El presente script estƔ diseƱado para cumplir con los siguientes objetivos:
Describir los estados de desarrollo ovocitario y su organización en ovarios maduros de las especies de interés.
Estimar el tamaƱo en el cual los ovocitos son reclutados a la vitelogƩnesis.
Estimar la fecundidad y fecundidad relativa por pulso de desove para las especies de interƩs.
Verificar el nĆŗmero de pulso potenciales presentes en el ovario.
Determinar la talla de primera madurez de las especies analizadas.
Investigar la influencia de variables morfométricas de los individuos: tamaño, peso y condición de la hembra sobre la fecundidad por pulso de desove, el tamaño de reclutamiento de ovocito a la vitelogénesis.
Comparar las variables de las estrategias reproductivas para identificar las diferencias y similitudes entre estas.
library(FSA)
library(magrittr)
library(dplyr)
library(lubridate)
library(car)
library(forcats)
library(cowplot)
library(ggplot2)str(Ov)## 'data.frame': 2250 obs. of 4 variables:
## $ Sp : Factor w/ 5 levels "Cynoscion analis",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Estado : Factor w/ 9 levels "CA","GVM","Hyd",..: 4 4 4 4 4 4 4 4 4 4 ...
## $ Rec : Factor w/ 2 levels "Previt","Vit": 1 1 1 1 1 1 1 1 1 1 ...
## $ Diametro: num 40.2 22.4 48.7 55.5 46.7 ...
str(Fec)## 'data.frame': 487 obs. of 16 variables:
## $ Sp : Factor w/ 5 levels "Cynoscion analis",..: 5 5 5 5 5 5 5 5 5 5 ...
## $ LT : num 11.3 13.5 13.8 13.9 14.1 14.1 14.2 14.2 14.3 14.3 ...
## $ LS : num 10.7 11.4 12.2 11.9 12.2 12.2 13.3 12.3 12.2 12.5 ...
## $ Peso : int 28 50 48 70 55 57 54 56 55 55 ...
## $ Peso_ev : int 23 35 40 55 45 46 45 48 40 50 ...
## $ P_gonad : num 1.22 0.73 5.02 2.51 0.86 6.95 5.2 5.03 1.96 2.22 ...
## $ FC : num 1.94 2.03 1.83 2.61 1.96 ...
## $ IGS : num 5.3 2.09 12.55 4.56 1.91 ...
## $ Fec : num 2586 1431 11540 5626 1738 ...
## $ Fec2 : num 2751 1918 11589 6109 1953 ...
## $ Fec_parcial: num 2120 1961 2299 2241 2021 ...
## $ A : num 2356 2356 2356 2356 2356 ...
## $ B : num -289 -289 -289 -289 -289 ...
## $ ale : int 165 487 49 483 215 481 126 -83 61 128 ...
## $ Npulso : num 1.62 1.67 1.77 1.69 1.63 ...
## $ X : Factor w/ 2 levels "","f": 1 1 1 1 1 1 1 1 1 1 ...
str(Mad)## 'data.frame': 618 obs. of 3 variables:
## $ Sp : Factor w/ 5 levels "Cynoscion analis",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ LT : num 13 13 11 12 13 14 14 14 15 15 ...
