(X\sim U(15,45)\)이고 \(Y\sim U(0,60)\)

\(f_X(x;15,45)\)

  • \(\frac{1}{45-15}, (15\lt x \lt 45)\)
  • \(0, (otherwise)\)

\(f_Y(y;0,60)\)

  • \(\frac{1}{60-0}, (0\lt x \lt 60)\)
  • \(0, (otherwise)\)
  1. \(P[|X-Y|\lt5]=\int^{45}_{15}\int^{x+5}_{x-5}\frac{1}{1800}dydx=\frac{1}{6}\)

  2. \(P[X\lt Y]=\int^{45}_{15}\int^{60}_{x}\frac{1}{1800}dydx=\int^{45}_{15}\frac{1}{1800}(60-x)dydx=\frac{1}{2}\)

1.2 감마분포(Gamma distribution)

감마함수

\(\Gamma(k)=\int^\infty_0 x^{k-1}e^{-x}dx\)

  • \((k-1)! ,k>1, k\in I\)
  • \(\sqrt{\pi}, k=\frac{1}{2}\)

감마함수의 성질

\(k\gt 1\)일 때 \(\Gamma(k)=(k-1)!=(k-1)\Gamma(k-1)\)

pf)

\(\Gamma(k+1)=\int^\infty_0 x^{k}e^{-x}dx=-x^ke^{-x}|^{\infty}_0+k\int^{\infty}_0x^{k-1}e^{-x}dx=k\Gamma(k)\)

\(\sqrt{\pi}, k=\frac{1}{2}\)

pf)

\(\int^{\infty}_0 x^{\frac{1}{2}-1}e^{-x}dx \\ x=t^2 으로 치환, dx=2tdt \\ =\int^{\infty}_0(t^{-1})e^{-t^2}2tdt=\int^{\infty}_0(2t)(t^{-1})e^{-t^2}dt=2\int^{\infty}_{0}e^{-x^2}dx=\int^{\infty}_{-\infty}e^{-x^2}dx=l \\l^2=(\int^{\infty}_{-\infty}e^{-x^2}dx)(\int^{\infty}_{-\infty}e^{-y^2}dy)=\int^{\infty}_{-\infty}\int^{\infty}_{-\infty} e^{-(x^2+y^2)}dxdy \\ 극좌표계 변환 \\ x=rcos\theta, y=rsin\theta dxdy=rdrd\theta \\ l^2=\int^{\infty}_{-\infty}\int^{\infty}_{-\infty}e^{-r^2}rdrd\theta \\ r^2=S 로 치환 \\ 2rdr=dS \\ l^2=\frac{1}{2}\int^{2\pi}_{0}\int^{\infty}_{0}e^{-S}dsd\theta=\frac{1}{2}\int^{2\pi}_{0}[-\frac{1}{e^{\infty}}+\frac{1}{e^0}]d\theta \\=\frac{1}{2}\int^{2\pi}_{0}1d\theta=\frac{1}{2}\times2\pi=\pi \\ l={\sqrt{\pi}}\)


1.2.1 감 마 분 포(Gamma distribution)

확률변수 X : 포아송 과정에서 \(\alpha\) 개의 사건이 발생할 때 까지의 대기시간

확률변수 X의 표본공간 : \(S=\{x|x\gt0\}\)

확률 변수 X에 대한 pdf : \(f(x;\alpha,\beta)\)

  • \(\frac{1}{\Gamma(\alpha)\beta^\alpha}x^{\alpha-1}e^{-x/\beta}, (x\gt0)\)
  • \(0, (otherwise)\)

감마분포 그래프


적률생성함수

\(M_X(t)=(1-\beta t)^{-\alpha}, t \lt1/\beta\)

pf)

\(M_X(t)=E(e^tX)=\int^{\infty}_{0}e^{tx}f(x)dx=\frac{1}{\beta^\alpha}\int^\infty_0\frac{1}{\Gamma(\alpha)}x^{\alpha-1}e^{tx}e^{-x/\beta} dx=\frac{1}{\beta^\alpha \Gamma(\alpha)}\int^{\infty}_0x^{\alpha-1}e^{-x(1/\beta-t)}dx \\ M_X(t)=(1-\beta t)^\alpha (by \ thm \ 6.3.2)\)

평균 증명

\(M`_X(0) \\ \frac{d}{dt}(1-\beta t)^{-\alpha}=(-\alpha)(1-\beta t)^{-\alpha-1}(-\beta)=\alpha\beta(1-\beta t)^{-\alpha-1} \\ M`_X(0)=\alpha\beta\)

분산증명

\(M``_X(0)\\ \frac{d}{dt}[\frac{d}{dt}(1-\beta t)^{-\alpha}]=\frac{d}{dt}\alpha\beta(1-\beta t)^{-\alpha-1}=\alpha(-\alpha-1)\beta(-\beta)(1-\beta t)^{-\alpha-2}=\alpha(\alpha+1)\beta^2(1-\beta t)^{-\alpha-2} \\ \alpha(\alpha+1)\beta^2-\alpha^2\beta^2=\alpha\beta^2\)


1.2.2 정리 6.3.2

\(\Gamma(\alpha)\beta^\alpha = \int^\infty_0x^{\alpha-1}e^{-x/\beta}dx\)

pf)

부분적분 사용

\(\int^{b}_{a}f(x)g`(x)dx=[f(x)g(x)]^b_a-\int^b_af`(x)g(x)dx\)

