------------------------------------------------------------------------- 
Describe baza_de_date (tbl_df, tbl, data.frame):

data.frame: 52 obs. of  6 variables

  Nr  ColName            Class    NAs        Levels             
  1   Sex                factor   6 (11.5%)  (2): 1-F, 2-M      
  2   ICE (da/nu)        factor   .          (2): 1-da, 2-nu    
  3   Timp de procedura  numeric  .                             
  4   Doza de radiatii   numeric  .                             
  5   Timp scopie        numeric  .                             
  6   Tip FiA            factor   .          (2): 1-Paroxistica,
                                             2-Persistenta      


------------------------------------------------------------------------- 
1 - Sex (factor - dichotomous)

  length      n    NAs unique
      52     46      6      2
          88.5%  11.5%       

   freq   perc  lci.95  uci.95'
F    13  28.3%   17.3%   42.5%
M    33  71.7%   57.5%   82.7%

' 95%-CI Wilson

------------------------------------------------------------------------- 
2 - ICE (da/nu) (factor - dichotomous)

  length      n    NAs unique
      52     52      0      2
         100.0%   0.0%       

    freq   perc  lci.95  uci.95'
da    26  50.0%   36.9%   63.1%
nu    26  50.0%   36.9%   63.1%

' 95%-CI Wilson

------------------------------------------------------------------------- 
3 - Timp de procedura (numeric)

  length       n     NAs  unique      0s    mean  meanCI
      52      52       0      14       0  189.42  175.44
          100.0%    0.0%            0.0%          203.41
                                                        
     .05     .10     .25  median     .75     .90     .95
  120.00  141.00  160.00  180.00  220.00  258.00  294.50
                                                        
   range      sd   vcoef     mad     IQR    skew    kurt
  240.00   50.23    0.27   29.65   60.00    0.38    0.34
                                                        
lowest : 60.0, 100.0, 120.0 (3), 140.0, 150.0 (3)
highest: 240.0 (4), 260.0, 280.0, 290.0, 300.0 (3)

------------------------------------------------------------------------- 
4 - Doza de radiatii (numeric)

     length         n       NAs     unique         0s       mean
         52        52         0         51          0  14'050.02
               100.0%      0.0%                  0.0%           
                                                                
        .05       .10       .25     median        .75        .90
   4'607.05  6'744.00  8'501.50  12'925.00  17'334.33  22'270.00
                                                                
      range        sd     vcoef        mad        IQR       skew
  35'276.00  7'530.38      0.54   6'668.22   8'832.83       1.12
                                                                
     meanCI
  11'953.54
  16'146.49
           
        .95
  27'656.48
           
       kurt
       1.29
           
lowest : 2'724.0, 4'044.0, 4'073.0, 5'044.0, 6'218.0
highest: 22'514.0, 25'200.70, 30'658.0, 35'421.60, 38'000.0

------------------------------------------------------------------------- 
5 - Timp scopie (numeric)

  length       n    NAs  unique     0s   mean  meanCI
      52      52      0      47      0  35.47   31.40
          100.0%   0.0%           0.0%          39.53
                                                     
     .05     .10    .25  median    .75    .90     .95
   13.86   15.86  24.52   35.25  42.82  54.70   60.00
                                                     
   range      sd  vcoef     mad    IQR   skew    kurt
   60.00   14.61   0.41   15.42  18.30   0.07   -0.61
                                                     
lowest : 5.5, 6.4, 13.7, 14.0 (2), 15.6
highest: 55.0, 58.0, 60.0 (2), 65.0, 65.5

------------------------------------------------------------------------- 
6 - Tip FiA (factor - dichotomous)

  length      n    NAs unique
      52     52      0      2
         100.0%   0.0%       

             freq   perc  lci.95  uci.95'
Paroxistica    40  76.9%   63.9%   86.3%
Persistenta    12  23.1%   13.7%   36.1%

' 95%-CI Wilson

------------------------------------------------------------------------- 
Sex ~ ICE..da.nu.