## $ Madurez: Factor w/ 2 levels "Inmaduro","Maduro": 1 1 1 1 1 1 1 1 1 1 ...
# Ordenamos el factor Estado segpun el orden de desarrollo ovocitario
Ov_lev <- c("Pg1", "Pg2", "CA", "Vtg1", "Vtg2", "Vtg3", "Vtg4", "GVM", "Hyd")
Ov$Estado <- factor(Ov$Estado, levels = Ov_lev)Diam_ov_sum <- Ov %>% group_by(Sp, Estado) %>% dplyr::summarize(PromDiam = mean(Diametro,
na.rm = TRUE), SdDiam = sd(Diametro))
Diam_ov_sum## # A tibble: 45 x 4
## # Groups: Sp [5]
## Sp Estado PromDiam SdDiam
## <fct> <fct> <dbl> <dbl>
## 1 Cynoscion analis Pg1 44.4 9.31
## 2 Cynoscion analis Pg2 50.5 13.7
## 3 Cynoscion analis CA 64.7 28.1
## 4 Cynoscion analis Vtg1 88.6 40.0
## 5 Cynoscion analis Vtg2 209. 57.9
## 6 Cynoscion analis Vtg3 345. 44.7
## 7 Cynoscion analis Vtg4 431. 40.1
## 8 Cynoscion analis GVM 490. 76.9
## 9 Cynoscion analis Hyd 638. 74.6
## 10 Menticirrhus ophicephalus Pg1 29.8 11.0
## # ... with 35 more rows
ggplot(Ov, aes(x = reorder(Estado, Diametro), y = Diametro)) + facet_grid(~Sp) +
geom_boxplot() + labs(x = "Estado ovocitario", y = "DiÔmetro promedio (µm)") +
theme_bw() + theme(axis.text.x = element_text(angle = 90, hjust = 1))ggplot(Ov, aes(x = Diametro, fill = Estado, colour = Estado, Shape = Estado)) +
facet_wrap(~Sp, nrow = 2) + geom_density(alpha = 0.1, position = "identity") +
scale_color_brewer(palette = "Paired") + scale_fill_brewer(palette = "Paired") +
labs(x = "DiÔmetro promedio (µm)", y = "Frecuencia %") + theme_bw()lrPerc <- function(cf, p) (log(p/(1 - p)) - cf[[1]])/cf[[2]]levels(Ov$Sp)## [1] "Cynoscion analis" "Menticirrhus ophicephalus"
## [3] "Paralonchurus peruanus" "Sciaena deliciosa"
## [5] "Stellifer minor"
# Cynoscion analis
glmRecCA <- glm(Rec ~ Diametro, data = Ov, family = binomial, subset = Sp ==
"Cynoscion analis")
bcLRecCA <- bootCase(glmRecCA, B = 1000)
L50RecCA <- lrPerc(coef(glmRecCA), 0.5)
bL50RecCA <- apply(bcLRecCA, 1, lrPerc, p = 0.5)
L50ciRecCA <- quantile(bL50RecCA, c(0.025, 0.975))
RecCA <- c(L50RecCA, L50ciRecCA)
RecCA## 2.5% 97.5%
## 89.18254 81.01380 97.89742
# Menticirrhus ophicephalus
glmRecMO <- glm(Rec ~ Diametro, data = Ov, family = binomial, subset = Sp ==
"Menticirrhus ophicephalus")
bcLRecMO <- bootCase(glmRecMO, B = 1000)
