Calculating reliability of the composite DV (interest in dating someone this week, this month, next few months, this year). First for humans:


Reliability analysis   
Call: psych::alpha(x = d[, c(72, 73, 74, 75)])

  raw_alpha std.alpha G6(smc) average_r S/N   ase mean  sd
      0.84      0.84    0.85      0.57 5.3 0.019  6.5 1.6

 lower alpha upper     95% confidence boundaries
0.8 0.84 0.88 

 Reliability if an item is dropped:
                             raw_alpha std.alpha G6(smc) average_r S/N
interest_date_this_week           0.80      0.80    0.76      0.57 4.0
interest_date_this_month          0.77      0.77    0.72      0.53 3.3
interest_relationship_months      0.77      0.77    0.75      0.53 3.3
interest_long_relation            0.85      0.85    0.82      0.65 5.6
                             alpha se
interest_date_this_week         0.025
interest_date_this_month        0.028
interest_relationship_months    0.029
interest_long_relation          0.020

 Item statistics 
                               n raw.r std.r r.cor r.drop mean  sd
interest_date_this_week      198  0.82  0.82  0.77   0.67  6.2 2.0
interest_date_this_month     198  0.86  0.86  0.83   0.74  6.4 1.9
interest_relationship_months 198  0.87  0.86  0.80   0.74  6.4 2.1
interest_long_relation       198  0.74  0.75  0.63   0.56  6.9 1.9

Non missing response frequency for each item
                                1    4    5    6    7    8    9 miss
interest_date_this_week      0.06 0.12 0.16 0.15 0.26 0.15 0.11    0
interest_date_this_month     0.04 0.13 0.12 0.17 0.25 0.16 0.13    0
interest_relationship_months 0.06 0.12 0.10 0.13 0.25 0.20 0.14    0
interest_long_relation       0.04 0.08 0.09 0.15 0.23 0.21 0.22    0

Then for robots:


Reliability analysis   
Call: psych::alpha(x = d[, c(76, 77, 78, 79)])

  raw_alpha std.alpha G6(smc) average_r S/N  ase mean  sd
      0.91      0.92    0.94      0.74  11 0.01  2.3 1.9

 lower alpha upper     95% confidence boundaries
0.89 0.91 0.93 

 Reliability if an item is dropped:
                             raw_alpha std.alpha G6(smc) average_r  S/N
interest_dating_robot_week        0.89      0.91    0.90      0.77 10.1
interest_dating_robot_month       0.87      0.89    0.89      0.73  8.0
interest_dating_robot_months      0.88      0.88    0.86      0.71  7.5
long_relation_robot               0.90      0.90    0.88      0.76  9.3
                             alpha se
interest_dating_robot_week      0.014
interest_dating_robot_month     0.017
interest_dating_robot_months    0.014
long_relation_robot             0.012

 Item statistics 
                               n raw.r std.r r.cor r.drop mean  sd
interest_dating_robot_week   198  0.90  0.87  0.83   0.80  2.9 2.5
interest_dating_robot_month  198  0.93  0.91  0.88   0.86  2.6 2.4
interest_dating_robot_months 198  0.90  0.92  0.91   0.83  2.0 1.9
long_relation_robot          198  0.86  0.89  0.87   0.77  1.8 1.7

Non missing response frequency for each item
                                1    4    5    6    7    8    9 miss
interest_dating_robot_week   0.58 0.16 0.10 0.03 0.08 0.03 0.04    0
interest_dating_robot_month  0.65 0.16 0.06 0.03 0.05 0.02 0.04    0
interest_dating_robot_months 0.76 0.13 0.04 0.02 0.03 0.01 0.02    0
long_relation_robot          0.82 0.10 0.03 0.02 0.03 0.02 0.01    0

Checking for interaction between condition and prior interest in dating on the interest in dating humans composite DV


Call:
lm(formula = human_DV ~ condition * interest.dating.now, data = d)

Residuals:
    Min      1Q  Median      3Q     Max 
-6.6955 -0.6744  0.1468  0.7827  3.0109 

Coefficients:
                                   Estimate Std. Error t value Pr(>|t|)
(Intercept)                         3.39689    0.49687   6.837 1.03e-10
conditionhuman                      0.08762    0.67821   0.129    0.897
interest.dating.now                 0.61409    0.10255   5.988 1.01e-08
conditionhuman:interest.dating.now  0.06249    0.13903   0.449    0.654
                                      
(Intercept)                        ***
conditionhuman                        
interest.dating.now                ***
conditionhuman:interest.dating.now    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.329 on 194 degrees of freedom
Multiple R-squared:  0.3227,    Adjusted R-squared:  0.3122 
F-statistic: 30.81 on 3 and 194 DF,  p-value: 2.464e-16

Attaching package: 'ggplot2'
The following objects are masked from 'package:psych':

    %+%, alpha

Checking for main effect of condition - reveals a marginal effect, more interest in the human condition.


