This is a workup on Youtube channel StatQuest . Josh Stammer explains the differences between Probability vs likelihood.

mean = 32
sd = 2.5
lb = 32    # lowerlimit
ub = 34     # upper limit
v="grams"
x = seq(-4,4,length=100)*sd + mean
hx = dnorm(x,mean,sd)
plot(x,hx,type="n",xlab=" Values",ylab = "mouse wt",main="",axes=FALSE)
i <-x>=lb & x <= ub
lines(x,hx)
polygon(c(lb,x[i],ub),c(0,hx[i],0),col="red")
area = pnorm(ub,mean,sd) - pnorm(lb,mean,sd)
result = paste("Pr(",lb,"<",v,"<",ub,") = ",signif(area,digits = 3))
mtext(result,3)
axis(1,at=seq(40,160,20),pos=0)
axis(1,at=NULL,pos = 0)

Normally written as pr(weight between 32 and 34 grams | mean = 32 and standard deviation = 2.5)“)

print(result) # probability
print(area*100) # in percentage

Likelyhood means you already have weighed your mouse or mice. So there is no range. Just a weight.

So now with a mouse weight of 34 , what is the likelyhood of weighing a 34 gram mouse?

LS0tDQp0aXRsZTogIlByb2JhYmlsaXR5IHZzIExpa2VsaWhvb2QiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpUaGlzIGlzIGEgd29ya3VwIG9uIFtZb3V0dWJlIGNoYW5uZWwgU3RhdFF1ZXN0XShodHRwczovL3d3dy55b3V0dWJlLmNvbS93YXRjaD92PXBZeE5TVURTRkg0KSAuDQpKb3NoIFN0YW1tZXIgZXhwbGFpbnMgdGhlIGRpZmZlcmVuY2VzIGJldHdlZW4gUHJvYmFiaWxpdHkgdnMgbGlrZWxpaG9vZC4NCg0KIA0KYGBge3J9DQptZWFuID0gMzINCnNkID0gMi41DQpsYiA9IDMyICAgICMgbG93ZXJsaW1pdA0KdWIgPSAzNCAgICAgIyB1cHBlciBsaW1pdA0Kdj0iZ3JhbXMiDQp4ID0gc2VxKC00LDQsbGVuZ3RoPTEwMCkqc2QgKyBtZWFuDQpoeCA9IGRub3JtKHgsbWVhbixzZCkNCnBsb3QoeCxoeCx0eXBlPSJuIix4bGFiPSIgVmFsdWVzIix5bGFiID0gIm1vdXNlIHd0IixtYWluPSIiLGF4ZXM9RkFMU0UpDQppIDwteD49bGIgJiB4IDw9IHViDQpsaW5lcyh4LGh4KQ0KcG9seWdvbihjKGxiLHhbaV0sdWIpLGMoMCxoeFtpXSwwKSxjb2w9InJlZCIpDQphcmVhID0gcG5vcm0odWIsbWVhbixzZCkgLSBwbm9ybShsYixtZWFuLHNkKQ0KcmVzdWx0ID0gcGFzdGUoIlByKCIsbGIsIjwiLHYsIjwiLHViLCIpID0gIixzaWduaWYoYXJlYSxkaWdpdHMgPSAzKSkNCm10ZXh0KHJlc3VsdCwzKQ0KYXhpcygxLGF0PXNlcSg0MCwxNjAsMjApLHBvcz0wKQ0KYXhpcygxLGF0PU5VTEwscG9zID0gMCkNCmBgYA0KTm9ybWFsbHkgd3JpdHRlbiBhcyAgcHIod2VpZ2h0IGJldHdlZW4gMzIgYW5kIDM0IGdyYW1zIHwgbWVhbiA9IDMyIGFuZCBzdGFuZGFyZCBkZXZpYXRpb24gPSAyLjUpIikNCg0KYGBgcg0KcHJpbnQocmVzdWx0KSAjIHByb2JhYmlsaXR5DQpwcmludChhcmVhKjEwMCkgIyBpbiBwZXJjZW50YWdlDQpgYGANCkxpa2VseWhvb2QgbWVhbnMgeW91IGFscmVhZHkgaGF2ZSB3ZWlnaGVkIHlvdXIgbW91c2Ugb3IgbWljZS4gU28gdGhlcmUgaXMgbm8gcmFuZ2UuIA0KSnVzdCBhIHdlaWdodC4NCg0KU28gbm93IHdpdGggYSBtb3VzZSB3ZWlnaHQgb2YgMzQgLCB3aGF0IGlzIHRoZSBsaWtlbHlob29kIG9mIHdlaWdoaW5nIGEgMzQgZ3JhbSBtb3VzZT8NCg0KDQoNCg==