L50RecMO <- lrPerc(coef(glmRecMO), 0.5)
bL50RecMO <- apply(bcLRecMO, 1, lrPerc, p = 0.5)
L50ciRecMO <- quantile(bL50RecMO, c(0.025, 0.975))
RecMO <- c(L50RecMO, L50ciRecMO)
RecMO## 2.5% 97.5%
## 124.6737 121.8401 127.7982
# Paralonchurus peruanus
glmRecPP <- glm(Rec ~ Diametro, data = Ov, family = binomial, subset = Sp ==
"Paralonchurus peruanus")
bcLRecPP <- bootCase(glmRecPP, B = 1000)
L50RecPP <- lrPerc(coef(glmRecPP), 0.5)
bL50RecPP <- apply(bcLRecPP, 1, lrPerc, p = 0.5)
L50ciRecPP <- quantile(bL50RecPP, c(0.025, 0.975))
RecPP <- c(L50RecPP, L50ciRecPP)
RecPP## 2.5% 97.5%
## 123.8293 116.7796 131.1347
# Sciaena deliciosa
glmRecSD <- glm(Rec ~ Diametro, data = Ov, family = binomial, subset = Sp ==
"Sciaena deliciosa")
bcLRecSD <- bootCase(glmRecSD, B = 1000)
L50RecSD <- lrPerc(coef(glmRecSD), 0.5)
bL50RecSD <- apply(bcLRecSD, 1, lrPerc, p = 0.5)
L50ciRecSD <- quantile(bL50RecSD, c(0.025, 0.975))
RecSD <- c(L50RecSD, L50ciRecSD)
RecSD## 2.5% 97.5%
## 98.77860 92.14284 105.67448
# Stellifer minor
glmRecSM <- glm(Rec ~ Diametro, data = Ov, family = binomial, subset = Sp ==
"Stellifer minor")
bcLRecSM <- bootCase(glmRecSM, B = 1000)
L50RecSM <- lrPerc(coef(glmRecSM), 0.5)
bL50RecSM <- apply(bcLRecSM, 1, lrPerc, p = 0.5)
L50ciRecSM <- quantile(bL50RecSM, c(0.025, 0.975))
RecSM <- c(L50RecSM, L50ciRecSM)
RecSM## 2.5% 97.5%
## 104.1730 94.5562 113.0375
RecTotal <- rbind(RecCA, RecMO, RecPP, RecSD, RecSM)
RecTotal <- as.data.frame(RecTotal)
RecTotal## V1 2.5% 97.5%
## RecCA 89.18254 81.01380 97.89742
## RecMO 124.67367 121.84014 127.79820
## RecPP 123.82931 116.77963 131.13472
## RecSD 98.77860 92.14284 105.67448
## RecSM 104.17305 94.55620 113.03753
binomial_smooth <- function(...) {
geom_smooth(method = "glm", method.args = list(family = "binomial"), ...)
}ggplot(Ov, aes(Diametro, as.numeric(Rec) - 1)) + facet_wrap(~Sp, nrow = 1, scales = "free_x") +
binomial_smooth() + geom_point(position = position_jitter(height = 0.03,
width = 0), shape = 21) + xlab("DiÔmetro del ovocito (µm)") + ylab("Probabilidad de ovocito vitelogénico") +
theme_bw()Fec_sum <- Fec %>% group_by(Sp) %>% dplyr::summarize(PromF = mean(Fec2, na.rm = TRUE),
SdF = sd(Fec2), PromFP = mean(Fec_parcial, na.rm = TRUE), SdFP = sd(Fec_parcial))