Call:
lm(formula = human_DV ~ condition, data = d)

Residuals:
    Min      1Q  Median      3Q     Max 
-5.2626 -0.9192  0.0808  1.3074  2.7374 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)      6.2626     0.1602  39.096   <2e-16 ***
conditionhuman   0.4066     0.2265   1.795   0.0742 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.594 on 196 degrees of freedom
Multiple R-squared:  0.01617,   Adjusted R-squared:  0.01115 
F-statistic: 3.221 on 1 and 196 DF,  p-value: 0.07424

Checking for interaction between condition and prior interest in dating on the interest in dating robot composite DV


Call:
lm(formula = robot_DV ~ condition * interest.dating.now, data = d)

Residuals:
   Min     1Q Median     3Q    Max 
-2.082 -1.270 -1.009  1.133  6.562 

Coefficients:
                                   Estimate Std. Error t value Pr(>|t|)  
(Intercept)                          1.2529     0.7153   1.752   0.0814 .
conditionhuman                       2.0077     0.9763   2.056   0.0411 *
interest.dating.now                  0.2034     0.1476   1.378   0.1699  
conditionhuman:interest.dating.now  -0.3821     0.2001  -1.909   0.0577 .
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.914 on 194 degrees of freedom
Multiple R-squared:  0.02161,   Adjusted R-squared:  0.006482 
F-statistic: 1.428 on 3 and 194 DF,  p-value: 0.2357

Breaking down the interaction shown above


Call:
lm(formula = robot_DV ~ condition, data = d)

Residuals:
   Min     1Q Median     3Q    Max 
-1.419 -1.419 -1.202  1.081  6.331 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)      2.2020     0.1931  11.402   <2e-16 ***
conditionhuman   0.2172     0.2731   0.795    0.427    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.922 on 196 degrees of freedom
Multiple R-squared:  0.003216,  Adjusted R-squared:  -0.00187 
F-statistic: 0.6323 on 1 and 196 DF,  p-value: 0.4275

Call:
lm(formula = robot_DV ~ interest.dating.now, data = AI)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.6766 -1.2698 -0.8631  0.6052  5.9336 

Coefficients:
                    Estimate Std. Error t value Pr(>|t|)  
(Intercept)           1.2529     0.6788   1.846    0.068 .
interest.dating.now   0.2034     0.1401   1.452    0.150  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.816 on 97 degrees of freedom
Multiple R-squared:  0.02126,   Adjusted R-squared:  0.01117 
F-statistic: 2.107 on 1 and 97 DF,  p-value: 0.1498

Call:
lm(formula = robot_DV ~ interest.dating.now, data = human)

Residuals:
   Min     1Q Median     3Q    Max 
-2.082 -1.367 -1.009  1.419  6.562 

Coefficients:
                    Estimate Std. Error t value Pr(>|t|)    
(Intercept)           3.2607     0.6967   4.680 9.31e-06 ***
interest.dating.now  -0.1788     0.1417  -1.262     0.21    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.006 on 97 degrees of freedom
Multiple R-squared:  0.01615,   Adjusted R-squared:  0.006003 
F-statistic: 1.592 on 1 and 97 DF,  p-value: 0.2101

Checking whether the interaction is significant for any of the individual DVs (not the composite). Not significant for any of the dating human DVs.


Call:
lm(formula = interest_date_this_week ~ condition * interest.dating.now, 
    data = d)

Residuals:
    Min      1Q  Median      3Q     Max 
-6.7605 -0.7715  0.3268  1.1691  4.1926 

Coefficients:
                                   Estimate Std. Error t value Pr(>|t|)
(Intercept)                          2.3577     0.6414   3.676 0.000307
conditionhuman                       1.2625     0.8755   1.442 0.150885
interest.dating.now                  0.7718     0.1324   5.830 2.28e-08
conditionhuman:interest.dating.now  -0.1783     0.1795  -0.993 0.321765
                                      
