Creando las matrices

library(dplyr)
X<-matrix(data = c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
                   1,1,1,216,283,237,203,259,374,342,301,365,
                   384,404,426,432,409,553,572,506,528,501,
                   628,677,602,630,652),
          nrow = 24, ncol = 2, byrow = FALSE)
colnames(X) <-c("cte","x")
Y<-matrix(data = c(6.1,9.1,7.2,7.5,6.9,11.5,10.3,9.5,9.2,
                   10.6,12.5,12.9,13.6,12.8,16.5,17.1,15,
                   16.2,15.8,19,19.4,19.1,18,20.2),
          nrow = 24)
print(X)
##       cte   x
##  [1,]   1 216
##  [2,]   1 283
##  [3,]   1 237
##  [4,]   1 203
##  [5,]   1 259
##  [6,]   1 374
##  [7,]   1 342
##  [8,]   1 301
##  [9,]   1 365
## [10,]   1 384
## [11,]   1 404
## [12,]   1 426
## [13,]   1 432
## [14,]   1 409
## [15,]   1 553
## [16,]   1 572
## [17,]   1 506
## [18,]   1 528
## [19,]   1 501
## [20,]   1 628
## [21,]   1 677
## [22,]   1 602
## [23,]   1 630
## [24,]   1 652
print(Y)
##       [,1]
##  [1,]  6.1
##  [2,]  9.1
##  [3,]  7.2
##  [4,]  7.5
##  [5,]  6.9
##  [6,] 11.5
##  [7,] 10.3
##  [8,]  9.5
##  [9,]  9.2
## [10,] 10.6
## [11,] 12.5
## [12,] 12.9
## [13,] 13.6
## [14,] 12.8
## [15,] 16.5
## [16,] 17.1
## [17,] 15.0
## [18,] 16.2
## [19,] 15.8
## [20,] 19.0
## [21,] 19.4
## [22,] 19.1
## [23,] 18.0
## [24,] 20.2

Calculo de los residuos

txx<-solve(t(X)%*%(X))
A<-txx%*%t(X)
P<-X%*%A
Iden<-diag(x=1,24,24)
M<-Iden-P
Ui<-(M%*%Y)
ui<-matrix(sort(Ui))
print(ui)
##              [,1]
##  [1,] -1.83297302
##  [2,] -0.99733747
##  [3,] -0.98441350
##  [4,] -0.90437184
##  [5,] -0.90043126
##  [6,] -0.50716765
##  [7,] -0.22115126
##  [8,] -0.11721068
##  [9,] -0.08157512
## [10,] -0.04979501
## [11,] -0.03093888
## [12,]  0.05512008
## [13,]  0.15503494
## [14,]  0.19969645
## [15,]  0.30859470
## [16,]  0.32537412
## [17,]  0.36804405
## [18,]  0.46007774
## [19,]  0.50270510
## [20,]  0.57689973
## [21,]  0.64215354
## [22,]  0.72736569
## [23,]  1.02732313
## [24,]  1.27897644

Prueba de Jarque bera— PASO A PASO

Varianza

n<-24
varJB<-sqrt((1/n)*(sum(ui^2)))
print(varJB)
## [1] 0.7105005

Encontrar la asimetria \(\mu_3\) y curtosis \(\mu_4\)

#asimetria = As
As<-(1/n)*(sum(ui^3))
#curtosis = Ct
Ct<-(1/n)*(sum(ui^4))

Asimetria

print(As)
## [1] -0.2229066

Curtosis

print(Ct)
## [1] 0.7963161

Encontrando \(\alpha\) de asimetria y curtosis

#alpha de asimetria = Aas
Aas<-(As/varJB^3)
#alpha de curtosis = Act
Act<-(Ct/varJB^4)

Alpha de asimetria

print(Aas)
## [1] -0.6214835

Alpha de curtosis

print(Act)
## [1] 3.124841

Calcular estadistico de prueba \(JB\)

JB<-(n/6)*(Aas^2)+(n/24)*(Act-3)^2

Estadistico de Jarque Bera

(JB)
## [1] 1.560552

JB es menor que el V.C 5.9915 Hay evidencia de que le modelo sigue una distribucion normal.

