Downloading IMF Data Using #RStudio#IMFDATA#R#Data

Installing Package from CRAN

install.packages(‘IMFData’)

The development version from github with

devtools::install_github(‘mingjerli/IMFData’)

Loading the package

library(IMFData)

How to use IMFData

If you don’t know anything about IMF data API, the following four steps is a good way to start.

Find out available dataset in IMF data.

availableDB <- DataflowMethod()

availableDB$DatabaseID

availableDB$DatabaseText

Findout how many dimensions are available in a given dataset. Here, we use IFS(International Financial Statistics) for example,

Get dimension code of IFS dataset

IFS.available.codes <- DataStructureMethod(“IFS”)

Available dimension code

names(IFS.available.codes)

Possible code in the first dimension

IFS.available.codes[[1]]

Search possible code to use in each dimension.

Search code contains GDP

CodeSearch(IFS.available.codes, “CL_INDICATOR_IFS”, “GDP”)

Make API call to get data from 2001-2016 through IFS

databaseID <- “IFS” startdate = “2001-01-01” enddate = “2016-12-31” checkquery = FALSE

Germany, Norminal GDP in Euros, Norminal GDP in National Currency

queryfilter <- list(CL_FREA = "“, CL_AREA_IFS =”GR“, CL_INDICATOR_IFS = c(”NGDP_EUR“,”NGDP_XDC")) GR.NGDP.query <- CompactDataMethod(databaseID, queryfilter, startdate, enddate, checkquery) GR.NGDP.query[, 1:5]

GR.NGDP.query$Obs[[1]]

GR.NGDP.query$Obs[[2]]

Quarterly Data from Existing Query, US, NGDP_SA_AR_XDC

queryfilter <- list(CL_FREA = “Q”, CL_AREA_IFS = “US”, CL_INDICATOR_IFS = “NGDP_SA_AR_XDC”) Q.US.NGDP.query <- CompactDataMethod(databaseID, queryfilter, startdate, enddate, checkquery) Q.US.NGDP.query[, 1:5] @FREQ @REF_AREA @INDICATOR @UNIT_MULT @TIME_FORMAT 1 Q US NGDP_SA_AR_XDC 9 P3M Q.US.NGDP.query$Obs[[1]]