(Intercept)                        ***
conditionhuman                        
interest.dating.now                ***
conditionhuman:interest.dating.now    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.716 on 194 degrees of freedom
Multiple R-squared:  0.2406,    Adjusted R-squared:  0.2288 
F-statistic: 20.49 on 3 and 194 DF,  p-value: 1.416e-11

Call:
lm(formula = interest_date_this_month ~ condition * interest.dating.now, 
    data = d)

Residuals:
    Min      1Q  Median      3Q     Max 
-6.5678 -0.5583  0.1777  1.0081  3.2009 

Coefficients:
                                   Estimate Std. Error t value Pr(>|t|)
(Intercept)                         2.80387    0.59416   4.719 4.53e-06
conditionhuman                      0.53336    0.81101   0.658    0.512
interest.dating.now                 0.68056    0.12263   5.550 9.31e-08
conditionhuman:interest.dating.now  0.05038    0.16625   0.303    0.762
                                      
(Intercept)                        ***
conditionhuman                        
interest.dating.now                ***
conditionhuman:interest.dating.now    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.589 on 194 degrees of freedom
Multiple R-squared:  0.3063,    Adjusted R-squared:  0.2956 
F-statistic: 28.56 on 3 and 194 DF,  p-value: 2.439e-15

Call:
lm(formula = interest_relationship_months ~ condition * interest.dating.now, 
    data = d)

Residuals:
    Min      1Q  Median      3Q     Max 
-6.7121 -0.7657  0.3893  1.1143  3.8593 

Coefficients:
                                   Estimate Std. Error t value Pr(>|t|)
(Intercept)                          3.2121     0.6661   4.822 2.86e-06
conditionhuman                      -0.4098     0.9092  -0.451    0.653
interest.dating.now                  0.6429     0.1375   4.676 5.47e-06
conditionhuman:interest.dating.now   0.1738     0.1864   0.933    0.352
                                      
(Intercept)                        ***
conditionhuman                        
interest.dating.now                ***
conditionhuman:interest.dating.now    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.782 on 194 degrees of freedom
Multiple R-squared:  0.2565,    Adjusted R-squared:  0.245 
F-statistic: 22.31 on 3 and 194 DF,  p-value: 1.878e-12

Call:
lm(formula = interest_long_relation ~ condition * interest.dating.now, 
    data = d)

Residuals:
    Min      1Q  Median      3Q     Max 
-6.7416 -1.0039  0.3418  1.2254  4.2566 

Coefficients:
                                   Estimate Std. Error t value Pr(>|t|)
(Intercept)                          5.2138     0.6663   7.825 3.21e-13
conditionhuman                      -1.0356     0.9095  -1.139  0.25629
interest.dating.now                  0.3611     0.1375   2.626  0.00934
conditionhuman:interest.dating.now   0.2040     0.1864   1.094  0.27518
                                      
(Intercept)                        ***
conditionhuman                        
interest.dating.now                ** 
conditionhuman:interest.dating.now    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.783 on 194 degrees of freedom
Multiple R-squared:  0.1226,    Adjusted R-squared:  0.109 
F-statistic: 9.035 on 3 and 194 DF,  p-value: 1.252e-05

Significant for the 2 “short term” robot DVs (interest in dating a robot this week / this month) - not significant for the longer term DV’s (interest in dating robot over months / developing long term relationship with robot).


Call:
lm(formula = interest_dating_robot_week ~ condition * interest.dating.now, 
    data = d)

Residuals:
   Min     1Q Median     3Q    Max 
-2.601 -1.967 -1.621  1.728  6.378 

Coefficients:
                                   Estimate Std. Error t value Pr(>|t|)  
(Intercept)                          1.3199     0.9315   1.417   0.1581  
conditionhuman                       2.4378     1.2714   1.917   0.0567 .
interest.dating.now                  0.3254     0.1923   1.693   0.0922 .
conditionhuman:interest.dating.now  -0.4821     0.2606  -1.850   0.0659 .
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.492 on 194 degrees of freedom
Multiple R-squared:  0.01981,   Adjusted R-squared:  0.004652 
F-statistic: 1.307 on 3 and 194 DF,  p-value: 0.2734

Call:
lm(formula = interest_dating_robot_month ~ condition * interest.dating.now, 
    data = d)

Residuals:
   Min     1Q Median     3Q    Max 
-2.530 -1.692 -1.184  1.471  6.816 