Prueba de Kolmogorov Smirnov— PASO A PASO

Varianza

i<-1:n
varKS <- sqrt((1/n)*(sum(ui^2)))
print(varKS)
## [1] 0.7105005

Calculo de \(Z_{i}\): \[Z_{i}=\frac{u_{i}}{\sigma}\] Valor \(Z_{i}\)

z <- (ui-(0.000000020000000766629))
zi<- z/varKS
print(zi)
##              [,1]
##  [1,] -2.57983343
##  [2,] -1.40371109
##  [3,] -1.38552114
##  [4,] -1.27286584
##  [5,] -1.26731963
##  [6,] -0.71381743
##  [7,] -0.31126125
##  [8,] -0.16496919
##  [9,] -0.11481362
## [10,] -0.07008444
## [11,] -0.04354521
## [12,]  0.07757919
## [13,]  0.21820521
## [14,]  0.28106443
## [15,]  0.43433419
## [16,]  0.45795053
## [17,]  0.51800669
## [18,]  0.64754028
## [19,]  0.70753652
## [20,]  0.81196238
## [21,]  0.90380440
## [22,]  1.02373698
## [23,]  1.44591460
## [24,]  1.80010620

Valor \(P_{i}\)

pi <- pnorm((zi))
print(pi)
##              [,1]
##  [1,] 0.004942399
##  [2,] 0.080202449
##  [3,] 0.082946587
##  [4,] 0.101532827
##  [5,] 0.102520513
##  [6,] 0.237670040
##  [7,] 0.377801012
##  [8,] 0.434484117
##  [9,] 0.454296425
## [10,] 0.472063225
## [11,] 0.482633462
## [12,] 0.530918602
## [13,] 0.586365387
## [14,] 0.610669509
## [15,] 0.667977110
## [16,] 0.676506007
## [17,] 0.697773197
## [18,] 0.741358833
## [19,] 0.760383438
## [20,] 0.791593390
## [21,] 0.816950437
## [22,] 0.847020237
## [23,] 0.925899422
## [24,] 0.964078064

Valor \(D^{+}\)

Dmas <- abs((i/n)-pi)
print(Dmas)
##              [,1]
##  [1,] 0.036724268
##  [2,] 0.003130884
##  [3,] 0.042053413
##  [4,] 0.065133840
##  [5,] 0.105812820
##  [6,] 0.012329960
##  [7,] 0.086134346
##  [8,] 0.101150783
##  [9,] 0.079296425
## [10,] 0.055396558
## [11,] 0.024300129
## [12,] 0.030918602
## [13,] 0.044698720
## [14,] 0.027336176
## [15,] 0.042977110
## [16,] 0.009839341
## [17,] 0.010560136
## [18,] 0.008641167
## [19,] 0.031283229
## [20,] 0.041739944
## [21,] 0.058049563
## [22,] 0.069646429
## [23,] 0.032433911
## [24,] 0.035921936

Valor \(D^{-}\)

Dmenos <- abs(pi - ((i-1)/n))
print(Dmenos)
##               [,1]
##  [1,] 4.942399e-03
##  [2,] 3.853578e-02
##  [3,] 3.867465e-04
##  [4,] 2.346717e-02
##  [5,] 6.414615e-02
##  [6,] 2.933671e-02
##  [7,] 1.278010e-01
##  [8,] 1.428175e-01
##  [9,] 1.209631e-01
## [10,] 9.706323e-02
## [11,] 6.596680e-02
## [12,] 7.258527e-02
## [13,] 8.636539e-02
## [14,] 6.900284e-02
## [15,] 8.464378e-02
## [16,] 5.150601e-02
## [17,] 3.110653e-02
## [18,] 3.302550e-02
## [19,] 1.038344e-02
## [20,] 7.327683e-05
## [21,] 1.638290e-02
## [22,] 2.797976e-02
## [23,] 9.232755e-03
## [24,] 5.744731e-03