Summary: 
n: 46, rows: 2, columns: 2

Pearson's Chi-squared test (cont. adj):
  X-squared = 1, df = 1, p-value = 0.2
Fisher's exact test p-value = 0.2
McNemar's chi-squared = 5, df = 1, p-value = 0.03

                    estimate lwr.ci upr.ci'
                                          
odds ratio            0.3571 0.0951 1.3416
rel. risk (col1)      0.6044 0.2900 1.2597
rel. risk (col2)      1.6923 0.9074 3.1560


Phi-Coefficient        0.229
Contingency Coeff.     0.223
Cramer's V             0.229

                                      
      ICE..da.nu.     da     nu    Sum
Sex                                   
                                      
F     freq             5      8     13
      perc         10.9%  17.4%  28.3%
      p.row        38.5%  61.5%      .
      p.col        19.2%  40.0%      .
                                      
M     freq            21     12     33
      perc         45.7%  26.1%  71.7%
      p.row        63.6%  36.4%      .
      p.col        80.8%  60.0%      .
                                      
Sum   freq            26     20     46
      perc         56.5%  43.5% 100.0%
      p.row            .      .      .
      p.col            .      .      .
                                      

----------
' 95% conf. level

------------------------------------------------------------------------- 
Timp.de.procedura ~ ICE..da.nu.

Summary: 
n pairs: 52, valid: 52 (100.0%), missings: 0 (0.0%), groups: 2

                        
             da       nu
mean    181.538  197.308
median  180.000  180.000
sd       50.334   49.844
IQR      20.000   55.000
n            26       26
np      50.000%  50.000%
NAs           0        0
0s            0        0

Kruskal-Wallis rank sum test:
  Kruskal-Wallis chi-squared = 0.9, df = 1, p-value = 0.3

------------------------------------------------------------------------- 
Doza.de.radiatii ~ ICE..da.nu.

Summary: 
n pairs: 52, valid: 52 (100.0%), missings: 0 (0.0%), groups: 2

                              
                da          nu
mean    11'839.600  16'260.435
median  10'166.800  13'405.350
sd       6'100.566   8'264.501
IQR      9'028.500   9'040.575
n               26          26
np         50.000%     50.000%
NAs              0           0
0s               0           0

Kruskal-Wallis rank sum test:
  Kruskal-Wallis chi-squared = 4, df = 1, p-value = 0.04

------------------------------------------------------------------------- 
Timp.scopie ~ ICE..da.nu.

Summary: 
n pairs: 52, valid: 52 (100.0%), missings: 0 (0.0%), groups: 2

                        
             da       nu
mean     28.004   42.931
median   27.550   41.600
sd       12.549   12.731
IQR      13.750   15.000
n            26       26
np      50.000%  50.000%
NAs           0        0
0s            0        0

Kruskal-Wallis rank sum test:
  Kruskal-Wallis chi-squared = 14, df = 1, p-value = 0.0002

------------------------------------------------------------------------- 
Tip.FiA ~ ICE..da.nu.


Summary: 
n: 52, rows: 2, columns: 2

Pearson's Chi-squared test (cont. adj):
  X-squared = 0, df = 1, p-value = 1
Fisher's exact test p-value = 1
McNemar's chi-squared = 6, df = 1, p-value = 0.01

                    estimate lwr.ci upr.ci'
                                          
odds ratio             1.000  0.275  3.634
rel. risk (col1)       1.000  0.525  1.906
rel. risk (col2)       1.000  0.525  1.906


Phi-Coefficient        0.000
Contingency Coeff.     0.000
Cramer's V             0.000

                                              
              ICE..da.nu.     da     nu    Sum
Tip.FiA                                       
                                              
Paroxistica   freq            20     20     40
              perc         38.5%  38.5%  76.9%
              p.row        50.0%  50.0%      .
              p.col        76.9%  76.9%      .
                                              
Persistenta   freq             6      6     12
              perc         11.5%  11.5%  23.1%
              p.row        50.0%  50.0%      .
              p.col        23.1%  23.1%      .
                                              
Sum           freq            26     26     52
              perc         50.0%  50.0% 100.0%
              p.row            .      .      .
              p.col            .      .      .
                                              