Coefficients:
                                   Estimate Std. Error t value Pr(>|t|)  
(Intercept)                          1.1684     0.8870   1.317   0.1893  
conditionhuman                       2.5621     1.2107   2.116   0.0356 *
interest.dating.now                  0.2540     0.1831   1.387   0.1669  
conditionhuman:interest.dating.now  -0.4542     0.2482  -1.830   0.0688 .
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.373 on 194 degrees of freedom
Multiple R-squared:  0.02518,   Adjusted R-squared:  0.01011 
F-statistic:  1.67 on 3 and 194 DF,  p-value: 0.1747

Call:
lm(formula = interest_dating_robot_months ~ condition * interest.dating.now, 
    data = d)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.7442 -0.9978 -0.8529 -0.5560  7.2459 

Coefficients:
                                   Estimate Std. Error t value Pr(>|t|)  
(Intercept)                          1.2736     0.7143   1.783   0.0761 .
conditionhuman                       1.6687     0.9750   1.712   0.0886 .
interest.dating.now                  0.1448     0.1474   0.982   0.3271  
conditionhuman:interest.dating.now  -0.3429     0.1999  -1.716   0.0878 .
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.911 on 194 degrees of freedom
Multiple R-squared:  0.01607,   Adjusted R-squared:  0.0008554 
F-statistic: 1.056 on 3 and 194 DF,  p-value: 0.3689

Call:
lm(formula = long_relation_robot ~ condition * interest.dating.now, 
    data = d)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.4521 -0.8117 -0.6964 -0.4915  7.3484 

Coefficients:
                                   Estimate Std. Error t value Pr(>|t|)  
(Intercept)                         1.25000    0.65384   1.912   0.0574 .
conditionhuman                      1.36219    0.89246   1.526   0.1286  
interest.dating.now                 0.08929    0.13495   0.662   0.5090  
conditionhuman:interest.dating.now -0.24939    0.18295  -1.363   0.1744  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.749 on 194 degrees of freedom
Multiple R-squared:  0.01379,   Adjusted R-squared:  -0.001456 
F-statistic: 0.9045 on 3 and 194 DF,  p-value: 0.44

Other non-significant moderators of condition on the “interest in dating humans” composite DV

#Wanting children 
summary(lm(human_DV ~ condition * want.children, d))
## 
## Call:
## lm(formula = human_DV ~ condition * want.children, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.6407 -0.8566  0.1093  1.1434  3.3853 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                   5.15203    0.45723  11.268   <2e-16 ***
## conditionhuman                0.74977    0.70496   1.064   0.2888    
## want.children                 0.21267    0.08220   2.587   0.0104 *  
## conditionhuman:want.children -0.07627    0.12276  -0.621   0.5351    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.566 on 194 degrees of freedom
## Multiple R-squared:  0.05947,    Adjusted R-squared:  0.04492 
## F-statistic: 4.089 on 3 and 194 DF,  p-value: 0.007646
#Age
summary(lm(human_DV ~ condition * Age, d))
## 
## Call:
## lm(formula = human_DV ~ condition * Age, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.3315 -0.9393  0.1237  1.2883  2.8027 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        5.660278   0.611040   9.263   <2e-16 ***
## conditionhuman     0.315211   0.940633   0.335    0.738    
## Age                0.026849   0.026284   1.021    0.308    
## conditionhuman:Age 0.004184   0.040780   0.103    0.918    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.594 on 194 degrees of freedom
## Multiple R-squared:  0.02638,    Adjusted R-squared:  0.01132 
## F-statistic: 1.752 on 3 and 194 DF,  p-value: 0.1578
#How long ago was last relationship
summary(lm(human_DV ~ condition * last.relationship.months, d))
## 
## Call:
## lm(formula = human_DV ~ condition * last.relationship.months, 
##     data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.2652 -0.9244  0.0838  1.2994  2.7371 
## 
## Coefficients:
##                                           Estimate Std. Error t value
## (Intercept)                              6.2652465  0.2097459  29.871
## conditionhuman                           0.4159900  0.2807628   1.482
## last.relationship.months                -0.0001769  0.0090781  -0.019
## conditionhuman:last.relationship.months -0.0007057  0.0114136  -0.062
##                                         Pr(>|t|)    
## (Intercept)                               <2e-16 ***
## conditionhuman                             0.140    
## last.relationship.months                   0.984    
## conditionhuman:last.relationship.months    0.951    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.602 on 194 degrees of freedom
## Multiple R-squared:  0.01625,    Adjusted R-squared:  0.001039 
## F-statistic: 1.068 on 3 and 194 DF,  p-value: 0.3637
#Length of last relationship
summary(lm(human_DV ~ condition * length.months, d))
## 
## Call:
## lm(formula = human_DV ~ condition * length.months, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.2983 -0.9412  0.1517  1.2607  2.7123 
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                   6.2982533  0.2068268  30.452   <2e-16 ***
## conditionhuman                0.4292760  0.2774542   1.547    0.123    
## length.months                -0.0035130  0.0128254  -0.274    0.784    
## conditionhuman:length.months -0.0008856  0.0145576  -0.061    0.952    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.6 on 194 degrees of freedom
## Multiple R-squared:  0.01861,    Adjusted R-squared:  0.003434 
## F-statistic: 1.226 on 3 and 194 DF,  p-value: 0.3014
#loneliness
d$loneliness<-(d$lack.companionship+d$left.out+d$isolated)/3
summary(lm(human_DV ~ condition * loneliness, d))
## 
## Call:
## lm(formula = human_DV ~ condition * loneliness, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.6679 -0.8492  0.1082  1.2209  3.1097 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 5.5015     0.4628  11.887   <2e-16 ***
## conditionhuman              0.7617     0.6551   1.163   0.2464    
## loneliness                  0.2333     0.1332   1.752   0.0814 .  
## conditionhuman:loneliness  -0.1073     0.1897  -0.565   0.5724    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.586 on 194 degrees of freedom
## Multiple R-squared:  0.03574,    Adjusted R-squared:  0.02083 
## F-statistic: 2.397 on 3 and 194 DF,  p-value: 0.06942