Fec_sum## # A tibble: 5 x 5
## Sp PromF SdF PromFP SdFP
## <fct> <dbl> <dbl> <dbl> <dbl>
## 1 Cynoscion analis 17632. 10763. 1922. 29.1
## 2 Menticirrhus ophicephalus 14320. 12963. 2610. 538.
## 3 Paralonchurus peruanus 6426. 4828. 1470. 265.
## 4 Sciaena deliciosa 6813. 5875. 1235. 279.
## 5 Stellifer minor 8132. 3921. 2251. 100.
F_A <- ggplot(Fec_sum, aes(x = Sp, y = PromF, group = Sp)) + geom_line() + geom_point(size = 1,
shape = 21, fill = "white") + geom_errorbar(aes(ymin = PromF - SdF, ymax = PromF +
SdF), width = 0.2, position = position_dodge(0.05)) + labs(x = NULL, y = "Fecundidad (N° de ovocitos)") +
theme_bw() + theme(axis.text.x = element_text(angle = 60, hjust = 1))
F_B <- ggplot(Fec_sum, aes(x = Sp, y = PromFP, group = Sp)) + geom_line() +
geom_point(size = 1, shape = 21, fill = "white") + geom_errorbar(aes(ymin = PromFP -
SdFP, ymax = PromFP + SdFP), width = 0.2, position = position_dodge(0.05)) +
labs(x = NULL, y = "Fecundidad parcial (N° ov/g)") + theme_bw() + theme(axis.text.x = element_text(angle = 60,
hjust = 1))
plot_grid(F_A, F_B, labels = "AUTO", nrow = 1, align = "v")Pul_sum <- Fec %>% group_by(Sp) %>% dplyr::summarize(PromPul = mean(Npulso,
na.rm = TRUE), SdPul = sd(Npulso))
Pul_sum## # A tibble: 5 x 3
## Sp PromPul SdPul
## <fct> <dbl> <dbl>
## 1 Cynoscion analis 2.17 0.173
## 2 Menticirrhus ophicephalus 1.64 0.674
## 3 Paralonchurus peruanus 2.59 0.341
## 4 Sciaena deliciosa 3.17 0.807
## 5 Stellifer minor 1.72 0.0646
ggplot(Pul_sum, aes(x = Sp, y = PromPul, group = Sp)) + geom_line() + geom_point(size = 1,
shape = 21, fill = "white") + geom_errorbar(aes(ymin = PromPul - SdPul,
ymax = PromPul + SdPul), width = 0.2, position = position_dodge(0.05)) +
labs(x = NULL, y = "N° de pulsos potenciales") + theme_bw() + theme(axis.text.x = element_text(angle = 60,
hjust = 1))Modelamos la madurez:
lrPerc <- function(cf, p) (log(p/(1 - p)) - cf[[1]])/cf[[2]]
levels(Mad$Sp)## [1] "Cynoscion analis" "Menticirrhus ophicephalus"
## [3] "Paralonchurus peruanus" "Sciaena deliciosa"
## [5] "Stellifer minor"
# Cynoscion analis
glmMadCA <- glm(Madurez ~ LT, data = Mad, family = binomial, subset = Sp ==
"Cynoscion analis")
coef(glmMadCA)## (Intercept) LT
## -20.6776505 0.9274051
bcLMadCA <- bootCase(glmMadCA, B = 1000)
cbind(Ests = coef(glmMadCA), confint(bcLMadCA))## Ests 95% LCI 95% UCI
## (Intercept) -20.6776505 -35.7073654 -15.224538
## LT 0.9274051 0.6992819 1.551827
L50CA <- lrPerc(coef(glmMadCA), 0.5)
bL50CA <- apply(bcLMadCA, 1, lrPerc, p = 0.5)
L50ciCA <- quantile(bL50CA, c(0.025, 0.975))
MadCA <- c(L50CA, L50ciCA)
MadCA## 2.5% 97.5%
## 22.29625 21.38128 23.02923
# Menticirrhus ophicephalus
glmMadMO <- glm(Madurez ~ LT, data = Mad, family = binomial, subset = Sp ==
"Menticirrhus ophicephalus")
bcLMadMO <- bootCase(glmMadMO, B = 1000)
cbind(Ests = coef(glmMadMO), confint(bcLMadMO))## Ests 95% LCI 95% UCI
## (Intercept) -27.181064 -47.0125274 -19.069298
## LT 1.364313 0.9700754 2.316431
L50MO <- lrPerc(coef(glmMadMO), 0.5)
bL50MO <- apply(bcLMadMO, 1, lrPerc, p = 0.5)