----------
' 95% conf. level

da.vars

da.n

da.mean

da.sd

da.median

da.trimmed

da.mad

da.min

da.max

da.range

da.skew

da.kurtosis

da.se

1

26.000

1.808

0.402

2.000

1.864

0.000

1.000

2.000

1.000

-1.472

0.179

0.079

2

26.000

1.000

0.000

1.000

1.000

0.000

1.000

1.000

0.000

0.000

3

26.000

181.538

50.334

180.000

181.364

29.652

60.000

290.000

230.000

0.098

0.402

9.871

4

26.000

11839.600

6100.566

10166.800

11647.618

6961.845

2724.000

22514.000

19790.000

0.325

-1.267

1196.419

5

26.000

28.004

12.549

27.550

27.709

11.268

5.500

55.000

49.500

0.167

-0.566

2.461

6

26.000

1.231

0.430

1.000

1.182

0.000

1.000

2.000

1.000

1.205

-0.565

0.084

nu.vars

nu.n

nu.mean

nu.sd

nu.median

nu.trimmed

nu.mad

nu.min

nu.max

nu.range

nu.skew

nu.kurtosis

nu.se

1

20.000

1.600

0.503

2.000

1.625

0.000

1.000

2.000

1.000

-0.378

-1.947

0.112

2

26.000

2.000

0.000

2.000

2.000

0.000

2.000

2.000

0.000

0.000

3

26.000

197.308

49.844

180.000

195.000

44.478

120.000

300.000

180.000

0.677

-0.305

9.775

4

26.000

16260.435

8264.501

13405.350

15238.486

5143.139

6739.000

38000.000

31261.000

1.205

0.607

1620.802

5

26.000

42.931

12.731

41.600

43.041

13.195

18.200

65.500

47.300

0.002

-0.767

2.497

6

26.000

1.231

0.430

1.000

1.182

0.000

1.000

2.000

1.000

1.205

-0.565

0.084

1 Rezultate

baza_de_date %>% make_summary_table("ICE (da/nu)", g.rows = c("mean_sd", "med_range"))

Factor

Levels

da

nu

Total

Statistics

ICE (da/nu)

26 (50.0%)

26 (50.0%)

52

Sex

F

5 (19.2%)

8 (40.0%)

13 (28.3%)

OR=0.36 [0.10, 1.34] (p=0.187)

M

21 (80.8%)

12 (60.0%)

33 (71.7%)

Timp de procedura

Mean ±SD

181.54 ±50.3

197.31 ±49.8

189.42 ±50.2

MW: p=0.348

*M(R)

180 (60:290)

180 (120:300)

180 (60:300)

Doza de radiatii

Mean ±SD

11839.60 ±6100.6

16260.43 ±8264.5

14050.02 ±7530.4

MW: p=0.041

*M(R)

10166.8 (2724:22514)

13405.35 (6739:38000)

12925 (2724:38000)

Timp scopie

Mean ±SD

28.00 ±12.5

42.93 ±12.7

35.47 ±14.6

T-test: p<0.001

*M(R)

27.55 (5.5:55)

41.6 (18.2:65.5)

35.25 (5.5:65.5)

Tip FiA

Paroxistica

20 (76.9%)

20 (76.9%)

40 (76.9%)

OR=1.00 [0.28, 3.63] (p=1.000)

Persistenta

6 (23.1%)

6 (23.1%)

12 (23.1%)

*M(R) = Mediana (min:max); MW = Test Mann-Whitney; OR/RR = odds-ratio / risc relativ [cu IC 95%] și p calculat prin testul Fisher); V = Cramer V (p calculat prin testul Chi²).

t.test(baza_de_date$`Timp de procedura`~baza_de_date$`ICE (da/nu)`)

    Welch Two Sample t-test

data:  baza_de_date$`Timp de procedura` by baza_de_date$`ICE (da/nu)`
t = -1, df = 50, p-value = 0.3
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -43.7  12.1
sample estimates:
mean in group da mean in group nu 
             182              197 
t.test(baza_de_date$`Doza de radiatii`~baza_de_date$`ICE (da/nu)`)