Moderation by culture - main effect is significant among Americans

summary(lm(human_DV ~ condition * Culture, d))
## 
## Call:
## lm(formula = human_DV ~ condition * Culture, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0438 -0.9421  0.0948  1.2062  2.9562 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             7.785941   0.598995  12.998  < 2e-16 ***
## conditionhuman         -1.044158   0.787235  -1.326  0.18628    
## Culture                -0.006476   0.002456  -2.637  0.00905 ** 
## conditionhuman:Culture  0.006154   0.003267   1.884  0.06110 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.574 on 194 degrees of freedom
## Multiple R-squared:  0.05031,    Adjusted R-squared:  0.03562 
## F-statistic: 3.426 on 3 and 194 DF,  p-value: 0.01823
nonUS<-subset(d, Culture!=269)
US<-subset(d, Culture==269)

summary(lm(human_DV ~ condition, nonUS))
## 
## Call:
## lm(formula = human_DV ~ condition, data = nonUS)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.231 -0.750  0.250  1.134  2.250 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     6.73148    0.26941  24.986   <2e-16 ***
## conditionhuman  0.01852    0.37759   0.049    0.961    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.4 on 53 degrees of freedom
## Multiple R-squared:  4.538e-05,  Adjusted R-squared:  -0.01882 
## F-statistic: 0.002405 on 1 and 53 DF,  p-value: 0.9611
summary(lm(human_DV ~ condition, US))
## 
## Call:
## lm(formula = human_DV ~ condition, data = US)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0868 -0.8873  0.1127  1.1632  2.9132 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      6.0868     0.1949   31.23   <2e-16 ***
## conditionhuman   0.5505     0.2766    1.99   0.0485 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.654 on 141 degrees of freedom
## Multiple R-squared:  0.02733,    Adjusted R-squared:  0.02043 
## F-statistic: 3.961 on 1 and 141 DF,  p-value: 0.04849
#Key interaction is still not significant among Americans though 
summary(lm(human_DV ~ condition * interest.dating.now, US))
## 
## Call:
## lm(formula = human_DV ~ condition * interest.dating.now, data = US)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.5298 -0.6004  0.1123  0.8942  3.0681 
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)                         3.42092    0.60734   5.633 9.49e-08
## conditionhuman                      0.03875    0.82994   0.047    0.963
## interest.dating.now                 0.58698    0.12864   4.563 1.10e-05
## conditionhuman:interest.dating.now  0.10935    0.17484   0.625    0.533
##                                       
## (Intercept)                        ***
## conditionhuman                        
## interest.dating.now                ***
## conditionhuman:interest.dating.now    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.408 on 139 degrees of freedom
## Multiple R-squared:  0.3045, Adjusted R-squared:  0.2895 
## F-statistic: 20.29 on 3 and 139 DF,  p-value: 5.793e-11

Checking for effects of condition on the other DV’s / potential mechanisms.