Cuadro completo

Tab<-cbind(i,i/n,zi,pi,Dmas,Dmenos)
colnames(Tab)<-c("i","i/n","zi","P(i)","Dmas","Dmenos")
round(Tab,3)
##        i   i/n     zi  P(i)  Dmas Dmenos
##  [1,]  1 0.042 -2.580 0.005 0.037  0.005
##  [2,]  2 0.083 -1.404 0.080 0.003  0.039
##  [3,]  3 0.125 -1.386 0.083 0.042  0.000
##  [4,]  4 0.167 -1.273 0.102 0.065  0.023
##  [5,]  5 0.208 -1.267 0.103 0.106  0.064
##  [6,]  6 0.250 -0.714 0.238 0.012  0.029
##  [7,]  7 0.292 -0.311 0.378 0.086  0.128
##  [8,]  8 0.333 -0.165 0.434 0.101  0.143
##  [9,]  9 0.375 -0.115 0.454 0.079  0.121
## [10,] 10 0.417 -0.070 0.472 0.055  0.097
## [11,] 11 0.458 -0.044 0.483 0.024  0.066
## [12,] 12 0.500  0.078 0.531 0.031  0.073
## [13,] 13 0.542  0.218 0.586 0.045  0.086
## [14,] 14 0.583  0.281 0.611 0.027  0.069
## [15,] 15 0.625  0.434 0.668 0.043  0.085
## [16,] 16 0.667  0.458 0.677 0.010  0.052
## [17,] 17 0.708  0.518 0.698 0.011  0.031
## [18,] 18 0.750  0.648 0.741 0.009  0.033
## [19,] 19 0.792  0.708 0.760 0.031  0.010
## [20,] 20 0.833  0.812 0.792 0.042  0.000
## [21,] 21 0.875  0.904 0.817 0.058  0.016
## [22,] 22 0.917  1.024 0.847 0.070  0.028
## [23,] 23 0.958  1.446 0.926 0.032  0.009
## [24,] 24 1.000  1.800 0.964 0.036  0.006

Valor D \[D=max(D^{+},D^{-})\]

D1 <- max(Dmas)
D2 <- max(Dmenos)
maxD<-max(Dmas, Dmenos)
print(maxD)
## [1] 0.1428175

V.C en tabla es igual a 0.1788

Prueba de Shapiro-Wilk — PASO A PASO

**Identificar p(i) y mi

p_i <- matrix((i-0.375)/(24+0.25))
m_i <- qnorm(mean=0, sd=1, lower.tail = FALSE, p_i)*-1
matriz_m <- matrix(m_i)
m <- (sum(m_i^2))
xSW <- matriz_m[n,1]
print(xSW)
## [1] 1.946903
print(p_i)
##             [,1]
##  [1,] 0.02577320
##  [2,] 0.06701031
##  [3,] 0.10824742
##  [4,] 0.14948454
##  [5,] 0.19072165
##  [6,] 0.23195876
##  [7,] 0.27319588
##  [8,] 0.31443299
##  [9,] 0.35567010
## [10,] 0.39690722
## [11,] 0.43814433
## [12,] 0.47938144
## [13,] 0.52061856
## [14,] 0.56185567
## [15,] 0.60309278
## [16,] 0.64432990
## [17,] 0.68556701
## [18,] 0.72680412
## [19,] 0.76804124
## [20,] 0.80927835
## [21,] 0.85051546
## [22,] 0.89175258
## [23,] 0.93298969
## [24,] 0.97422680
print(matriz_m)
##              [,1]
##  [1,] -1.94690278
##  [2,] -1.49843365
##  [3,] -1.23590240
##  [4,] -1.03864671
##  [5,] -0.87524006
##  [6,] -0.73241136
##  [7,] -0.60317579
##  [8,] -0.48332361
##  [9,] -0.37005675
## [10,] -0.26136061
## [11,] -0.15567569
## [12,] -0.05170609
## [13,]  0.05170609
## [14,]  0.15567569
## [15,]  0.26136061
## [16,]  0.37005675
## [17,]  0.48332361
## [18,]  0.60317579
## [19,]  0.73241136
## [20,]  0.87524006
## [21,]  1.03864671
## [22,]  1.23590240
## [23,]  1.49843365
## [24,]  1.94690278