\(f(x)=x^{\alpha-1}\leftrightarrow \frac{d f(x)}{dx}=(\alpha-1)x^{\alpha-2}, \frac{d g(x)}{dx}=e^{-x/\beta} \leftrightarrow g(x)=-\beta e^{-x/\beta}\)

\(\int^\infty_0x^{\alpha-1}e^{-x/\beta}dx \\ \int^{b}_{a}f(x)g`(x)dx=[(x^{\alpha-1})(-\beta e^{-x/\beta})]^{\infty}_0-\int^{\infty}_0 ((\alpha-1)x^{\alpha-2})(-\beta e^{-x/\beta})dx \\ =(\alpha-1)(\beta)\int^{\infty}_0 x^{\alpha-2}e^{-x/\beta}dx \\ \therefore \int^\infty_0x^{\alpha-1}e^{-x/\beta}dx=(\alpha-1)!\beta^\alpha=\Gamma(\alpha)\beta^\alpha\)


1.2.3 정리 6.3.3

n이 양의정수이고 \(X\sim Gam(n,\beta)\)이면 \(P[X\le x]=F(x;n,\beta)=P[Y\ge n]\)이다. 여기서 \(Y\sim Poi(x/\beta)\)이다.

\(\alpha\)가 양의 정수라 가정

cdf

\(F(x)=P(X\le x)=1-\sum^{\alpha-1}_{y=0} \frac{(x/\beta)^ye^{-x/\beta}}{y!}\)

간단한 증명은 못찾아서 첨부

cdf 증명

Poisson distribution cdf \(F(x)=\sum_{k=0}^x f(x;\lambda)=\sum_{k=0}^x\frac{e^{-\lambda}\mu^x}{x!}\)


1.2.4 예 제 6.3.1 ~6.3.2

1.2.4.1 예제 6.3.1

어떤 방사능에 노출된 쥐의 생존기간(단위 : 일) X는 Gam(3,5)라 하자. 쥐의 생존기간이 5일을 초과하지 못할 확률은 정리 6.3.3에 의해 \(P[X\le5]=P[Y\ge3]=1-P[Y\le2]1-0.9197=0.0803\)

x=seq(-.01,20,len=1000)
shape=3;scale=5
plot(x,pgamma(x,shape=shape,scale=scale),type='l',ylab='y',main=paste('gamma distribution X~Gam(',shape,',',scale,')'),ylim=c(0,1))
x=seq(0,20,1)
lines(x,1-ppois(x,1),type='l',lwd=3,col=alpha('skyblue',.7))
abline(v=3,lwd=3,lty=2,col=alpha('red',.5))

1.2.4.2 예제 6.3.2

\(X_1\)\(X_2\)는 독립이며 각각 \(X_1\sim Gam(\alpha_1,\beta), X_2\sim Gam(\alpha_2,\beta)\)이면 \(Y=X_1+X_2 \sim Gam(\alpha_1+\alpha_2,\beta)\)이다.

\(\color{gray}{\text{solution)}}\)

\(M_Y(t)=M_{X_1}(t)M_{X_2}(t)=[\frac{1}{1-\beta t}]^{\alpha_1}[\frac{1}{1-\beta t}]^{\alpha_2}=[\frac{1}{1-\beta t}]^{\alpha_1+\alpha_2},(t<1/\beta) \\ \therefore Y=X_1+X_2 \sim Gam(\alpha_1+\alpha_2,\beta)\)

감마분포,카이제곱분포, 지수분포 비교

카이제곱분포와 지수분포는 감마분포의 Rare case

\(\alpha=n/2, \beta=2인 감마분포 \leftrightarrow 자유도가 n인 카이제곱분포\) \(\alpha=1인 감마분포 \leftrightarrow 지수분포\)


1.3 지수분포(exponential distribution)

1.3.1 지 수 분 포

확률변수 X : 포아송 과정에서 한개 사건이 발생할 때까지 대기시간

X의 표본공간 : \(S=\{x|x\gt0\}\)

확률변수 X에 대한 pdf : \(f(x;\theta)\)

  • \(\frac{1}{\beta}e^{-x/\beta} (x \gt 0)\)
  • \(0 (otherwise)\)

적률생성함수

\(\alpha=1\)인 감마분포와 같음.

\(M_X(t)=(1-\beta t)^{-1}, t \lt1/\beta\)

평균

\(\mu=\beta\)

분산

\(\sigma^2=\beta^2\)

cdf

\(F(x)=P(X\le x)=1-e^{-x/\beta},(x\ge0)\)

pf)

\(F(x)=P(X\le x)=\int^x_0f(t)dt=\frac{1}{\beta}\int^x_0e^{-t/\beta}dt=\frac{1}{\beta}[(-\beta)e^{-t/\beta}]^x_0=1-e^{-x/\beta},(x\ge0)\)

1.3.2 예제 6.4.1

어떤 기계를 수리하는 데 걸리는 시간은 모수가 \(\theta=3\)인 지수분포를 따른다고 한다.