summary(lm(anxious ~ condition, d))
## 
## Call:
## lm(formula = anxious ~ condition, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.6970 -1.5556 -0.5556  1.3030  4.4444 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      2.5556     0.1680  15.216   <2e-16 ***
## conditionhuman   0.1414     0.2375   0.595    0.552    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.671 on 196 degrees of freedom
## Multiple R-squared:  0.001805,   Adjusted R-squared:  -0.003288 
## F-statistic: 0.3545 on 1 and 196 DF,  p-value: 0.5523
summary(lm(stressed ~ condition, d))
## 
## Call:
## lm(formula = stressed ~ condition, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.5253 -1.4949 -0.4949  1.2323  4.5051 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      2.4949     0.1633  15.278   <2e-16 ***
## conditionhuman   0.0303     0.2309   0.131    0.896    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.625 on 196 degrees of freedom
## Multiple R-squared:  8.784e-05,  Adjusted R-squared:  -0.005014 
## F-statistic: 0.01722 on 1 and 196 DF,  p-value: 0.8957
summary(lm(confident ~ condition, d))
## 
## Call:
## lm(formula = confident ~ condition, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.7778 -1.3460  0.2222  1.2222  3.2222 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      3.5354     0.1543  22.918   <2e-16 ***
## conditionhuman   0.2424     0.2182   1.111    0.268    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.535 on 196 degrees of freedom
## Multiple R-squared:  0.006261,   Adjusted R-squared:  0.001191 
## F-statistic: 1.235 on 1 and 196 DF,  p-value: 0.2678
summary(lm(calm ~ condition, d))
## 
## Call:
## lm(formula = calm ~ condition, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.9596 -0.9596  0.0404  1.0404  3.3131 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      3.6869     0.1607   22.94   <2e-16 ***
## conditionhuman   0.2727     0.2273    1.20    0.232    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.599 on 196 degrees of freedom
## Multiple R-squared:  0.007293,   Adjusted R-squared:  0.002229 
## F-statistic:  1.44 on 1 and 196 DF,  p-value: 0.2316
summary(lm(comfortable ~ condition, d))
## 
## Call:
## lm(formula = comfortable ~ condition, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1111 -1.1111  0.2323  1.2323  3.2323 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      3.7677     0.1604  23.484   <2e-16 ***
## conditionhuman   0.3434     0.2269   1.514    0.132    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.596 on 196 degrees of freedom
## Multiple R-squared:  0.01155,    Adjusted R-squared:  0.006512 
## F-statistic: 2.291 on 1 and 196 DF,  p-value: 0.1317
summary(lm(insecure ~ condition, d))
## 
## Call:
## lm(formula = insecure ~ condition, data = d)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.697 -1.404 -0.404  1.303  4.596 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      2.6970     0.1541  17.502   <2e-16 ***
## conditionhuman  -0.2929     0.2179  -1.344     0.18    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.533 on 196 degrees of freedom
## Multiple R-squared:  0.009134,   Adjusted R-squared:  0.004079 
## F-statistic: 1.807 on 1 and 196 DF,  p-value: 0.1804
#Felt more emotionally satisfied after talking to a human 
summary(lm(feel_emotionally ~ condition, d))
## 
## Call:
## lm(formula = feel_emotionally ~ condition, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.4242 -1.0808 -0.0808  0.9192  3.9192 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      3.0808     0.1463  21.053   <2e-16 ***
## conditionhuman   0.3434     0.2070   1.659   0.0986 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.456 on 196 degrees of freedom
## Multiple R-squared:  0.01386,    Adjusted R-squared:  0.008824 
## F-statistic: 2.754 on 1 and 196 DF,  p-value: 0.09862
summary(lm(feel_cognitively  ~ condition, d))
## 
## Call:
## lm(formula = feel_cognitively ~ condition, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.6364 -1.3838  0.3636  1.3636  3.6162 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      3.3838     0.1461  23.157   <2e-16 ***
## conditionhuman   0.2525     0.2067   1.222    0.223    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.454 on 196 degrees of freedom
## Multiple R-squared:  0.007561,   Adjusted R-squared:  0.002498 
## F-statistic: 1.493 on 1 and 196 DF,  p-value: 0.2232
summary(lm(feel_physically  ~ condition, d))
## 
## Call:
## lm(formula = feel_physically ~ condition, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.1717 -1.0960  0.1313  0.8283  4.1313 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      2.8687     0.1326  21.628   <2e-16 ***
## conditionhuman   0.3030     0.1876   1.615    0.108    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.32 on 196 degrees of freedom
## Multiple R-squared:  0.01314,    Adjusted R-squared:  0.008105 
## F-statistic:  2.61 on 1 and 196 DF,  p-value: 0.1078
summary(lm(would_like_relationship  ~ condition, d))