calculo de ai paso a paso

ted <- 1/sqrt(24)
print(ted)
## [1] 0.2041241
an <- (((ted)^5)*-2.706056)+(4.434685*(ted)^4)-(2.071190*(ted)^3)-(0.147981*(ted)^2)+(0.2211570*(ted))+(matriz_m[24,1]/sqrt(m))
an_1 <- (((ted)^5)*-3.582633)+(5.682633*(ted)^4)-(1.752461*(ted)^3)-(0.293762*(ted)^2)+(0.042981*(ted))+(matriz_m[(23),1]/sqrt(m))
w <- (m-(2*(matriz_m[24,1])^2)-(2*(matriz_m[23,1])^2))/(1-(2*(an)^2)-2*(an_1)^2)
print(w)
## [1] 23.48625
ai <- matriz_m/sqrt(w)
a_i<-matrix(data = c(-an, -an_1, ai[3,1],ai[4,1],ai[5,1],ai[6,1],ai[7,1],ai[8,1],ai[9,1],
                     ai[10,1],ai[11,1],ai[12,1],ai[13,1],ai[14,1],ai[15,1],ai[16,1],
                     ai[17,1],ai[18,1],ai[19,1],ai[20,1],ai[21,1],ai[22,1],an_1,an),
          nrow = 24, ncol = 1, byrow = FALSE)
print(a_i)
##              [,1]
##  [1,] -0.44751326
##  [2,] -0.31302439
##  [3,] -0.25502179
##  [4,] -0.21431914
##  [5,] -0.18060106
##  [6,] -0.15112913
##  [7,] -0.12446207
##  [8,] -0.09973122
##  [9,] -0.07635921
## [10,] -0.05393035
## [11,] -0.03212284
## [12,] -0.01066927
## [13,]  0.01066927
## [14,]  0.03212284
## [15,]  0.05393035
## [16,]  0.07635921
## [17,]  0.09973122
## [18,]  0.12446207
## [19,]  0.15112913
## [20,]  0.18060106
## [21,]  0.21431914
## [22,]  0.25502179
## [23,]  0.31302439
## [24,]  0.44751326

Encontrando El producto de los residuos y W

au_i<- a_i*ui
print(au_i)
##                [,1]
##  [1,]  0.8202797359
##  [2,]  0.3121909499
##  [3,]  0.2510468930
##  [4,]  0.1938242002
##  [5,]  0.1626188434
##  [6,]  0.0766478070
##  [7,]  0.0275249440
##  [8,]  0.0116895637
##  [9,]  0.0062290121
## [10,]  0.0026854625
## [11,]  0.0009938446
## [12,] -0.0005880911
## [13,]  0.0016541100
## [14,]  0.0064148168
## [15,]  0.0166426203
## [16,]  0.0248453117
## [17,]  0.0367054816
## [18,]  0.0572622273
## [19,]  0.0759733859
## [20,]  0.1041887046
## [21,]  0.1376257968
## [22,]  0.1854941022
## [23,]  0.3215771919
## [24,]  0.5723589192
uu_i<- (ui)^2
print(uu_i)
##               [,1]
##  [1,] 3.3597901075
##  [2,] 0.9946820249
##  [3,] 0.9690699314
##  [4,] 0.8178884330
##  [5,] 0.8107764500
##  [6,] 0.2572190250
##  [7,] 0.0489078817
##  [8,] 0.0137383430
##  [9,] 0.0066545004
## [10,] 0.0024795434
## [11,] 0.0009572141
## [12,] 0.0030382229
## [13,] 0.0240358324
## [14,] 0.0398786721
## [15,] 0.0952306868
## [16,] 0.1058683157
## [17,] 0.1354564223
## [18,] 0.2116715247
## [19,] 0.2527124189
## [20,] 0.3328132949
## [21,] 0.4123611645
## [22,] 0.5290608535
## [23,] 1.0553928037
## [24,] 1.6357807424
W <- (sum(au_i)^2)/sum(uu_i)
print(W)
## [1] 0.9574588

