Synopsis

The basic goal of this assignment is to explore the NOAA Storm Database which contains events from 1950 to Nov 2011 and answer some basic questions about severe weather events. Will try to analyze & present my findings in the following areas:

Across the United States, which types of events are most harmful with respect to population health? Across the United States, which types of events have the greatest economic consequences? Introduction Storms and other severe weather events can cause both public health and economic problems for communities and municipalities. Many severe events can result in fatalities, injuries, and property damage, and preventing such outcomes to the extent possible is a key concern.

This project involves exploring the U.S. National Oceanic and Atmospheric Administration’s (NOAA) storm Database. This Database tracks characteristics of major storms and weather events in the United States, including when and where they occur, as well as estimates of any fatalities, injuries, and property damage.

Data

The stormData for this assignment come in the form of a comma-separated-value file compressed via the bzip2 algorithm to reduce its size. You can download the file from the course web site:

Storm Data[47Mb]

There is also some documentation of the Database available. Here you will find how some of the variables are constructed/defined.

National Weather Service Storm Data Documentation National Climatic stormData Center Storm Events FAQ The events in the Database start in the year 1950 and end in November 2011. In the earlier years of the Database there are generally fewer events recorded, most likely due to a lack of good records. More recent years should be considered more complete.

## Data Processing

The analysis was performed on Storm Events Database, provided by National Climatic Data Center. The data is from a comma-separated-value file available here. There is also some documentation of the data available here.

The first step is to read the data into a data frame.

setwd("C:/Users/xzhenning/Documents/R/spring 2019/")
storm <- read.csv("C:./data/repdata_data_StormData.csv.bz2")

Before the analysis, the data need some preprocessing. Event types don’t have a specific format. For instance, there are events with types Frost/Freeze, FROST/FREEZE and FROST\\FREEZE which obviously refer to the same type of event.

# number of unique event types
length(unique(storm$EVTYPE))
## [1] 985
# translate all letters to lowercase
event_types <- tolower(storm$EVTYPE)
# replace all punct. characters with a space
event_types <- gsub("[[:blank:][:punct:]+]", " ", event_types)
length(unique(event_types))
## [1] 874
# update the data frame
storm$EVTYPE <- event_types

No further data preprocessing was performed although the event type field can be processed further to merge event types such as tstm wind and thunderstorm wind.

After performing data cleaning, as expected, the number of unique event types reduce significantly. For further analysis, the cleaned event types are used.

Dangerous Events with respect to Population Health

To find the event types that are most harmful to population health, the number of casualties are aggregated by the event type.

library(plyr)
casualties <- ddply(storm, .(EVTYPE), summarize,
                    fatalities = sum(FATALITIES),
                    injuries = sum(INJURIES))
# Find events that caused most death and injury
fatal_events <- head(casualties[order(casualties$fatalities, decreasing = T), ], 10)
injury_events <- head(casualties[order(casualties$injuries, decreasing = T), ], 10)

Top 10 events that caused largest number of deaths are

fatal_events[, c("EVTYPE", "fatalities")]
##             EVTYPE fatalities
## 741        tornado       5633
## 116 excessive heat       1903
## 138    flash flood        978
## 240           heat        937
## 410      lightning        816
## 762      tstm wind        504
## 154          flood        470
## 515    rip current        368
## 314      high wind        248
## 19       avalanche        224

Top 10 events that caused most number of injuries are

injury_events[, c("EVTYPE", "injuries")]
##                EVTYPE injuries
## 741           tornado    91346
## 762         tstm wind     6957
## 154             flood     6789
## 116    excessive heat     6525
## 410         lightning     5230
## 240              heat     2100
## 382         ice storm     1975
## 138       flash flood     1777
## 671 thunderstorm wind     1488
## 209              hail     1361

## Economic Effects of Weather Events

To analyze the impact of weather events on the economy, available property damage and crop damage reportings/estimates were used.

Note: in the raw data, the property damage is represented with two fields, a number PROPDMG in dollars and the exponent PROPDMGEXP. Similarly, the crop damage is represented using two fields, CROPDMG and CROPDMGEXP. The first step in the analysis is to calculate the property and crop damage for each event.

