load(file = "C:/Users/Rivera/Downloads/data_clave_C.RData")
library(stargazer)
##
## Please cite as:
## Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
XX_matriX<-t(X) %*% X
stargazer(XX_matriX, type = "text")
##
## ================================================================================
## (Intercept) AGE S ED EX0 EX1 LF
## --------------------------------------------------------------------------------
## (Intercept) 47 6,513 16 4,965 3,995 3,771 26,376
## AGE 6,513 909,801 2,379 684,593 544,916 514,269 3,651,280
## S 16 2,379 16 1,517 1,116 1,052 8,529
## ED 4,965 684,593 1,517 530,251 429,411 405,548 2,797,986
## EX0 3,995 544,916 1,116 429,411 380,203 358,515 2,248,672
## EX1 3,771 514,269 1,052 405,548 358,515 338,527 2,121,781
## LF 26,376 3,651,280 8,529 2,797,986 2,248,672 2,121,781 14,877,110
## --------------------------------------------------------------------------------
Normalizacion XtX
library(stargazer)
options(scipen=999)
Sn<-solve(diag(sqrt(diag(XX_matriX))))
stargazer(Sn, type = "text")
##
## ==========================================
## 0.146 0 0 0 0 0 0
## 0 0.001 0 0 0 0 0
## 0 0 0.250 0 0 0 0
## 0 0 0 0.001 0 0 0
## 0 0 0 0 0.002 0 0
## 0 0 0 0 0 0.002 0
## 0 0 0 0 0 0 0.0003
## ------------------------------------------
\(\mid X^t X\mid\) Normalizada:
library(stargazer)
XXnorm<-(Sn%*%XX_matriX)%*%Sn
stargazer(XXnorm, type = "text")
##
## =========================================
## 1 0.996 0.583 0.995 0.945 0.945 0.997
## 0.996 1 0.624 0.986 0.927 0.927 0.992
## 0.583 0.624 1 0.521 0.452 0.452 0.553
## 0.995 0.986 0.521 1 0.956 0.957 0.996
## 0.945 0.927 0.452 0.956 1 0.999 0.945
## 0.945 0.927 0.452 0.957 0.999 1 0.945
## 0.997 0.992 0.553 0.996 0.945 0.945 1
## -----------------------------------------
Matriz de Correlacion de los regresores del modelo.
print(R)
## AGE S ED EX0 EX1 LF
## AGE 1.000000 0.584355 -0.530240 -0.505737 -0.513173 -0.160949
## S 0.584355 1.000000 -0.702741 -0.372636 -0.376168 -0.505469
## ED -0.530240 -0.702741 1.000000 0.482952 0.499410 0.561178
## EX0 -0.505737 -0.372636 0.482952 1.000000 0.993586 0.121493
## EX1 -0.513173 -0.376168 0.499410 0.993586 1.000000 0.106350
## LF -0.160949 -0.505469 0.561178 0.121493 0.106350 1.000000
Inversa de la Matriz de Correlación \(R^{-1}\):
inversa_R<-solve(R)
print(inversa_R)
## AGE S ED EX0 EX1 LF
## AGE 1.8916760 -0.8482687 0.3852114 0.3547993 0.1492460 -0.3994603
## S -0.8482687 2.4505377 1.0202661 0.4611896 -0.5377022 0.5307452
## ED 0.3852114 1.0202661 2.9734031 4.1964513 -4.9588590 -1.0733609
## EX0 0.3547993 0.4611896 4.1964513 86.4656601 -87.3018851 -3.2851515
## EX1 0.1492460 -0.5377022 -4.9588590 -87.3018851 89.7097948 3.6009631
## LF -0.3994603 0.5307452 -1.0733609 -3.2851515 3.6009631 1.8224895
VIF´s para el modelo estimado:
VIFs<-diag(inversa_R)
print(VIFs)
## AGE S ED EX0 EX1 LF
## 1.891676 2.450538 2.973403 86.465660 89.709795 1.822490
¿Que variables se consideran son colineales? las variables “S”, “ED”, “EX0”, y “EX1”