L50ciMO <- quantile(bL50MO, c(0.025, 0.975))
MadMO <- c(L50MO, L50ciMO)
MadMO## 2.5% 97.5%
## 19.92290 19.33933 20.42198
# Paralonchurus peruanus
glmMadPP <- glm(Madurez ~ LT, data = Mad, family = binomial, subset = Sp ==
"Paralonchurus peruanus")
bcLMadPP <- bootCase(glmMadPP, B = 1000)
cbind(Ests = coef(glmMadPP), confint(bcLMadPP))## Ests 95% LCI 95% UCI
## (Intercept) -14.5396244 -105.6886761 -9.933792
## LT 0.9081075 0.6451994 5.984630
L50PP <- lrPerc(coef(glmMadPP), 0.5)
bL50PP <- apply(bcLMadPP, 1, lrPerc, p = 0.5)
L50ciPP <- quantile(bL50PP, c(0.025, 0.975))
MadPP <- c(L50PP, L50ciPP)
MadPP## 2.5% 97.5%
## 16.01091 14.61687 17.63844
# Sciaena deliciosa
glmMadSD <- glm(Madurez ~ LT, data = Mad, family = binomial, subset = Sp ==
"Sciaena deliciosa")
bcLMadSD <- bootCase(glmMadSD, B = 1000)
cbind(Ests = coef(glmMadSD), confint(bcLMadSD))## Ests 95% LCI 95% UCI
## (Intercept) -24.518104 -72.0540325 -16.309624
## LT 1.433693 0.9639085 4.241757
L50SD <- lrPerc(coef(glmMadSD), 0.5)
bL50SD <- apply(bcLMadSD, 1, lrPerc, p = 0.5)
L50ciSD <- quantile(bL50SD, c(0.025, 0.975))
MadSD <- c(L50SD, L50ciSD)
MadSD## 2.5% 97.5%
## 17.10136 16.37955 17.78957
# Stellifer minor
glmMadSM <- glm(Madurez ~ LT, data = Mad, family = binomial, subset = Sp ==
"Stellifer minor")
bcLMadSM <- bootCase(glmMadSM, B = 1000)
cbind(Ests = coef(glmMadMO), confint(bcLMadMO))## Ests 95% LCI 95% UCI
## (Intercept) -27.181064 -47.0125274 -19.069298
## LT 1.364313 0.9700754 2.316431
L50SM <- lrPerc(coef(glmMadSM), 0.5)
bL50SM <- apply(bcLMadSM, 1, lrPerc, p = 0.5)
L50ciSM <- quantile(bL50SM, c(0.025, 0.975))
MadSM <- c(L50SM, L50ciSM)
MadSM## 2.5% 97.5%
## 13.03965 12.04671 13.90206
MadTotal <- rbind(MadCA, MadMO, MadPP, MadSD, MadSM)
MadTotal <- as.data.frame(MadTotal)
MadTotal## V1 2.5% 97.5%
## MadCA 22.29625 21.38128 23.02923
## MadMO 19.92290 19.33933 20.42198
## MadPP 16.01091 14.61687 17.63844
## MadSD 17.10136 16.37955 17.78957
## MadSM 13.03965 12.04671 13.90206
binomial_smooth <- function(...) {
geom_smooth(method = "glm", method.args = list(family = "binomial"), ...)
}ggplot(Mad, aes(LT, as.numeric(Madurez) - 1)) + facet_wrap(~Sp, nrow = 1, scales = "free_x") +
binomial_smooth() + geom_point(position = position_jitter(height = 0.03,
width = 0), shape = 21) + xlab("Longitud total (cm)") + ylab("Probabilidad de individuo maduro") +
theme_bw()LM.L_F.SM <- lm(IGS ~ FC, data = Fec, subset = Sp == "Stellifer minor")
LM.L_F.SM##
## Call:
## lm(formula = IGS ~ FC, data = Fec, subset = Sp == "Stellifer minor")
##
## Coefficients:
## (Intercept) FC
## 5.4182 0.5726
summary(LM.L_F.SM)##
## Call:
## lm(formula = IGS ~ FC, data = Fec, subset = Sp == "Stellifer minor")
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.9973 -1.8997 -0.5665 1.0224 18.8146
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.4182 2.3124 2.343 0.0205 *
## FC 0.5726 1.2803 0.447 0.6554
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.019 on 143 degrees of freedom
## Multiple R-squared: 0.001397, Adjusted R-squared: -0.005586
## F-statistic: 0.2 on 1 and 143 DF, p-value: 0.6554
LM.L_F.PP <- lm(IGS ~ FC, data = Fec, subset = Sp == "Paralonchurus peruanus")