Construir matriz

tabla<-cbind(i,p_i,matriz_m,a_i,ui,au_i,uu_i)
colnames(tabla)<-c("i", "p(i)", "mi", "ai", "ui", "ai*ui", "ui^2")
round(tabla,6)
##        i     p(i)        mi        ai        ui     ai*ui     ui^2
##  [1,]  1 0.025773 -1.946903 -0.447513 -1.832973  0.820280 3.359790
##  [2,]  2 0.067010 -1.498434 -0.313024 -0.997337  0.312191 0.994682
##  [3,]  3 0.108247 -1.235902 -0.255022 -0.984413  0.251047 0.969070
##  [4,]  4 0.149485 -1.038647 -0.214319 -0.904372  0.193824 0.817888
##  [5,]  5 0.190722 -0.875240 -0.180601 -0.900431  0.162619 0.810776
##  [6,]  6 0.231959 -0.732411 -0.151129 -0.507168  0.076648 0.257219
##  [7,]  7 0.273196 -0.603176 -0.124462 -0.221151  0.027525 0.048908
##  [8,]  8 0.314433 -0.483324 -0.099731 -0.117211  0.011690 0.013738
##  [9,]  9 0.355670 -0.370057 -0.076359 -0.081575  0.006229 0.006655
## [10,] 10 0.396907 -0.261361 -0.053930 -0.049795  0.002685 0.002480
## [11,] 11 0.438144 -0.155676 -0.032123 -0.030939  0.000994 0.000957
## [12,] 12 0.479381 -0.051706 -0.010669  0.055120 -0.000588 0.003038
## [13,] 13 0.520619  0.051706  0.010669  0.155035  0.001654 0.024036
## [14,] 14 0.561856  0.155676  0.032123  0.199696  0.006415 0.039879
## [15,] 15 0.603093  0.261361  0.053930  0.308595  0.016643 0.095231
## [16,] 16 0.644330  0.370057  0.076359  0.325374  0.024845 0.105868
## [17,] 17 0.685567  0.483324  0.099731  0.368044  0.036705 0.135456
## [18,] 18 0.726804  0.603176  0.124462  0.460078  0.057262 0.211672
## [19,] 19 0.768041  0.732411  0.151129  0.502705  0.075973 0.252712
## [20,] 20 0.809278  0.875240  0.180601  0.576900  0.104189 0.332813
## [21,] 21 0.850515  1.038647  0.214319  0.642154  0.137626 0.412361
## [22,] 22 0.891753  1.235902  0.255022  0.727366  0.185494 0.529061
## [23,] 23 0.932990  1.498434  0.313024  1.027323  0.321577 1.055393
## [24,] 24 0.974227  1.946903  0.447513  1.278976  0.572359 1.635781

Calcular \(W_n\) usando las siguientes formulas:

mu<- 0.0038915*(log(24)^3)-0.083751*(log(24)^2)-0.31082*(log(24))-1.5861
varSW<- 2.718281828^{(0.0030302*log(24)^2)-0.082676*(log(24))-0.4803}
Wn<-(log(1-W)-mu)/varSW
print(Wn)
## [1] 0.2805541