libraries of interest

library(tidyverse)

Create example data set Publication url date type_of_study design_rating positive_or_negative

reviews <- data.frame("title_key" = 1:10, "year" = c(2015,2009,2011,2015,2019,2008,2002,2001,1999,2018), "design_quality_rating" = c(2,2,3,1,5,2,4,1,3,4), "positive" = c(0,1,1,0,1,0,0,1,1,0))

create histogram

ggplot(reviews) + aes(design_quality_rating) + geom_histogram(binwidth = 1, color="darkblue", fill="lightblue") + labs(title = "Quality of Evidence Distribution", subtitle = "As of May 2019", x = "Quality Rating: 1 Very Poor -- 5 Very Good", y = "Count")

NA

create tally

tally(group_by(reviews, design_quality_rating))

New Review from June 2019 adds to evidence

reviews_june_2019 <- data.frame("title_key" = 11:20, "year" = c(2012,2001,2012,2000,2015,2002,2002,1997,1999,2019), "design_quality_rating" = c(4,5,3,3,5,1,2,1,3,3), "positive" = c(1,1,0,0,1,1,0,1,1,0))

ggplot(reviews_june_2019) + aes(design_quality_rating) + geom_histogram(binwidth = 1, color="darkblue", fill="lightblue") + labs(title = "Quality of Evidence Distribution", subtitle = "As of May 2019", x = "Quality Rating: 1 Very Poor -- 5 Very Good", y = "Count")


tally(group_by(reviews_june_2019, design_quality_rating))

merge both reviews

reviews_all <- full_join(reviews_june_2019, reviews)
Joining, by = c("title_key", "year", "design_quality_rating", "positive")
ggplot(reviews_all) + aes(design_quality_rating) + geom_histogram(binwidth = 1, color="darkblue", fill="lightblue") + labs(title = "Quality of Evidence Distribution", subtitle = "As of May 2019", x = "Quality Rating: 1 Very Poor -- 5 Very Good", y = "Count")


tally(group_by(reviews_all, design_quality_rating))
NA

Making tables easily when data updates, can collapse rows as desired

fancy_table_of_findings <- table(reviews_all$design_quality_rating, reviews_all$positive)

colnames(fancy_table_of_findings) <- c("Negative", "Positive")
rownames(fancy_table_of_findings) <- c("Very Poor", "Poor", "Acceptable", "Good", "Very Good" )

print(fancy_table_of_findings)
            