## 
## Call:
## lm(formula = would_like_relationship ~ condition, data = d)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.798 -1.485  0.202  1.202  3.515 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      3.4848     0.1675  20.800   <2e-16 ***
## conditionhuman   0.3131     0.2369   1.322    0.188    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.667 on 196 degrees of freedom
## Multiple R-squared:  0.008832,   Adjusted R-squared:  0.003775 
## F-statistic: 1.746 on 1 and 196 DF,  p-value: 0.1879
summary(lm(good_to_be_in_relationship  ~ condition, d))
## 
## Call:
## lm(formula = good_to_be_in_relationship ~ condition, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1515 -1.1515  0.2121  1.2121  3.2121 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      3.7879     0.1737  21.810   <2e-16 ***
## conditionhuman   0.3636     0.2456   1.481     0.14    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.728 on 196 degrees of freedom
## Multiple R-squared:  0.01106,    Adjusted R-squared:  0.006014 
## F-statistic: 2.192 on 1 and 196 DF,  p-value: 0.1403
summary(lm(good.looks  ~ condition, d))
## 
## Call:
## lm(formula = good.looks ~ condition, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.6364 -0.9192  0.0808  1.0808  2.3636 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      7.6364     0.1656  46.107   <2e-16 ***
## conditionhuman   0.2828     0.2342   1.208    0.229    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.648 on 196 degrees of freedom
## Multiple R-squared:  0.007384,   Adjusted R-squared:  0.00232 
## F-statistic: 1.458 on 1 and 196 DF,  p-value: 0.2287
summary(lm(patience  ~ condition, d))
## 
## Call:
## lm(formula = patience ~ condition, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.5152 -0.5152  0.4848  1.4848  1.5455 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     8.45455    0.14236  59.387   <2e-16 ***
## conditionhuman  0.06061    0.20133   0.301    0.764    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.417 on 196 degrees of freedom
## Multiple R-squared:  0.0004621,  Adjusted R-squared:  -0.004638 
## F-statistic: 0.09061 on 1 and 196 DF,  p-value: 0.7637
summary(lm(honesty  ~ condition, d))
## 
## Call:
## lm(formula = honesty ~ condition, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.4141 -0.3232  0.5859  0.6768  0.6768 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     9.41414    0.10592  88.883   <2e-16 ***
## conditionhuman -0.09091    0.14979  -0.607    0.545    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.054 on 196 degrees of freedom
## Multiple R-squared:  0.001876,   Adjusted R-squared:  -0.003217 
## F-statistic: 0.3684 on 1 and 196 DF,  p-value: 0.5446
summary(lm(warmth  ~ condition, d))
## 
## Call:
## lm(formula = warmth ~ condition, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.8586 -0.8586  0.1414  0.9394  1.1414 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      8.8586     0.1188  74.595   <2e-16 ***
## conditionhuman   0.2020     0.1679   1.203     0.23    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.182 on 196 degrees of freedom
## Multiple R-squared:  0.007328,   Adjusted R-squared:  0.002264 
## F-statistic: 1.447 on 1 and 196 DF,  p-value: 0.2305
summary(lm(humor  ~ condition, d))
## 
## Call:
## lm(formula = humor ~ condition, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -7.6061 -0.6162  0.3939  1.3838  1.3939 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      8.6061     0.1597  53.880   <2e-16 ***
## conditionhuman   0.0101     0.2259   0.045    0.964    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.589 on 196 degrees of freedom
## Multiple R-squared:  1.02e-05,   Adjusted R-squared:  -0.005092 
## F-statistic: 0.002 on 1 and 196 DF,  p-value: 0.9644
summary(lm(fitness  ~ condition, d))
## 
## Call:
## lm(formula = fitness ~ condition, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.0606 -1.0606 -0.0606  1.6768  2.9394 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      7.0606     0.1994  35.414   <2e-16 ***
## conditionhuman   0.2626     0.2820   0.931    0.353    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.984 on 196 degrees of freedom
## Multiple R-squared:  0.004407,   Adjusted R-squared:  -0.0006725 
## F-statistic: 0.8676 on 1 and 196 DF,  p-value: 0.3528
summary(lm(comm_skill  ~ condition, d))