  1. 수리시간이 3시간을 초과할 확률은 얼마인가?
  2. 수리시간이 5시간을 초과했다고 할 때, 적어도 8시간이 소요될 조건부 확률은 얼마인가?

solution) (a) \(P[X\gt3]=1-F(3;3)=e^{-1}\)

  1. 지수분포의 무기억성으로부터 \(P[X\gt8|X\gt5]=P[X\gt3]=e^{-1}\)
LS0tDQp0aXRsZTogIjbsnqUuIOyXsOyGjeu2hO2PrCINCmF1dGhvcjogImNobyBjaGFuZyBqZSINCmRhdGU6ICJgciBmb3JtYXQoU3lzLnRpbWUoKSwgJyAlWeuFhCwgJUIgJWTsnbwnKWAiDQpvdXRwdXQ6DQogIGh0bWxfbm90ZWJvb2s6DQogICAgZmlnX2NhcHRpb246IHllcw0KICAgIG51bWJlcl9zZWN0aW9uczogeWVzDQogICAgdG9jOiB5ZXMNCiAgICB0b2NfZmxvYXQ6IHllcw0KICBodG1sX2RvY3VtZW50Og0KICAgIGZpZ19jYXB0aW9uOiB5ZXMNCiAgICBudW1iZXJfc2VjdGlvbnM6IHllcw0KICAgIHRvYzogeWVzDQogICAgdG9jX2Zsb2F0OiB5ZXMNCiAgICBkZl9wcmludDogcGFnZWQNCi0tLQ0KDQpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0NCg0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KGVjaG8gPSBUUlVFKQ0KbGlicmFyeShzaGlueSkNCmxpYnJhcnkoc2hpbnlkYXNoYm9hcmQpDQpsaWJyYXJ5KHNjYWxlcykNCmBgYA0KDQojIOyXsOyGjeu2hO2PrHsudGFic2V0IC50YWJzZXQtZmFkZSAudGFic2V0LXBpbGxzfQ0KDQoqKioqKg0KDQojI+q3oOydvOu2hO2PrChVbmlmb3JtIGRpc3RyaWJ1dGlvbil7LnRhYnNldCAudGFic2V0LWZhZGUgLnRhYnNldC1waWxsc30NCg0KIyMjIOq3oOydvCDrtoTtj6wNCg0K7Yq57KCVIOq1rOqwhCBbYSxiXeyXkOyEnCDtmZXrpaDrsIDrj4TtlajsiJjqsIAg7J287KCV7ZWcIOu2hO2PrA0KDQrtmZXrpaDrs4DsiJggWOydmCDtkZzrs7jqs7XqsIQgOiAkXE9tZWdhPVx7eHwwXGxlIHhcbGUgYiBcfSQNCg0K7ZmV66WgIOuzgOyImCBY7JeQIOuMgO2VnCAkXGNvbG9ye3NhbG1vbn17XHRleHR7cGRmfX0kDQoNCg0KJGYoeDthLGIpJA0KDQogKyAkXGZyYWN7MX17Yi1hfSwgKGFcbGUgeCBcbGUgYikkDQogKyAkMCwgKG90aGVyd2lzZSkkDQogDQokWCBcc2ltIFUoYSxiKSTrnbzqs6Ag7ZGc7ZiEIA0KDQpgYGB7cn0NCnBsb3Qoc2VxKC01LDE1LGxlbj0xMDAwKSxkdW5pZihzZXEoLTUsMTUsbGVuPTEwMDApLG1pbj0wLG1heD0xMCksdHlwZT0nbCcseGxhYj0neCcseWxhYj0neScsbWFpbj0nVW5pZm9ybSBEaXN0cmlidXRpb24nLHN1Yj0nWH5VKDAsMTApJykNCmBgYA0KDQoNCioqKioqDQoNCioq64iE7KCB67CA64+E7ZWo7IiYKioNCg0KDQokWFxzaW0gVShhLGIpJOydmCBjZGYNCg0KJEYoeDthLGIpJA0KDQorICQwICh4XGx0IGEpJA0KKyAkXGZyYWN7eC1hfXtiLWF9IChhXGxlIHhcbHQgYikkDQorICQxIChiXGxlIHgpJA0KDQpgYGB7cn0NCnBsb3Qoc2VxKC01LDE1LGxlbj0xMDAwKSxwdW5pZihzZXEoLTUsMTUsbGVuPTEwMDApLG1pbj0wLG1heD0xMCksdHlwZT0nbCcseGxhYj0neCcseWxhYj0neScsbWFpbj0nVW5pZm9ybSBEaXN0cmlidXRpb24nLHN1Yj0nWH5VKDAsMTApJykNCmBgYA0KDQoqKioqDQoNCioqY2RmIOymneuqhSoqDQoNCipwZikqDQoNCiRGKHgpPVAoWFxsZSB4KT1caW50Xnt4fV97YX1mKHQpZHQ9XGludF57eH1fe2F9XGZyYWN7MX17Yi1hfWR0PVxmcmFjezF9e2ItYX1bdF1eeF9hPVxmcmFje3gtYX17Yi1hfSQNCg0KKioqKg0KDQoqKuyggeuloOyDneyEse2VqOyImCoqDQoNCiRNX3godCkkDQoNCisgJFxmcmFje2Vee3RifS1lXnt0YX19e3QoYi1hKX0gICh0IFxuZSAwKSQNCisgJDEgKHQgPSAwKSQNCg0KKnBmKSoNCg0KJE1feCh0KT1FKGVee3RYfSk9XGludF57XGluZnR5fV97MH0gZV57dHh9Zih4KWR4PVxmcmFjezF9e2ItYX1caW50XntifV97YX1lXnt0eH1keCBcXCA9XGZyYWN7MX17Yi1hfVtcZnJhY3sxfXt0fWVee3R4fV1eYl9hPVxmcmFjezF9e3QoYi1hKX1cdGltZXMgKGVee3RifS1lXnt0YX0pJA0KDQokXGNvbG9ye3NhbG1vbn17XHRleHR77KCB66Wg7IOd7ISx7ZWo7IiY66GcIOq1rO2VmOugpCDtlojsnLzrgpggdD0w7J20IOuQoCDsiJgg7JeG7Jy866+A66GcIO2Pieq3oCDrtoTsgrDsnYAg7J2867CY7KCB7Jy866GcIOymneuqhX19JA0KDQoNCioqKioNCg0KKirtj4nqt6Ag7Kad66qFKioNCg0KJFxtdT1FKFgpPVxmcmFje2ErYn17Mn0kDQoNCiRFKFgpPVxpbnReYl9hIHhmKHgpZHg9XGZyYWN7MX17Yi1hfVxpbnReYl9heGR4PVxmcmFjezF9e2ItYX0oXGZyYWN7eF4yfXsyfSleYj1cZnJhY3tiXjItYV4yfXsyKGItYSl9PVxmcmFjeyhiLWEpKGIrYSl9ezIoYi1hKX09XGZyYWN7YithfXsyfSQNCg0KKioqKg0KDQoqKuu2hOyCsCDspp3rqoUqKg0KDQokVmFyKFgpPVxmcmFjeyhiLWEpXjJ9ezEyfSQNCg0KJFZhcihYKT1FKFheMiktXG11XjIkDQoNCisgJEUoWF4yKT1caW50XmJfYSB4XjIgZih4KWR4PVxmcmFjezF9e2ItYX1caW50XmJfYSB4XjJkeD1cZnJhY3sxfXtiLWF9W1xmcmFje3heM317M31dXmJfYT1cZnJhY3tiXjMtYV4zfXszKGItYSl9PVxmcmFjeyhiLWEpKGJeMithYithXjIpfXszKGItYSl9PVxmcmFje2JeMithYithXjJ9ezN9JA0KKyAkRShYXjIpLVxtdV4yPVxmcmFje2JeMithYithXjJ9ezN9LShcZnJhY3thK2J9ezJ9KV4yPVxmcmFjeyhiLWEpXjJ9ezEyfT1cZnJhY3s0Yl4yKzRhYis0YV4yLTMoYV4yKzJhYitiXjIpfXsxMn09XGZyYWN7YV4yLTJhYitiXjJ9ezEyfT1cZnJhY3soYi1hKV4yfXsxMn0kDQoNCioqKioqDQoNCiMjIyDsmIjsoJwgNi4yLjENCg0K7Ja065akIOyCrOuejOydtCDsnpDquLAg7KeR7JeQ7IScIO2ajOyCrOq5jOyngCDsp4HsoJEg7Jq07KCE7J2E7ZWY7JesIOy2nOq3vO2VmOuKlOuNsCDqsbjrpqzripQg7Iuc6rCEKOuLqOychCA6IOu2hCkgWOuKlCAoMzAsNTAp7JeQ7IScIOq3oOydvOu2hO2PrOulvCDrlLDrpbjri6Tqs6Ag7ZWY7J6QLiDqt7jsnZgg7ZqM7IKsIOy2nOq3vOyLnOqwhOydgCDslYTsuaggOOyLnOq5jOyngOydtOuLpC4g6re47J2YIOynkeyXkOyEnCDrp6Tsnbwg7JWE7LmoIDfsi5wgMTXrtoTsl5Ag7Lac67Cc7ZWc64uk66m0LCDsp4DqsIHtlaAg7ZmV66Wg7J2AIOyWvOuniOyduOqwgD8NCg0KJFxjb2xvcntncmF5fXtcdGV4dHtzb2x1dGlvbil9fSQNCg0KJFhcc2ltIFUoMzAsNTApJA0KDQokRih4O2EsYik9XGZyYWN7eC0zMH17MjB9LCAzMDx4PDUwJA0KJFBbWFxndCA0NV09LVBbWFxsZSA0NV09MS1GKDQ1OzMwLDUwKT0xLVxmcmFjezQ1LTMwfXsyMH09XGZyYWN7MX17NH0kDQoNCmBgYHtyfQ0KIyB4PXNlcSgwLDEsIGxlbj0xMDAwMDAwKQ0KIyBjdXJ2ZShkdW5pZih4LDMwLDUwKSwgdHlwZT0nbCcsIHhsaW09YygyMCw1NSksIHlsYWI9J2YoeCknKQ0KcGxvdChzZXEoMjAsNjAsbGVuPTEwMDApLGR1bmlmKHNlcSgyMCw2MCxsZW49MTAwMCksbWluPTMwLG1heD01MCksdHlwZT0nbCcseGxhYj0neCcseWxhYj0neScsbWFpbj0nVW5pZm9ybSBEaXN0cmlidXRpb24nLHN1Yj0nWH5VKDMwLDUwKScpDQpwb2x5Z29uKGMoNDUsc2VxKDQ1LDUwLGxlbj0xMDAwKSw1MCksYygwLGR1bmlmKHNlcSg0NSw1MCxsZW49MTAwMCksMzAsNTApLDApLGNvbD1hbHBoYSgncmVkJywuNSkpDQpgYGANCg0KKioqKg0KDQojIyMg7JiI7KCcIDYuMi4yIA0K64Ko64WA6rCAIOyYpO2bhCAxMuyLnCAzMOu2hOyXkCDslrTrlqQg7J6l7IaM7JeQ7IScIOunjOuCmOq4sOuhnCDslYXsho3tlojri6QuIOuCqOyekOyZgCDsl6zsnpDsnZgg64+E7LCp7Iuc6rCE7J2AIOyEnOuhnCDrj4Xrpr3snbTrqbAg64Ko7J6Q7J2YIOuPhOywqeyLnOqwhOydgCAxMuyLnCAxNeu2hOqzvCAxMuyLnCA0Neu2hCDsgqzsnbTsl5DshJwg6reg7J2867aE7Y+s66W8IOuUsOultOqzoCwg7Jes7J6Q7J2YIOuPhOywqeyLnOqwhOydgCAxMuyLnOyZgCAx7IucIOyCrOydtOyXkOyEnCDqt6DsnbzrtoTtj6zrpbwg65Sw66W464ukLiANCg0KKGEpIOuovOyggCDrj4TssKntlZzsgqzrnozsnbQgNeu2hOydtOyDgSDquLDri6Trpqzsp4Ag7JWK7J2EIO2ZleuloOydgCDslrzrp4jsnbjqsIA/DQoNCihiKSDrgqjsnpDqsIAg66i87KCAIOuPhOywqe2VoCDtmZXrpaDsnYAg7Ja866eI7J246rCAPw0KDQoNCg0KJFxjb2xvcntncmF5fXtcdGV4dHtzb2x1dGlvbil9fSQNCg0KDQokeCx5IFxpbiBbMCw2MF0kDQpY66W8IOuCqOyekOydmCDtmZXrpaDrs4DsiJggWeulvCDsl6zsnpDsnZgg7ZmV66Wg67OA7IiY6528IO2VmOyekCAuDQokWFxzaW0gVSgxNSw0NSkk7J206rOgICRZXHNpbSBVKDAsNjApJA0KDQokZl9YKHg7MTUsNDUpJA0KDQorICRcZnJhY3sxfXs0NS0xNX0sICgxNVxsdCB4IFxsdCA0NSkkDQorICQwLCAob3RoZXJ3aXNlKSQNCg0KJGZfWSh5OzAsNjApJA0KDQorICRcZnJhY3sxfXs2MC0wfSwgKDBcbHQgeCBcbHQgNjApJA0KKyAkMCwgKG90aGVyd2lzZSkkDQoNCihhKSAkUFt8WC1ZfFxsdDVdPVxpbnReezQ1fV97MTV9XGludF57eCs1fV97eC01fVxmcmFjezF9ezE4MDB9ZHlkeD1cZnJhY3sxfXs2fSQNCg0KKGIpICRQW1hcbHQgWV09XGludF57NDV9X3sxNX1caW50Xns2MH1fe3h9XGZyYWN7MX17MTgwMH1keWR4PVxpbnReezQ1fV97MTV9XGZyYWN7MX17MTgwMH0oNjAteClkeWR4PVxmcmFjezF9ezJ9JA0KDQoNCg0KIyPqsJDrp4jrtoTtj6woR2FtbWEgZGlzdHJpYnV0aW9uKXsudGFic2V0IC50YWJzZXQtZmFkZSAudGFic2V0LXBpbGxzfQ0KDQoNCioq6rCQ66eI7ZWo7IiYKioNCg0KJFxHYW1tYShrKT1caW50XlxpbmZ0eV8wIHhee2stMX1lXnsteH1keCQNCg0KKyAkKGstMSkhICxrPjEsIGtcaW4gSSQNCisgJFxzcXJ0e1xwaX0sIGs9XGZyYWN7MX17Mn0kDQoNCioqKiogDQoNCioq6rCQ66eI7ZWo7IiY7J2YIOyEseyniCoqDQoNCiRrXGd0IDEk7J28IOuVjCAkXEdhbW1hKGspPShrLTEpIT0oay0xKVxHYW1tYShrLTEpJA0KDQpwZikNCg0KJFxHYW1tYShrKzEpPVxpbnReXGluZnR5XzAgeF57a31lXnsteH1keD0teF5rZV57LXh9fF57XGluZnR5fV8wK2tcaW50XntcaW5mdHl9XzB4XntrLTF9ZV57LXh9ZHg9a1xHYW1tYShrKSQNCg0KJFxzcXJ0e1xwaX0sIGs9XGZyYWN7MX17Mn0kDQoNCnBmKQ0KDQokXGludF57XGluZnR5fV8wIHhee1xmcmFjezF9ezJ9LTF9ZV57LXh9ZHggXFwgeD10XjIg7Jy866GcIOy5mO2ZmCwgZHg9MnRkdCBcXCA9XGludF57XGluZnR5fV8wKHReey0xfSllXnstdF4yfTJ0ZHQ9XGludF57XGluZnR5fV8wKDJ0KSh0XnstMX0pZV57LXReMn1kdD0yXGludF57XGluZnR5fV97MH1lXnsteF4yfWR4PVxpbnRee1xpbmZ0eX1fey1caW5mdHl9ZV57LXheMn1keD1sIFxcbF4yPShcaW50XntcaW5mdHl9X3stXGluZnR5fWVeey14XjJ9ZHgpKFxpbnRee1xpbmZ0eX1fey1caW5mdHl9ZV57LXleMn1keSk9XGludF57XGluZnR5fV97LVxpbmZ0eX1caW50XntcaW5mdHl9X3stXGluZnR5fSBlXnstKHheMit5XjIpfWR4ZHkgXFwg6re57KKM7