exp_transform <- function(e) {
    # h -> hundred, k -> thousand, m -> million, b -> billion
    if (e %in% c('h', 'H'))
        return(2)
    else if (e %in% c('k', 'K'))
        return(3)
    else if (e %in% c('m', 'M'))
        return(6)
    else if (e %in% c('b', 'B'))
        return(9)
    else if (!is.na(as.numeric(e))) # if a digit
        return(as.numeric(e))
    else if (e %in% c('', '-', '?', '+'))
        return(0)
    else {
        stop("Invalid exponent value.")
    }
}
prop_dmg_exp <- sapply(storm$PROPDMGEXP, FUN=exp_transform)
storm$prop_dmg <- storm$PROPDMG * (10 ** prop_dmg_exp)
crop_dmg_exp <- sapply(storm$CROPDMGEXP, FUN=exp_transform)
storm$crop_dmg <- storm$CROPDMG * (10 ** crop_dmg_exp)
# Compute the economic loss by event type
library(plyr)
econ_loss <- ddply(storm, .(EVTYPE), summarize,
                   prop_dmg = sum(prop_dmg),
                   crop_dmg = sum(crop_dmg))
# filter out events that caused no economic loss
econ_loss <- econ_loss[(econ_loss$prop_dmg > 0 | econ_loss$crop_dmg > 0), ]
prop_dmg_events <- head(econ_loss[order(econ_loss$prop_dmg, decreasing = T), ], 10)
crop_dmg_events <- head(econ_loss[order(econ_loss$crop_dmg, decreasing = T), ], 10)

Top 10 events that caused most property damage (in dollars) are as follows

prop_dmg_events[, c("EVTYPE", "prop_dmg")]
##                 EVTYPE     prop_dmg
## 138        flash flood 6.820237e+13
## 697 thunderstorm winds 2.086532e+13
## 741            tornado 1.078951e+12
## 209               hail 3.157558e+11
## 410          lightning 1.729433e+11
## 154              flood 1.446577e+11
## 366  hurricane typhoon 6.930584e+10
## 166           flooding 5.920826e+10
## 585        storm surge 4.332354e+10
## 270         heavy snow 1.793259e+10

Similarly, the events that caused biggest crop damage are

crop_dmg_events[, c("EVTYPE", "crop_dmg")]
##                EVTYPE    crop_dmg
## 84            drought 13972566000
## 154             flood  5661968450
## 519       river flood  5029459000
## 382         ice storm  5022113500
## 209              hail  3025974480
## 357         hurricane  2741910000
## 366 hurricane typhoon  2607872800
## 138       flash flood  1421317100
## 125      extreme cold  1312973000
## 185      frost freeze  1094186000

Plots

The following plots show top dangerous weather event types.

library(ggplot2)
## Registered S3 methods overwritten by 'ggplot2':
##   method         from 
##   [.quosures     rlang
##   c.quosures     rlang
##   print.quosures rlang
library(gridExtra)
# Set the levels in order
p1 <- ggplot(data=fatal_events,
             aes(x=reorder(EVTYPE, fatalities), y=fatalities, fill=fatalities)) +
    geom_bar(stat="identity") +
    coord_flip() +
    ylab("Total number of fatalities") +
    xlab("Event type") +
 ggtitle ("Top 20 events for total fatalities") +
    theme(axis.text.x=element_text(angle=45,hjust=1))
p2 <- ggplot(data=injury_events,
             aes(x=reorder(EVTYPE, injuries), y=injuries, fill=injuries)) +
    geom_bar(stat="identity") +
    coord_flip() + 
    ylab("Total number of injuries") +
    xlab("Event type") +
 ggtitle ("Top 20 events for total injuries") +
    theme(axis.text.x=element_text(angle=45,hjust=1))
p1

p2

Tornadoes cause most number of deaths and injuries among all event types. There are more than 5,000 deaths and more than 10,000 injuries in the last 60 years in US, due to tornadoes. The other event types that are most dangerous with respect to population health are excessive heat and flash floods.

Economic impact of weather events

The following plot shows the most severe weather event types with respect to economic cost that they have costed since 1950s.

library(ggplot2)
library(gridExtra)
# Set the levels in order
p1 <- ggplot(data=prop_dmg_events,
             aes(x=reorder(EVTYPE, prop_dmg), y=log10(prop_dmg), fill=prop_dmg )) +
    geom_bar(stat="identity") +
    coord_flip() +
    xlab("Event type") +
    ylab("Property damage in dollars (log-scale)") +
   ggtitle ("Top 20 events for total property damage") +
    theme(axis.text.x=element_text(angle=45,hjust=1))
p2 <- ggplot(data=crop_dmg_events,
             aes(x=reorder(EVTYPE, crop_dmg), y=crop_dmg, fill=crop_dmg)) +
    geom_bar(stat="identity") +
    coord_flip() + 
    xlab("Event type") +
    ylab("Crop damage in dollars") + 
  ggtitle ("Top 20 events for total crop damage") +
    theme(axis.text.x=element_text(angle=45,hjust=1))
p1

p2

conlcusions

The data shows that flash floods and thunderstorm winds cost the largest property damages among weather-related natural diseasters.

The most severe weather event in terms of crop damage is drought. In the last 50 years, drought has caused more than 10 billion dollars in loss. Other severe crop-damage-causing event types include floods and hails.

Note:Property damages are converted to logarithmic scales due to large range of values.