LM.L_F.PP##
## Call:
## lm(formula = IGS ~ FC, data = Fec, subset = Sp == "Paralonchurus peruanus")
##
## Coefficients:
## (Intercept) FC
## -14.83 18.40
summary(LM.L_F.PP)##
## Call:
## lm(formula = IGS ~ FC, data = Fec, subset = Sp == "Paralonchurus peruanus")
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4528 -2.1522 -0.4905 0.9725 19.5768
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -14.826 4.941 -3.000 0.00434 **
## FC 18.399 4.295 4.283 9.28e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.648 on 46 degrees of freedom
## Multiple R-squared: 0.2851, Adjusted R-squared: 0.2696
## F-statistic: 18.35 on 1 and 46 DF, p-value: 9.277e-05
LM.L_F.MO <- lm(IGS ~ FC, data = Fec, subset = Sp == "Menticirrhus ophicephalus")
LM.L_F.MO##
## Call:
## lm(formula = IGS ~ FC, data = Fec, subset = Sp == "Menticirrhus ophicephalus")
##
## Coefficients:
## (Intercept) FC
## 1.591 1.758
summary(LM.L_F.MO)##
## Call:
## lm(formula = IGS ~ FC, data = Fec, subset = Sp == "Menticirrhus ophicephalus")
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.7045 -1.2231 -0.3738 0.7218 10.0608
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.591 1.188 1.339 0.1822
## FC 1.758 1.060 1.658 0.0991 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.882 on 182 degrees of freedom
## Multiple R-squared: 0.01487, Adjusted R-squared: 0.009461
## F-statistic: 2.748 on 1 and 182 DF, p-value: 0.0991
LM.L_F.CA <- lm(IGS ~ FC, data = Fec, subset = Sp == "Cynoscion analis")
LM.L_F.CA##
## Call:
## lm(formula = IGS ~ FC, data = Fec, subset = Sp == "Cynoscion analis")
##
## Coefficients:
## (Intercept) FC
## 2.001 3.105
summary(LM.L_F.CA)##
## Call:
## lm(formula = IGS ~ FC, data = Fec, subset = Sp == "Cynoscion analis")
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3279 -1.6646 -0.4391 1.8735 4.0865
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.001 1.900 1.053 0.2970
## FC 3.105 1.791 1.733 0.0887 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.137 on 54 degrees of freedom
## Multiple R-squared: 0.05271, Adjusted R-squared: 0.03517
## F-statistic: 3.005 on 1 and 54 DF, p-value: 0.08873
LM.L_F.SD <- lm(IGS ~ FC, data = Fec, subset = Sp == "Sciaena deliciosa")
LM.L_F.SD##
## Call:
## lm(formula = IGS ~ FC, data = Fec, subset = Sp == "Sciaena deliciosa")
##
## Coefficients:
## (Intercept) FC
## -0.8975 3.6347
summary(LM.L_F.SD)##
## Call:
## lm(formula = IGS ~ FC, data = Fec, subset = Sp == "Sciaena deliciosa")
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.6671 -0.6959 -0.1068 0.6996 3.7583
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.8975 1.4492 -0.619 0.53843
## FC 3.6347 1.1038 3.293 0.00179 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.376 on 52 degrees of freedom
## Multiple R-squared: 0.1725, Adjusted R-squared: 0.1566
## F-statistic: 10.84 on 1 and 52 DF, p-value: 0.001788
Alo_L_A <- ggplot(Fec, aes(x = LT, y = Fec2, group = Sp, colour = Sp)) + # facet_wrap(~Sp, scales = 'free', nrow = 1)+