    Welch Two Sample t-test

data:  baza_de_date$`Doza de radiatii` by baza_de_date$`ICE (da/nu)`
t = -2, df = 46, p-value = 0.03
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -8476  -366
sample estimates:
mean in group da mean in group nu 
           11840            16260 
t.test(baza_de_date$`Timp scopie`~baza_de_date$`ICE (da/nu)`)

    Welch Two Sample t-test

data:  baza_de_date$`Timp scopie` by baza_de_date$`ICE (da/nu)`
t = -4, df = 50, p-value = 0.00009
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -21.97  -7.89
sample estimates:
mean in group da mean in group nu 
            28.0             42.9 

1.1 x=Timp de procedura, y=Doza de radiatii

C0 <- cor.test(baza_de_date$`Timp de procedura`, baza_de_date$`Doza de radiatii`, method = "spearman")
Cda <- cor.test(baza_de_date$`Timp de procedura`[1:20], baza_de_date$`Doza de radiatii`[1:20], method = "spearman")
Cnu <- cor.test(baza_de_date$`Timp de procedura`[21:40], baza_de_date$`Doza de radiatii`[21:40], method = "spearman")

C0.p <- cor.test(baza_de_date$`Timp de procedura`, baza_de_date$`Doza de radiatii`, method = "pearson")
Cda.p <- cor.test(baza_de_date$`Timp de procedura`[1:20], baza_de_date$`Doza de radiatii`[1:20], method = "pearson")
Cnu.p <- cor.test(baza_de_date$`Timp de procedura`[21:40], baza_de_date$`Doza de radiatii`[21:40], method = "pearson")

baza_de_date %>% ggplot(aes(x=`Timp de procedura`, y=`Doza de radiatii`)) +
  geom_smooth(method="lm", se=F, color="black", fullrange=T)+
  geom_smooth(method="lm", se=F, fullrange=T, aes(color=`ICE (da/nu)`), linetype="dashed")+
  geom_point(aes(color=`ICE (da/nu)`), alpha=0.5, size=3)

print(paste("Overall: Spearman R =", C0$estimate, ", p =", C0$p.value))
[1] "Overall: Spearman R = 0.508791871448474 , p = 0.000117424223618335"
print(paste("ICE = da: Spearman R =", Cda$estimate, ", p =", Cda$p.value))
[1] "ICE = da: Spearman R = 0.733711074581487 , p = 0.000231538690377559"
print(paste("ICE = nu: Spearman R =", Cnu$estimate, ", p =", Cnu$p.value))
[1] "ICE = nu: Spearman R = 0.45829458719531 , p = 0.0421322559878773"
print(paste("Overall: Pearson R =", C0.p$estimate, ", p =", C0.p$p.value))
[1] "Overall: Pearson R = 0.471067597656773 , p = 0.000424052780045767"
print(paste("ICE = da: Pearson R =", Cda.p$estimate, ", p =", Cda.p$p.value))
[1] "ICE = da: Pearson R = 0.638939913997892 , p = 0.00242449139421406"
print(paste("ICE = nu: Pearson R =", Cnu.p$estimate, ", p =", Cnu.p$p.value))
[1] "ICE = nu: Pearson R = 0.537430017091023 , p = 0.0145344143871273"

1.2 x=Timp de procedura, y=Timp scopie

C0 <- cor.test(baza_de_date$`Timp de procedura`, baza_de_date$`Timp scopie`, method = "spearman")
Cda <- cor.test(baza_de_date$`Timp de procedura`[1:20], baza_de_date$`Timp scopie`[1:20], method = "spearman")
Cnu <- cor.test(baza_de_date$`Timp de procedura`[21:40], baza_de_date$`Timp scopie`[21:40], method = "spearman")