LS0tDQp0aXRsZTogIiNJTUYgRGF0YSBFeHRyYWN0aW9uIFRocm91Z2ggI1JTdHVkaW8jSU1GREFUQSNQYWNrYWdlIg0Kb3V0cHV0Og0KICBodG1sX25vdGVib29rOiBkZWZhdWx0DQogIHBkZl9kb2N1bWVudDogZGVmYXVsdA0KLS0tDQoNCiMjIERvd25sb2FkaW5nIElNRiBEYXRhIFVzaW5nICNSU3R1ZGlvI0lNRkRBVEEjUiNEYXRhDQoNCiMjIEluc3RhbGxpbmcgUGFja2FnZSBmcm9tIENSQU4NCg0KDQppbnN0YWxsLnBhY2thZ2VzKCdJTUZEYXRhJykNCg0KIyMgVGhlIGRldmVsb3BtZW50IHZlcnNpb24gZnJvbSBnaXRodWIgd2l0aA0KDQpkZXZ0b29sczo6aW5zdGFsbF9naXRodWIoJ21pbmdqZXJsaS9JTUZEYXRhJykNCg0KIyMgTG9hZGluZyB0aGUgcGFja2FnZQ0KbGlicmFyeShJTUZEYXRhKQ0KDQojIyBIb3cgdG8gdXNlIElNRkRhdGENCiMjIyBJZiB5b3UgZG9uJ3Qga25vdyBhbnl0aGluZyBhYm91dCBJTUYgZGF0YSBBUEksIHRoZSBmb2xsb3dpbmcgZm91ciBzdGVwcyBpcyBhIGdvb2Qgd2F5IHRvIHN0YXJ0Lg0KDQojIyMgRmluZCBvdXQgYXZhaWxhYmxlIGRhdGFzZXQgaW4gSU1GIGRhdGEuDQoNCmF2YWlsYWJsZURCIDwtIERhdGFmbG93TWV0aG9kKCkNCg0KYXZhaWxhYmxlREIkRGF0YWJhc2VJRA0KDQphdmFpbGFibGVEQiREYXRhYmFzZVRleHQNCg0KIyMgRmluZG91dCBob3cgbWFueSBkaW1lbnNpb25zIGFyZSBhdmFpbGFibGUgaW4gYSBnaXZlbiBkYXRhc2V0LiBIZXJlLCB3ZSB1c2UgSUZTKEludGVybmF0aW9uYWwgRmluYW5jaWFsIFN0YXRpc3RpY3MpIGZvciBleGFtcGxlLA0KIyMgR2V0IGRpbWVuc2lvbiBjb2RlIG9mIElGUyBkYXRhc2V0DQoNCklGUy5hdmFpbGFibGUuY29kZXMgPC0gRGF0YVN0cnVjdHVyZU1ldGhvZCgiSUZTIikNCg0KIyMjIEF2YWlsYWJsZSBkaW1lbnNpb24gY29kZQ0KDQpuYW1lcyhJRlMuYXZhaWxhYmxlLmNvZGVzKQ0KDQojIyMgUG9zc2libGUgY29kZSBpbiB0aGUgZmlyc3QgZGltZW5zaW9uDQoNCklGUy5hdmFpbGFibGUuY29kZXNbWzFdXQ0KDQojIFNlYXJjaCBwb3NzaWJsZSBjb2RlIHRvIHVzZSBpbiBlYWNoIGRpbWVuc2lvbi4gDQoNCiMjIEhlcmUsIHdlIHdhbnQgdG8gc2VhcmNoIGNvZGUgcmVsYXRlZCB0byBHRFAgaW4gQ0xfSU5ESUNBVE9SX0lGUyBkaW1lbnNpb24sDQoNCiMgU2VhcmNoIGNvZGUgY29udGFpbnMgR0RQDQoNCkNvZGVTZWFyY2goSUZTLmF2YWlsYWJsZS5jb2RlcywgIkNMX0lORElDQVRPUl9JRlMiLCAiR0RQIikNCg0KIyMgTWFrZSBBUEkgY2FsbCB0byBnZXQgZGF0YSBmcm9tIDIwMDEtMjAxNiB0aHJvdWdoIElGUw0KDQpkYXRhYmFzZUlEIDwtICJJRlMiDQpzdGFydGRhdGUgPSAiMjAwMS0wMS0wMSINCmVuZGRhdGUgPSAiMjAxNi0xMi0zMSINCmNoZWNrcXVlcnkgPSBGQUxTRQ0KDQojIyBHZXJtYW55LCBOb3JtaW5hbCBHRFAgaW4gRXVyb3MsIE5vcm1pbmFsIEdEUCBpbiBOYXRpb25hbCBDdXJyZW5jeQ0KDQpxdWVyeWZpbHRlciA8LSBsaXN0KENMX0ZSRUEgPSAiIiwgQ0xfQVJFQV9JRlMgPSAiR1IiLCBDTF9JTkRJQ0FUT1JfSUZTID0gYygiTkdEUF9FVVIiLCANCiAgICAiTkdEUF9YREMiKSkNCkdSLk5HRFAucXVlcnkgPC0gQ29tcGFjdERhdGFNZXRob2QoZGF0YWJhc2VJRCwgcXVlcnlmaWx0ZXIsIHN0YXJ0ZGF0ZSwgZW5kZGF0ZSwgDQogICAgY2hlY2txdWVyeSkNCkdSLk5HRFAucXVlcnlbLCAxOjVdDQoNCkdSLk5HRFAucXVlcnkkT2JzW1sxXV0NCg0KR1IuTkdEUC5xdWVyeSRPYnNbWzJdXQ0KDQojIyBRdWFydGVybHkgRGF0YSBmcm9tIEV4aXN0aW5nIFF1ZXJ5LCBVUywgTkdEUF9TQV9BUl9YREMNCg0KcXVlcnlmaWx0ZXIgPC0gbGlzdChDTF9GUkVBID0gIlEiLCBDTF9BUkVBX0lGUyA9ICJVUyIsIENMX0lORElDQVRPUl9JRlMgPSAiTkdEUF9TQV9BUl9YREMiKQ0KUS5VUy5OR0RQLnF1ZXJ5IDwtIENvbXBhY3REYXRhTWV0aG9kKGRhdGFiYXNlSUQsIHF1ZXJ5ZmlsdGVyLCBzdGFydGRhdGUsIGVuZGRhdGUsIA0KICAgIGNoZWNrcXVlcnkpDQpRLlVTLk5HRFAucXVlcnlbLCAxOjVdDQpARlJFUSBAUkVGX0FSRUEgICAgIEBJTkRJQ0FUT1IgQFVOSVRfTVVMVCBAVElNRV9GT1JNQVQNCjEgICAgIFEgICAgICAgIFVTIE5HRFBfU0FfQVJfWERDICAgICAgICAgIDkgICAgICAgICAgUDNNDQpRLlVTLk5HRFAucXVlcnkkT2JzW1sxXV0NCg0KDQoNCg==