ZGc6rOEIOuzgO2ZmCBcXCB4PXJjb3NcdGhldGEsIHk9cnNpblx0aGV0YSBkeGR5PXJkcmRcdGhldGEgXFwgbF4yPVxpbnRee1xpbmZ0eX1fey1caW5mdHl9XGludF57XGluZnR5fV97LVxpbmZ0eX1lXnstcl4yfXJkcmRcdGhldGEgXFwgcl4yPVMg66GcIOy5mO2ZmCBcXCAycmRyPWRTIFxcIGxeMj1cZnJhY3sxfXsyfVxpbnReezJccGl9X3swfVxpbnRee1xpbmZ0eX1fezB9ZV57LVN9ZHNkXHRoZXRhPVxmcmFjezF9ezJ9XGludF57MlxwaX1fezB9Wy1cZnJhY3sxfXtlXntcaW5mdHl9fStcZnJhY3sxfXtlXjB9XWRcdGhldGEgXFw9XGZyYWN7MX17Mn1caW50XnsyXHBpfV97MH0xZFx0aGV0YT1cZnJhY3sxfXsyfVx0aW1lczJccGk9XHBpIFxcIGw9e1xzcXJ0e1xwaX19JA0KDQoqKioqDQoNCiMjIyDqsJAg66eIIOu2hCDtj6woR2FtbWEgZGlzdHJpYnV0aW9uKQ0KDQrtmZXrpaDrs4DsiJggWCA6IO2PrOyVhOyGoSDqs7zsoJXsl5DshJwgJFxhbHBoYSQg6rCc7J2YIOyCrOqxtOydtCDrsJzsg53tlaAg65WMIOq5jOyngOydmCDrjIDquLDsi5zqsIQNCg0K7ZmV66Wg67OA7IiYIFjsnZgg7ZGc67O46rO16rCEIDogJFM9XHt4fHhcZ3QwXH0kDQoNCu2ZleuloCDrs4DsiJggWOyXkCDrjIDtlZwgcGRmIDogJGYoeDtcYWxwaGEsXGJldGEpJA0KDQorICRcZnJhY3sxfXtcR2FtbWEoXGFscGhhKVxiZXRhXlxhbHBoYX14XntcYWxwaGEtMX1lXnsteC9cYmV0YX0sICh4XGd0MCkkDQorICQwLCAob3RoZXJ3aXNlKSQNCiANCg0KW+qwkOuniOu2hO2PrCDqt7jrnpjtlIRdKGh0dHA6Ly9kdWNqMi5pcHRpbWUub3JnOjM4MzgvZ2FtbWElMjBkaXN0cmlidXRpb24vKQ0KDQoqKioqDQoNCioq7KCB66Wg7IOd7ISx7ZWo7IiYKioNCg0KJE1fWCh0KT0oMS1cYmV0YSB0KV57LVxhbHBoYX0sIHQgXGx0MS9cYmV0YSQNCg0KKnBmKSoNCg0KJE1fWCh0KT1FKGVedFgpPVxpbnRee1xpbmZ0eX1fezB9ZV57dHh9Zih4KWR4PVxmcmFjezF9e1xiZXRhXlxhbHBoYX1caW50XlxpbmZ0eV8wXGZyYWN7MX17XEdhbW1hKFxhbHBoYSl9eF57XGFscGhhLTF9ZV57dHh9ZV57LXgvXGJldGF9IGR4PVxmcmFjezF9e1xiZXRhXlxhbHBoYSBcR2FtbWEoXGFscGhhKX1caW50XntcaW5mdHl9XzB4XntcYWxwaGEtMX1lXnsteCgxL1xiZXRhLXQpfWR4IFxcIE1fWCh0KT0oMS1cYmV0YSB0KV5cYWxwaGEgKGJ5IFwgdGhtIFwgIDYuMy4yKSQNCg0KKirtj4nqt6Ag7Kad66qFKioNCg0KJE1gX1goMCkgXFwgXGZyYWN7ZH17ZHR9KDEtXGJldGEgdCleey1cYWxwaGF9PSgtXGFscGhhKSgxLVxiZXRhIHQpXnstXGFscGhhLTF9KC1cYmV0YSk9XGFscGhhXGJldGEoMS1cYmV0YSB0KV57LVxhbHBoYS0xfSBcXCBNYF9YKDApPVxhbHBoYVxiZXRhJA0KDQoqKuu2hOyCsOymneuqhSoqDQoNCiRNYGBfWCgwKVxcIFxmcmFje2R9e2R0fVtcZnJhY3tkfXtkdH0oMS1cYmV0YSB0KV57LVxhbHBoYX1dPVxmcmFje2R9e2R0fVxhbHBoYVxiZXRhKDEtXGJldGEgdCleey1cYWxwaGEtMX09XGFscGhhKC1cYWxwaGEtMSlcYmV0YSgtXGJldGEpKDEtXGJldGEgdCleey1cYWxwaGEtMn09XGFscGhhKFxhbHBoYSsxKVxiZXRhXjIoMS1cYmV0YSB0KV57LVxhbHBoYS0yfSBcXCBcYWxwaGEoXGFscGhhKzEpXGJldGFeMi1cYWxwaGFeMlxiZXRhXjI9XGFscGhhXGJldGFeMiQNCg0KKioqKg0KDQoNCiMjIyDsoJXrpqwgNi4zLjINCg0KJFxHYW1tYShcYWxwaGEpXGJldGFeXGFscGhhID0gXGludF5caW5mdHlfMHhee1xhbHBoYS0xfWVeey14L1xiZXRhfWR4JA0KDQoNCipwZikqDQoNCirrtoDrtoTsoIHrtoQg7IKs7JqpKg0KDQokXGludF57Yn1fe2F9Zih4KWdgKHgpZHg9W2YoeClnKHgpXV5iX2EtXGludF5iX2FmYCh4KWcoeClkeCQNCg0KJGYoeCk9eF57XGFscGhhLTF9XGxlZnRyaWdodGFycm93IFxmcmFje2QgZih4KX17ZHh9PShcYWxwaGEtMSl4XntcYWxwaGEtMn0sIFxmcmFje2QgZyh4KX17ZHh9PWVeey14L1xiZXRhfSBcbGVmdHJpZ2h0YXJyb3cgZyh4KT0tXGJldGEgZV57LXgvXGJldGF9JA0KDQokXGludF5caW5mdHlfMHhee1xhbHBoYS0xfWVeey14L1xiZXRhfWR4IFxcIFxpbnRee2J9X3thfWYoeClnYCh4KWR4PVsoeF57XGFscGhhLTF9KSgtXGJldGEgZV57LXgvXGJldGF9KV1ee1xpbmZ0eX1fMC1caW50XntcaW5mdHl9XzAgKChcYWxwaGEtMSl4XntcYWxwaGEtMn0pKC1cYmV0YSBlXnsteC9cYmV0YX0pZHggXFwgPShcYWxwaGEtMSkoXGJldGEpXGludF57XGluZnR5fV8wIHhee1xhbHBoYS0yfWVeey14L1xiZXRhfWR4IFxcIFx0aGVyZWZvcmUgXGludF5caW5mdHlfMHhee1xhbHBoYS0xfWVeey14L1xiZXRhfWR4PShcYWxwaGEtMSkhXGJldGFeXGFscGhhPVxHYW1tYShcYWxwaGEpXGJldGFeXGFscGhhJA0KDQoqKioqDQoNCiMjIyDsoJXrpqwgNi4zLjMgDQoNCm7snbQg7JaR7J2Y7KCV7IiY7J206rOgICRYXHNpbSBHYW0obixcYmV0YSkk7J2066m0ICRQW1hcbGUgeF09Rih4O24sXGJldGEpPVBbWVxnZSBuXSTsnbTri6QuIOyXrOq4sOyEnCAkWVxzaW0gUG9pKHgvXGJldGEpJOydtOuLpC4NCg0KJFxhbHBoYSTqsIAg7JaR7J2YIOygleyImOudvCDqsIDsoJUgDQoNCioqY2RmKioNCg0KJEYoeCk9UChYXGxlIHgpPTEtXHN1bV57XGFscGhhLTF9X3t5PTB9IFxmcmFjeyh4L1xiZXRhKV55ZV57LXgvXGJldGF9fXt5IX0kDQoNCuqwhOuLqO2VnCDspp3rqoXsnYAg66q77LC+7JWE7IScIOyyqOu2gA0KDQpbY2RmIOymneuqhV0oaHR0cDovL3d3dy5jbGF5Zm9yZC5uZXQvc3RhdGlzdGljcy9kZXJpdmluZy10aGUtZ2FtbWEtZGlzdHJpYnV0aW9uLykNCg0KDQpQb2lzc29uIGRpc3RyaWJ1dGlvbiBjZGYNCiRGKHgpPVxzdW1fe2s9MH1eeCBmKHg7XGxhbWJkYSk9XHN1bV97az0wfV54XGZyYWN7ZV57LVxsYW1iZGF9XG11Xnh9e3ghfSQNCg0KKioqKg0KDQojIyMg7JiIIOygnCA2LjMuMSB+Ni4zLjINCg0KIyMjI+yYiOygnCA2LjMuMSANCg0K7Ja065akIOuwqeyCrOuKpeyXkCDrhbjstpzrkJwg7KWQ7J2YIOyDneyhtOq4sOqwhCjri6jsnIQgOiDsnbwpIFjripQgR2FtKDMsNSnrnbwg7ZWY7J6QLiDspZDsnZgg7IOd7KG06riw6rCE7J20IDXsnbzsnYQg7LSI6rO87ZWY7KeAIOuqu+2VoCDtmZXrpaDsnYAg7KCV66asIDYuMy4z7JeQIOydmO2VtCAkUFtYXGxlNV09UFtZXGdlM109MS1QW1lcbGUyXTEtMC45MTk3PTAuMDgwMyQNCg0KYGBge3J9DQp4PXNlcSgtLjAxLDIwLGxlbj0xMDAwKQ0Kc2hhcGU9MztzY2FsZT01DQpwbG90KHgscGdhbW1hKHgsc2hhcGU9c2hhcGUsc2NhbGU9c2NhbGUpLHR5cGU9J2wnLHlsYWI9J3knLG1haW49cGFzdGUoJ2dhbW1hIGRpc3RyaWJ1dGlvbiBYfkdhbSgnLHNoYXBlLCcsJyxzY2FsZSwnKScpLHlsaW09YygwLDEpKQ0KeD1zZXEoMCwyMCwxKQ0KbGluZXMoeCwxLXBwb2lzKHgsMSksdHlwZT0nbCcsbHdkPTMsY29sPWFscGhhKCdza3libHVlJywuNykpDQphYmxpbmUodj0zLGx3ZD0zLGx0eT0yLGNvbD1hbHBoYSgncmVkJywuNSkpDQpgYGANCg0KDQoqKioqDQoNCiMjIyMg7JiI7KCcIDYuMy4yDQoNCg0KJFhfMSTqs7wgJFhfMiTripQg64+F66a97J2066mwIOqwgeqwgSAkWF8xXHNpbSBHYW0oXGFscGhhXzEsXGJldGEpLCBYXzJcc2ltIEdhbShcYWxwaGFfMixcYmV0YSkk7J2066m0ICRZPVhfMStYXzIgXHNpbSBHYW0oXGFscGhhXzErXGFscGhhXzIsXGJldGEpJOydtOuLpC4NCg0KJFxjb2xvcntncmF5fXtcdGV4dHtzb2x1dGlvbil9fSQNCg0KJE1fWSh0KT1NX3tYXzF9KHQpTV97WF8yfSh0KT1bXGZyYWN7MX17MS1cYmV0YSB0fV1ee1xhbHBoYV8xfVtcZnJhY3sxfXsxLVxiZXRhIHR9XV57XGFscGhhXzJ9PVtcZnJhY3sxfXsxLVxiZXRhIHR9XV57XGFscGhhXzErXGFscGhhXzJ9LCh0PDEvXGJldGEpICBcXCBcdGhlcmVmb3JlIFk9WF8xK1hfMiBcc2ltIEdhbShcYWxwaGFfMStcYWxwaGFfMixcYmV0YSkkDQoNClvqsJDrp4jrtoTtj6ws7Lm07J207KCc6rOx67aE7Y+sLCDsp4DsiJjrtoTtj6wg67mE6rWQXShodHRwOi8vZHVjajIuaXB0aW1lLm9yZzozODM4L2dtbWFEaXN0cmlidXRpb24vKQ0KDQrsubTsnbTsoJzqs7HrtoTtj6zsmYAg7KeA7IiY67aE7Y+s64qUIOqwkOuniOu2hO2PrOydmCBSYXJlIGNhc2UNCg0KJFxhbHBoYT1uLzIsIFxiZXRhPTLsnbgg6rCQ66eI67aE7Y+sIFxsZWZ0cmlnaHRhcnJvdyDsnpDsnKDrj4TqsIAgbuyduCDsubTsnbTsoJzqs7HrtoTtj6wkDQokXGFscGhhPTHsnbgg6rCQ66eI67aE7Y+sIFxsZWZ0cmlnaHRhcnJvdyDsp4DsiJjrtoTtj6wkDQoNCioqKioNCg0KDQoNCiMj7KeA7IiY67aE7Y+sKGV4cG9uZW50aWFsIGRpc3RyaWJ1dGlvbil7LnRhYnNldCAudGFic2V0LWZhZGUgLnRhYnNldC1waWxsc30NCg0KIyMjIOyngCDsiJgg67aEIO2PrA0KDQrtmZXrpaDrs4DsiJggWCA6IO2PrOyVhOyGoSDqs7zsoJXsl5DshJwg7ZWc6rCcIOyCrOqxtOydtCDrsJzsg53tlaAg65WM6rmM7KeAIOuMgOq4sOyLnOqwhA0KDQpY7J2YIO2RnOuzuOqzteqwhCA6ICRTPVx7eHx4XGd0MFx9JA0KDQrtmZXrpaDrs4DsiJggWOyXkCDrjIDtlZwgcGRmIDogJGYoeDtcdGhldGEpJA0KDQorICRcZnJhY3sxfXtcYmV0YX1lXnsteC9cYmV0YX0gKHggXGd0IDApJA0KKyAkMCAob3RoZXJ3aXNlKSQNCg0KKioqKg0KDQoqKuyggeuloOyDneyEse2VqOyImCoqDQoNCiRcYWxwaGE9MSTsnbgg6rCQ66eI67aE7Y+s7JmAIOqwmeydjC4NCg0KJE1fWCh0KT0oMS1cYmV0YSB0KV57LTF9LCB0IFxsdDEvXGJldGEkDQoNCioq7Y+J6regKioNCg0KJFxtdT1cYmV0YSQNCg0KKirrtoTsgrAqKg0KDQokXHNpZ21hXjI9XGJldGFeMiQNCg0KKipjZGYqKg0KDQokRih4KT1QKFhcbGUgeCk9MS1lXnsteC9cYmV0YX0sKHhcZ2UwKSQNCg0KcGYpDQoNCiRGKHgpPVAoWFxsZSB4KT1caW50XnhfMGYodClkdD1cZnJhY3sxfXtcYmV0YX1caW50XnhfMGVeey10L1xiZXRhfWR0PVxmcmFjezF9e1xiZXRhfVsoLVxiZXRhKWVeey10L1xiZXRhfV1eeF8wPTEtZV57LXgvXGJldGF9LCh4XGdlMCkkDQoNCg0KIyMjIOyYiOygnCA2LjQuMQ0KDQrslrTrlqQg6riw6rOE66W8IOyImOumrO2VmOuKlCDrjbAg6rG466as64qUIOyLnOqwhOydgCDrqqjsiJjqsIAgJFx0aGV0YT0zJOyduCDsp4DsiJjrtoTtj6zrpbwg65Sw66W464uk6rOgIO2VnOuLpC4NCg0KKGEpIOyImOumrOyLnOqwhOydtCAz7Iuc6rCE7J2EIOy0iOqzvO2VoCDtmZXrpaDsnYAg7Ja866eI7J246rCAPw0KKGIpIOyImOumrOyLnOqwhOydtCA17Iuc6rCE7J2EIOy0iOqzvO2WiOuLpOqzoCDtlaAg65WMLCDsoIHslrTrj4QgOOyLnOqwhOydtCDshozsmpTrkKAg7KGw6rG067aAIO2ZleuloOydgCDslrzrp4jsnbjqsIA/DQoNCnNvbHV0aW9uKQ0KKGEpICRQW1hcZ3QzXT0xLUYoMzszKT1lXnstMX0kDQoNCihiKSDsp4DsiJjrtoTtj6zsnZgg66y06riw7Ja17ISx7Jy866Gc67aA7YSwICRQW1hcZ3Q4fFhcZ3Q1XT1QW1hcZ3QzXT1lXnstMX0kDQo=