C0.p <- cor.test(baza_de_date$`Timp de procedura`, baza_de_date$`Timp scopie`, method = "pearson")
Cda.p <- cor.test(baza_de_date$`Timp de procedura`[1:20], baza_de_date$`Timp scopie`[1:20], method = "pearson")
Cnu.p <- cor.test(baza_de_date$`Timp de procedura`[21:40], baza_de_date$`Timp scopie`[21:40], method = "pearson")

baza_de_date %>% ggplot(aes(x=`Timp de procedura`, y=`Timp scopie`)) +
  geom_smooth(method="lm", se=F, color="black", fullrange=T)+
  geom_smooth(method="lm", se=F, fullrange=T, aes(color=`ICE (da/nu)`), linetype="dashed")+
  geom_point(aes(color=`ICE (da/nu)`), alpha=0.5, size=3)

print(paste("Overall: Spearman R =", C0$estimate, ", p =", C0$p.value))
[1] "Overall: Spearman R = 0.487663343241216 , p = 0.000245489143882031"
print(paste("ICE = da: Spearman R =", Cda$estimate, ", p =", Cda$p.value))
[1] "ICE = da: Spearman R = 0.650169571155871 , p = 0.00191276101664954"
print(paste("ICE = nu: Spearman R =", Cnu$estimate, ", p =", Cnu$p.value))
[1] "ICE = nu: Spearman R = 0.0998743915856213 , p = 0.675258215630004"
print(paste("Overall: Pearson R =", C0.p$estimate, ", p =", C0.p$p.value))
[1] "Overall: Pearson R = 0.538950007038622 , p = 0.0000375453191823553"
print(paste("ICE = da: Pearson R =", Cda.p$estimate, ", p =", Cda.p$p.value))
[1] "ICE = da: Pearson R = 0.596051679435744 , p = 0.00554510144854163"
print(paste("ICE = nu: Pearson R =", Cnu.p$estimate, ", p =", Cnu.p$p.value))
[1] "ICE = nu: Pearson R = 0.36129516267341 , p = 0.117551403955669"

1.3 x=Doza de radiatii, y=Timp scopie

C0 <- cor.test(baza_de_date$`Doza de radiatii`, baza_de_date$`Timp scopie`, method = "spearman")
Cda <- cor.test(baza_de_date$`Doza de radiatii`[1:20], baza_de_date$`Timp scopie`[1:20], method = "spearman")
Cnu <- cor.test(baza_de_date$`Doza de radiatii`[21:40], baza_de_date$`Timp scopie`[21:40], method = "spearman")

C0.p <- cor.test(baza_de_date$`Doza de radiatii`, baza_de_date$`Timp scopie`, method = "pearson")
Cda.p <- cor.test(baza_de_date$`Doza de radiatii`[1:20], baza_de_date$`Timp scopie`[1:20], method = "pearson")
Cnu.p <- cor.test(baza_de_date$`Doza de radiatii`[21:40], baza_de_date$`Timp scopie`[21:40], method = "pearson")

baza_de_date %>% ggplot(aes(x=`Doza de radiatii`, y=`Timp scopie`)) +
  geom_smooth(method="lm", se=F, color="black", fullrange=T)+
  geom_smooth(method="lm", se=F, fullrange=T, aes(color=`ICE (da/nu)`), linetype="dashed")+
  geom_point(aes(color=`ICE (da/nu)`), alpha=0.5, size=3)

print(paste("Overall: Spearman R =", C0$estimate, ", p =", C0$p.value))
[1] "Overall: Spearman R = 0.585535586816233 , p = 0.00000512295038064821"
print(paste("ICE = da: Spearman R =", Cda$estimate, ", p =", Cda$p.value))
[1] "ICE = da: Spearman R = 0.7930777263912 , p = 0.0000303083334519293"
print(paste("ICE = nu: Spearman R =", Cnu$estimate, ", p =", Cnu$p.value))
[1] "ICE = nu: Spearman R = 0.142857142857143 , p = 0.546534964823574"
print(paste("Overall: Pearson R =", C0.p$estimate, ", p =", C0.p$p.value))
[1] "Overall: Pearson R = 0.652176597392501 , p = 0.000000162422123085522"
print(paste("ICE = da: Pearson R =", Cda.p$estimate, ", p =", Cda.p$p.value))
[1] "ICE = da: Pearson R = 0.740641433117388 , p = 0.000187801792243598"
print(paste("ICE = nu: Pearson R =", Cnu.p$estimate, ", p =", Cnu.p$p.value))
[1] "ICE = nu: Pearson R = 0.588110416176511 , p = 0.00638443365482919"