The objectives of this problem set is to orient you to a number of activities in R. And to conduct a thoughtful exercise in appreciating the importance of data visualization. For each question create a code chunk or text response that completes/answers the activity or question requested. Finally, upon completion name your final output .html file as: YourName_ANLY512-Section-Year-Semester.html and upload it to the “Problem Set 2” assignment to your R Pubs account and submit the link to Moodle. Points will be deducted for uploading the improper format.
anscombe data that is part of the library(datasets) in R. And assign that data to a new object called data.library(datasets)
View(anscombe)
data<-anscombe
fBasics() package!)library(fBasics)
## Loading required package: timeDate
## Loading required package: timeSeries
#summriz each column (min, median, mean, max, quntile)
summary(data)
## x1 x2 x3 x4
## Min. : 4.0 Min. : 4.0 Min. : 4.0 Min. : 8
## 1st Qu.: 6.5 1st Qu.: 6.5 1st Qu.: 6.5 1st Qu.: 8
## Median : 9.0 Median : 9.0 Median : 9.0 Median : 8
## Mean : 9.0 Mean : 9.0 Mean : 9.0 Mean : 9
## 3rd Qu.:11.5 3rd Qu.:11.5 3rd Qu.:11.5 3rd Qu.: 8
## Max. :14.0 Max. :14.0 Max. :14.0 Max. :19
## y1 y2 y3 y4
## Min. : 4.260 Min. :3.100 Min. : 5.39 Min. : 5.250
## 1st Qu.: 6.315 1st Qu.:6.695 1st Qu.: 6.25 1st Qu.: 6.170
## Median : 7.580 Median :8.140 Median : 7.11 Median : 7.040
## Mean : 7.501 Mean :7.501 Mean : 7.50 Mean : 7.501
## 3rd Qu.: 8.570 3rd Qu.:8.950 3rd Qu.: 7.98 3rd Qu.: 8.190
## Max. :10.840 Max. :9.260 Max. :12.74 Max. :12.500
#The correlation between each pair of variabes
cor(data)
## x1 x2 x3 x4 y1 y2
## x1 1.0000000 1.0000000 1.0000000 -0.5000000 0.8164205 0.8162365
## x2 1.0000000 1.0000000 1.0000000 -0.5000000 0.8164205 0.8162365
## x3 1.0000000 1.0000000 1.0000000 -0.5000000 0.8164205 0.8162365
## x4 -0.5000000 -0.5000000 -0.5000000 1.0000000 -0.5290927 -0.7184365
## y1 0.8164205 0.8164205 0.8164205 -0.5290927 1.0000000 0.7500054
## y2 0.8162365 0.8162365 0.8162365 -0.7184365 0.7500054 1.0000000
## y3 0.8162867 0.8162867 0.8162867 -0.3446610 0.4687167 0.5879193
## y4 -0.3140467 -0.3140467 -0.3140467 0.8165214 -0.4891162 -0.4780949
## y3 y4
## x1 0.8162867 -0.3140467
## x2 0.8162867 -0.3140467
## x3 0.8162867 -0.3140467
## x4 -0.3446610 0.8165214
## y1 0.4687167 -0.4891162
## y2 0.5879193 -0.4780949
## y3 1.0000000 -0.1554718
## y4 -0.1554718 1.0000000
x1<-data$x1
x2<-data$x2
x3<-data$x3
x4<-data$x4
y1<-data$y1
y2<-data$y2
y3<-data$y3
y4<-data$y4
#scatter plot for x1 and y1
plot(x1,y1, main="Scatter plots for x1 and y1",
xlab="x1", ylab="y1")
#scatter plot for x2 and y2
plot(x2,y2, main="Scatter plots for x2 and y2",
xlab="x2", ylab="y2")
#scatter plot for x3 and y3
plot(x3,y3, main="Scatter plots for x3 and y3",
xlab="x3", ylab="y3")
#scatter plot for x4 and y4
plot(x4,y4, main="Scatter plots for x4 and y4",
xlab="x4", ylab="y4")
#List 4 plots 2 by 2.
