The objectives of this problem set is to orient you to a number of activities in R
. And to conduct a thoughtful exercise in appreciating the importance of data visualization. For each question create a code chunk or text response that completes/answers the activity or question requested. Finally, upon completion name your final output .html
file as: YourName_ANLY512-Section-Year-Semester.html
and upload it to the “Problem Set 2” assignment to your R Pubs account and submit the link to Moodle. Points will be deducted for uploading the improper format.
anscombe
data that is part of the library(datasets)
in R
. And assign that data to a new object called data
.library(datasets)
data<-anscombe
fBasics()
package!)library(psych)
describe(data)
## vars n mean sd median trimmed mad min max range skew kurtosis
## x1 1 11 9.0 3.32 9.00 9.00 4.45 4.00 14.00 10.00 0.00 -1.53
## x2 2 11 9.0 3.32 9.00 9.00 4.45 4.00 14.00 10.00 0.00 -1.53
## x3 3 11 9.0 3.32 9.00 9.00 4.45 4.00 14.00 10.00 0.00 -1.53
## x4 4 11 9.0 3.32 8.00 8.00 0.00 8.00 19.00 11.00 2.47 4.52
## y1 5 11 7.5 2.03 7.58 7.49 1.82 4.26 10.84 6.58 -0.05 -1.20
## y2 6 11 7.5 2.03 8.14 7.79 1.47 3.10 9.26 6.16 -0.98 -0.51
## y3 7 11 7.5 2.03 7.11 7.15 1.53 5.39 12.74 7.35 1.38 1.24
## y4 8 11 7.5 2.03 7.04 7.20 1.90 5.25 12.50 7.25 1.12 0.63
## se
## x1 1.00
## x2 1.00
## x3 1.00
## x4 1.00
## y1 0.61
## y2 0.61
## y3 0.61
## y4 0.61
library(fBasics)
## Warning: package 'fBasics' was built under R version 3.5.3
## Loading required package: timeDate
## Loading required package: timeSeries
## Warning: package 'timeSeries' was built under R version 3.5.3
##
## Attaching package: 'timeSeries'
## The following object is masked from 'package:psych':
##
## outlier
##
## Attaching package: 'fBasics'
## The following object is masked from 'package:psych':
##
## tr
colVars(data)
## x1 x2 x3 x4 y1 y2 y3
## 11.000000 11.000000 11.000000 11.000000 4.127269 4.127629 4.122620
## y4
## 4.123249
correlationTest(data$x1, data$y1)
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8164
## STATISTIC:
## t: 4.2415
## P VALUE:
## Alternative Two-Sided: 0.00217
## Alternative Less: 0.9989
## Alternative Greater: 0.001085
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4244, 0.9507
## Less: -1, 0.9388
## Greater: 0.5113, 1
##
## Description:
## Sun Jun 02 20:16:08 2019
correlationTest(data$x2, data$y2)
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8162
## STATISTIC:
## t: 4.2386
## P VALUE:
## Alternative Two-Sided: 0.002179
## Alternative Less: 0.9989
## Alternative Greater: 0.001089
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4239, 0.9506
## Less: -1, 0.9387
## Greater: 0.5109, 1
##
## Description:
## Sun Jun 02 20:16:08 2019
correlationTest(data$x3, data$y3)
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8163
## STATISTIC:
## t: 4.2394
## P VALUE:
## Alternative Two-Sided: 0.002176
## Alternative Less: 0.9989
## Alternative Greater: 0.001088
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4241, 0.9507
## Less: -1, 0.9387
## Greater: 0.511, 1
##
## Description:
## Sun Jun 02 20:16:08 2019
correlationTest(data$x4, data$y4)
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8165
## STATISTIC:
## t: 4.243
## P VALUE:
## Alternative Two-Sided: 0.002165
## Alternative Less: 0.9989
## Alternative Greater: 0.001082
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4246, 0.9507
## Less: -1, 0.9388
## Greater: 0.5115, 1
##
## Description:
## Sun Jun 02 20:16:08 2019
plot(data$x1, data$y1, main = "x1,y1")
plot(data$x2, data$y2, main = "x2,y2")
plot(data$x3, data$y3, main = "x3,y3")
plot(data$x4, data$y4, main = "x4,y4")
par(mfrow= c(2,2))
plot(data$x1, data$y1, main = "x1,y1", pch = 20,bg="black")
plot(data$x2, data$y2, main = "x2,y2", pch = 20,bg="black")
plot(data$x3, data$y3, main = "x3,y3", pch = 20,bg="black")
plot(data$x4, data$y4, main = "x4,y4", pch = 20,bg="black")
lm()
function.m1<-lm(data$y1~data$x1)
m2<-lm(data$y2~data$x2)
m3<-lm(data$y3~data$x3)
m4<-lm(data$y4~data$x4)
par(mfrow= c(2,2))
plot(data$x1, data$y1, main = "x1,y1", pch = 20,bg="black")
abline(m1,col="green")
plot(data$x2, data$y2, main = "x2,y2", pch = 20,bg="black")
abline(m2,col="green")
plot(data$x3, data$y3, main = "x3,y3", pch = 20,bg="black")
abline(m3,col="green")
plot(data$x4, data$y4, main = "x4,y4", pch = 20,bg="black")
abline(m4,col="green")
summary(m1)
Call: lm(formula = data\(y1 ~ data\)x1)
Residuals: Min 1Q Median 3Q Max -1.92127 -0.45577 -0.04136 0.70941 1.83882
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0001 1.1247 2.667 0.02573 * data$x1 0.5001 0.1179 4.241 0.00217 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
Residual standard error: 1.237 on 9 degrees of freedom Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295 F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217
summary(m2)
Call: lm(formula = data\(y2 ~ data\)x2)
Residuals: Min 1Q Median 3Q Max -1.9009 -0.7609 0.1291 0.9491 1.2691
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.001 1.125 2.667 0.02576 * data$x2 0.500 0.118 4.239 0.00218 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
Residual standard error: 1.237 on 9 degrees of freedom Multiple R-squared: 0.6662, Adjusted R-squared: 0.6292 F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002179
summary(m3)
Call: lm(formula = data\(y3 ~ data\)x3)
Residuals: Min 1Q Median 3Q Max -1.1586 -0.6146 -0.2303 0.1540 3.2411
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0025 1.1245 2.670 0.02562 * data$x3 0.4997 0.1179 4.239 0.00218 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
Residual standard error: 1.236 on 9 degrees of freedom Multiple R-squared: 0.6663, Adjusted R-squared: 0.6292 F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002176
summary(m4)
Call: lm(formula = data\(y4 ~ data\)x4)
Residuals: Min 1Q Median 3Q Max -1.751 -0.831 0.000 0.809 1.839
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0017 1.1239 2.671 0.02559 * data$x4 0.4999 0.1178 4.243 0.00216 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
Residual standard error: 1.236 on 9 degrees of freedom Multiple R-squared: 0.6667, Adjusted R-squared: 0.6297 F-statistic: 18 on 1 and 9 DF, p-value: 0.002165
This lesson tells us data visualization is very important. We can’t analyze data without ploting the data first. All 4 dependant variables Y share the same mean values and variance and same as all 4 independant variables X. All 4 linear models share the same adjusted r^2. No one can imagine the linear models look that different on the scatter plots by just looking at the model summaries and the analysis on the variables. That’s why data visualization is very important.