geom_point(shape = 21) + geom_smooth(method = lm) + labs(x = "Longitud total (cm)",
y = "Fecundidad (N° ov)") + scale_color_brewer(palette = "Paired") + theme_bw() +
theme(legend.position = "none")
Alo_L_B <- ggplot(Fec, aes(x = LT, y = Fec_parcial, group = Sp, colour = Sp)) +
# facet_wrap(~Sp, scales = 'free', nrow = 1)+
geom_point(shape = 21) + geom_smooth(method = lm) + labs(x = "Longitud total (cm)",
y = "Fecundidad parcial (N° ov/g)") + scale_color_brewer(palette = "Paired") +
theme_bw() + theme(legend.position = "none")
Alo_L_C <- ggplot(Fec, aes(x = LT, y = IGS, group = Sp, colour = Sp)) + # facet_wrap(~Sp, scales = 'free', nrow = 1)+
geom_point(shape = 21) + geom_smooth(method = lm) + labs(x = "Longitud total (cm)",
y = "IGS") + scale_color_brewer(palette = "Paired") + theme_bw() + theme(legend.position = c(0.65,
0.75))
plot_grid(Alo_L_A, Alo_L_B, Alo_L_C, labels = "AUTO", nrow = 1, align = "v")Alo_P_A <- ggplot(Fec, aes(x = Peso, y = Fec2, group = Sp, colour = Sp)) + # facet_wrap(~Sp, scales = 'free', nrow = 1)+
geom_point(shape = 21) + geom_smooth(method = lm) + labs(x = "Peso (g)", y = "Fecundidad (N° ov)") +
scale_color_brewer(palette = "Paired") + theme_bw() + theme(legend.position = "none")
Alo_P_B <- ggplot(Fec, aes(x = Peso, y = Fec_parcial, group = Sp, colour = Sp)) +
# facet_wrap(~Sp, scales = 'free', nrow = 1)+
geom_point(shape = 21) + geom_smooth(method = lm) + labs(x = "Peso (g)", y = "Fecundidad parcial (N° ov/g)") +
scale_color_brewer(palette = "Paired") + theme_bw() + theme(legend.position = "none")
Alo_P_C <- ggplot(Fec, aes(x = Peso, y = IGS, group = Sp, colour = Sp)) + # facet_wrap(~Sp, scales = 'free', nrow = 1)+
geom_point(shape = 21) + geom_smooth(method = lm) + labs(x = "Peso (g)", y = "IGS") +
scale_color_brewer(palette = "Paired") + theme_bw() + theme(legend.position = c(0.65,
0.75))
plot_grid(Alo_P_A, Alo_P_B, Alo_P_C, labels = "AUTO", nrow = 1, align = "v")Alo_C_A <- ggplot(Fec, aes(x = FC, y = Fec2, group = Sp, colour = Sp)) + # facet_wrap(~Sp, scales = 'free', nrow = 1)+
geom_point(shape = 21) + geom_smooth(method = lm) + labs(x = "Factor de condición",
y = "Fecundidad (N° ov)") + scale_color_brewer(palette = "Paired") + theme_bw() +
theme(legend.position = "none")
Alo_C_B <- ggplot(Fec, aes(x = FC, y = Fec_parcial, group = Sp, colour = Sp)) +
# facet_wrap(~Sp, scales = 'free', nrow = 1)+
geom_point(shape = 21) + geom_smooth(method = lm) + labs(x = "Factor de condición",
y = "Fecundidad parcial (N° ov/g)") + scale_color_brewer(palette = "Paired") +
theme_bw() + theme(legend.position = "none")
Alo_C_C <- ggplot(Fec, aes(x = FC, y = IGS, group = Sp, colour = Sp)) + # facet_wrap(~Sp, scales = 'free', nrow = 1)+
geom_point(shape = 21) + geom_smooth(method = lm) + labs(x = "Factor de condición",
y = "IGS") + scale_color_brewer(palette = "Paired") + theme_bw() + theme(legend.position = c(0.65,
0.75))
plot_grid(Alo_C_A, Alo_C_B, Alo_C_C, labels = "AUTO", nrow = 1, align = "v")Fernando Tapia Vilchez . 29 de Febrero del 2015. Ćltima actualización: 2019-06-04