             Negative Positive
  Very Poor         1        3
  Poor              3        1
  Acceptable        3        3
  Good              2        1
  Very Good         0        3
LS0tDQp0aXRsZTogIlJldmlld3MgSWRlYXMiDQpvdXRwdXQ6DQogIGh0bWxfbm90ZWJvb2s6IGRlZmF1bHQNCiAgaHRtbF9kb2N1bWVudDoNCiAgICBkZl9wcmludDogcGFnZWQNCiAgcGRmX2RvY3VtZW50OiBkZWZhdWx0DQotLS0NCmxpYnJhcmllcyBvZiBpbnRlcmVzdA0KYGBge3J9DQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmBgYA0KDQoNCkNyZWF0ZSBleGFtcGxlIGRhdGEgc2V0DQpQdWJsaWNhdGlvbiB1cmwgZGF0ZSB0eXBlX29mX3N0dWR5IGRlc2lnbl9yYXRpbmcgcG9zaXRpdmVfb3JfbmVnYXRpdmUNCmBgYHtyfQ0KcmV2aWV3cyA8LSBkYXRhLmZyYW1lKCJ0aXRsZV9rZXkiID0gMToxMCwgInllYXIiID0gYygyMDE1LDIwMDksMjAxMSwyMDE1LDIwMTksMjAwOCwyMDAyLDIwMDEsMTk5OSwyMDE4KSwgImRlc2lnbl9xdWFsaXR5X3JhdGluZyIgPSBjKDIsMiwzLDEsNSwyLDQsMSwzLDQpLCAicG9zaXRpdmUiID0gYygwLDEsMSwwLDEsMCwwLDEsMSwwKSkNCmBgYA0KDQpjcmVhdGUgaGlzdG9ncmFtDQpgYGB7cn0NCmdncGxvdChyZXZpZXdzKSArIGFlcyhkZXNpZ25fcXVhbGl0eV9yYXRpbmcpICsgZ2VvbV9oaXN0b2dyYW0oYmlud2lkdGggPSAxLCBjb2xvcj0iZGFya2JsdWUiLCBmaWxsPSJsaWdodGJsdWUiKSArIGxhYnModGl0bGUgPSAiUXVhbGl0eSBvZiBFdmlkZW5jZSBEaXN0cmlidXRpb24iLCBzdWJ0aXRsZSA9ICJBcyBvZiBNYXkgMjAxOSIsIHggPSAiUXVhbGl0eSBSYXRpbmc6IDEgVmVyeSBQb29yIC0tIDUgVmVyeSBHb29kIiwgeSA9ICJDb3VudCIpDQogIA0KYGBgDQoNCmNyZWF0ZSB0YWxseQ0KYGBge3J9DQp0YWxseShncm91cF9ieShyZXZpZXdzLCBkZXNpZ25fcXVhbGl0eV9yYXRpbmcpKQ0KYGBgDQoNCk5ldyBSZXZpZXcgZnJvbSBKdW5lIDIwMTkgYWRkcyB0byBldmlkZW5jZQ0KYGBge3J9DQpyZXZpZXdzX2p1bmVfMjAxOSA8LSBkYXRhLmZyYW1lKCJ0aXRsZV9rZXkiID0gMTE6MjAsICJ5ZWFyIiA9IGMoMjAxMiwyMDAxLDIwMTIsMjAwMCwyMDE1LDIwMDIsMjAwMiwxOTk3LDE5OTksMjAxOSksICJkZXNpZ25fcXVhbGl0eV9yYXRpbmciID0gYyg0LDUsMywzLDUsMSwyLDEsMywzKSwgInBvc2l0aXZlIiA9IGMoMSwxLDAsMCwxLDEsMCwxLDEsMCkpDQoNCmdncGxvdChyZXZpZXdzX2p1bmVfMjAxOSkgKyBhZXMoZGVzaWduX3F1YWxpdHlfcmF0aW5nKSArIGdlb21faGlzdG9ncmFtKGJpbndpZHRoID0gMSwgY29sb3I9ImRhcmtibHVlIiwgZmlsbD0ibGlnaHRibHVlIikgKyBsYWJzKHRpdGxlID0gIlF1YWxpdHkgb2YgRXZpZGVuY2UgRGlzdHJpYnV0aW9uIiwgc3VidGl0bGUgPSAiQXMgb2YgTWF5IDIwMTkiLCB4ID0gIlF1YWxpdHkgUmF0aW5nOiAxIFZlcnkgUG9vciAtLSA1IFZlcnkgR29vZCIsIHkgPSAiQ291bnQiKQ0KDQp0YWxseShncm91cF9ieShyZXZpZXdzX2p1bmVfMjAxOSwgZGVzaWduX3F1YWxpdHlfcmF0aW5nKSkNCmBgYA0KDQptZXJnZSBib3RoIHJldmlld3MNCg0KYGBge3J9DQpyZXZpZXdzX2FsbCA8LSBmdWxsX2pvaW4ocmV2aWV3c19qdW5lXzIwMTksIHJldmlld3MpDQoNCmdncGxvdChyZXZpZXdzX2FsbCkgKyBhZXMoZGVzaWduX3F1YWxpdHlfcmF0aW5nKSArIGdlb21faGlzdG9ncmFtKGJpbndpZHRoID0gMSwgY29sb3I9ImRhcmtibHVlIiwgZmlsbD0ibGlnaHRibHVlIikgKyBsYWJzKHRpdGxlID0gIlF1YWxpdHkgb2YgRXZpZGVuY2UgRGlzdHJpYnV0aW9uIiwgc3VidGl0bGUgPSAiQXMgb2YgTWF5IDIwMTkiLCB4ID0gIlF1YWxpdHkgUmF0aW5nOiAxIFZlcnkgUG9vciAtLSA1IFZlcnkgR29vZCIsIHkgPSAiQ291bnQiKQ0KDQp0YWxseShncm91cF9ieShyZXZpZXdzX2FsbCwgZGVzaWduX3F1YWxpdHlfcmF0aW5nKSkNCg0KYGBgDQoNCk1ha2luZyB0YWJsZXMgZWFzaWx5IHdoZW4gZGF0YSB1cGRhdGVzLCBjYW4gY29sbGFwc2Ugcm93cyBhcyBkZXNpcmVkDQoNCmBgYHtyfQ0KZmFuY3lfdGFibGVfb2ZfZmluZGluZ3MgPC0gdGFibGUocmV2aWV3c19hbGwkZGVzaWduX3F1YWxpdHlfcmF0aW5nLCByZXZpZXdzX2FsbCRwb3NpdGl2ZSkNCg0KY29sbmFtZXMoZmFuY3lfdGFibGVfb2ZfZmluZGluZ3MpIDwtIGMoIk5lZ2F0aXZlIiwgIlBvc2l0aXZlIikNCnJvd25hbWVzKGZhbmN5X3RhYmxlX29mX2ZpbmRpbmdzKSA8LSBjKCJWZXJ5IFBvb3IiLCAiUG9vciIsICJBY2NlcHRhYmxlIiwgIkdvb2QiLCAiVmVyeSBHb29kIiApDQoNCnByaW50KGZhbmN5X3RhYmxlX29mX2ZpbmRpbmdzKQ0KDQpgYGANCg0K