par(mfrow=c(2,2))
#scatter plot for x1 and y1
plot(x1,y1, main="Scatterplot for x1 and y1",
xlab="x1", ylab="y1",
pch=19)
#scatter plot for x2 and y2
plot(x2,y2, main="Scatterplot for x2 and y2",
xlab="x2", ylab="y2",
pch=19)
#scatter plot for x3 and y3
plot(x3,y3, main="Scatterplot for x3 and y3",
xlab="x3", ylab="y3",
pch=19)
#scatter plot for x4 and y4
plot(x4,y4, main="Scatterplot for x4 and y4",
xlab="x4", ylab="y4",
pch=19)
lm() function.#Build Linear model for each set
linearMod_1<-lm(y1~x1, data=data)
print(linearMod_1)
##
## Call:
## lm(formula = y1 ~ x1, data = data)
##
## Coefficients:
## (Intercept) x1
## 3.0001 0.5001
linearMod_2<-lm(y2~x2, data=data)
print(linearMod_2)
##
## Call:
## lm(formula = y2 ~ x2, data = data)
##
## Coefficients:
## (Intercept) x2
## 3.001 0.500
linearMod_3<-lm(y3~x3, data=data)
print(linearMod_3)
##
## Call:
## lm(formula = y3 ~ x3, data = data)
##
## Coefficients:
## (Intercept) x3
## 3.0025 0.4997
linearMod_4<-lm(y4~x4, data=data)
print(linearMod_4)
##
## Call:
## lm(formula = y4 ~ x4, data = data)
##
## Coefficients:
## (Intercept) x4
## 3.0017 0.4999
par(mfrow=c(2,2))
# Add regression line
#scatter plot for x1 and y1
plot(x1,y1, main="Scatterplot for x1 and y1",
xlab="x1", ylab="y1",
pch=19)
abline(linearMod_1)
#scatter plot for x2 and y2
plot(x2,y2, main="Scatterplot for x2 and y2",
xlab="x2", ylab="y2",
pch=19)
abline(linearMod_2)
#scatter plot for x3 and y3
plot(x3,y3, main="Scatterplot for x3 and y3",
xlab="x3", ylab="y3",
pch=19)
abline(linearMod_3)
#scatter plot for x4 and y4
plot(x4,y4, main="Scatterplot for x4 and y4",
xlab="x4", ylab="y4",
pch=19)
abline(linearMod_4)
#look at statisitc rsult of each model
summary(linearMod_1)
Call: lm(formula = y1 ~ x1, data = data)
Residuals: Min 1Q Median 3Q Max -1.92127 -0.45577 -0.04136 0.70941 1.83882
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0001 1.1247 2.667 0.02573 * x1 0.5001 0.1179 4.241 0.00217 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
Residual standard error: 1.237 on 9 degrees of freedom Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295 F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217
summary(linearMod_2)
Call: lm(formula = y2 ~ x2, data = data)
Residuals: Min 1Q Median 3Q Max -1.9009 -0.7609 0.1291 0.9491 1.2691
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.001 1.125 2.667 0.02576 * x2 0.500 0.118 4.239 0.00218 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
Residual standard error: 1.237 on 9 degrees of freedom Multiple R-squared: 0.6662, Adjusted R-squared: 0.6292 F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002179
summary(linearMod_3)
Call: lm(formula = y3 ~ x3, data = data)
Residuals: Min 1Q Median 3Q Max -1.1586 -0.6146 -0.2303 0.1540 3.2411
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0025 1.1245 2.670 0.02562 * x3 0.4997 0.1179 4.239 0.00218 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
Residual standard error: 1.236 on 9 degrees of freedom Multiple R-squared: 0.6663, Adjusted R-squared: 0.6292 F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002176
summary(linearMod_4)
Call: lm(formula = y4 ~ x4, data = data)
Residuals: Min 1Q Median 3Q Max -1.751 -0.831 0.000 0.809 1.839
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0017 1.1239 2.671 0.02559 * x4 0.4999 0.1178 4.243 0.00216 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
Residual standard error: 1.236 on 9 degrees of freedom Multiple R-squared: 0.6667, Adjusted R-squared: 0.6297 F-statistic: 18 on 1 and 9 DF, p-value: 0.002165
#From the summary of ststistical result, 4 models all achieve the significant level.However, from the scattorplots, only model 1 looks the best fit the randomness and fit the regression line the best.
# model 2 show the dots with curve shape
#model 3 and 4 has outliner, also model 4 data is not random distributed
This article shows how visualized graphs can help to check regression model in diferent aspects other than statistical method. Graphics help us to perceive the broad features of the data. It also helps to see the data outside of the assumption that made from statistical calculation. This artical uses the example of scatterplot to check regression model to show how graphics can help the ststistic analysis.