## 
## Call:
## lm(formula = comm_skill ~ condition, data = d)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -7.697 -0.697  0.303  1.151  1.303 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      8.6970     0.1559  55.784   <2e-16 ***
## conditionhuman   0.1515     0.2205   0.687    0.493    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.551 on 196 degrees of freedom
## Multiple R-squared:  0.002404,   Adjusted R-squared:  -0.002686 
## F-statistic: 0.4722 on 1 and 196 DF,  p-value: 0.4928
summary(lm(kindness  ~ condition, d))
## 
## Call:
## lm(formula = kindness ~ condition, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.2222 -0.2222  0.7778  0.8081  0.8081 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      9.1919     0.1076  85.463   <2e-16 ***
## conditionhuman   0.0303     0.1521   0.199    0.842    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.07 on 196 degrees of freedom
## Multiple R-squared:  0.0002025,  Adjusted R-squared:  -0.004899 
## F-statistic: 0.03969 on 1 and 196 DF,  p-value: 0.8423
summary(lm(tolerance  ~ condition, d))
## 
## Call:
## lm(formula = tolerance ~ condition, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -7.2222 -1.2222 -0.2222  1.7475  1.7778 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      8.2525     0.1573  52.481   <2e-16 ***
## conditionhuman  -0.0303     0.2224  -0.136    0.892    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.565 on 196 degrees of freedom
## Multiple R-squared:  9.473e-05,  Adjusted R-squared:  -0.005007 
## F-statistic: 0.01857 on 1 and 196 DF,  p-value: 0.8918
summary(lm(loyalty  ~ condition, d))
## 
## Call:
## lm(formula = loyalty ~ condition, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.2222 -0.2424  0.7576  0.7778  0.7778 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      9.2424     0.1311  70.521   <2e-16 ***
## conditionhuman  -0.0202     0.1853  -0.109    0.913    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.304 on 196 degrees of freedom
## Multiple R-squared:  6.061e-05,  Adjusted R-squared:  -0.005041 
## F-statistic: 0.01188 on 1 and 196 DF,  p-value: 0.9133
summary(lm(adaptability  ~ condition, d))
## 
## Call:
## lm(formula = adaptability ~ condition, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -7.2323 -1.1111 -0.1111  0.8889  1.8889 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      8.2323     0.1658  49.651   <2e-16 ***
## conditionhuman  -0.1212     0.2345  -0.517    0.606    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.65 on 196 degrees of freedom
## Multiple R-squared:  0.001362,   Adjusted R-squared:  -0.003734 
## F-statistic: 0.2672 on 1 and 196 DF,  p-value: 0.6058
summary(lm(ambition  ~ condition, d))
## 
## Call:
## lm(formula = ambition ~ condition, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.3535 -1.1919  0.2273  1.6465  1.8081 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      8.3535     0.1579  52.894   <2e-16 ***
## conditionhuman  -0.1616     0.2233  -0.724     0.47    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.571 on 196 degrees of freedom
## Multiple R-squared:  0.002664,   Adjusted R-squared:  -0.002424 
## F-statistic: 0.5236 on 1 and 196 DF,  p-value: 0.4702
summary(lm(openness  ~ condition, d))
## 
## Call:
## lm(formula = openness ~ condition, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -7.8889 -0.8182  0.1818  1.1111  1.1818 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     8.88889    0.14580  60.965   <2e-16 ***
## conditionhuman -0.07071    0.20620  -0.343    0.732    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.451 on 196 degrees of freedom
## Multiple R-squared:  0.0005996,  Adjusted R-squared:  -0.004499 
## F-statistic: 0.1176 on 1 and 196 DF,  p-value: 0.732
summary(lm(respect  ~ condition, d))
## 
## Call:
## lm(formula = respect ~ condition, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.2121 -0.2121  0.7879  0.8182  0.8182 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      9.2121     0.1187  77.626   <2e-16 ***
## conditionhuman  -0.0303     0.1678  -0.181    0.857    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.181 on 196 degrees of freedom
## Multiple R-squared:  0.0001663,  Adjusted R-squared:  -0.004935 
## F-statistic: 0.0326 on 1 and 196 DF,  p-value: 0.8569
summary(lm(supportive  ~ condition, d))
## 
## Call:
## lm(formula = supportive ~ condition, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.1818 -0.1818 -0.0505  0.8182  0.9495 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      9.0505     0.1129  80.141   <2e-16 ***
## conditionhuman   0.1313     0.1597   0.822    0.412    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.124 on 196 degrees of freedom
## Multiple R-squared:  0.003437,   Adjusted R-squared:  -0.001647 
## F-statistic: 0.676 on 1 and 196 DF,  p-value: 0.412
summary(lm(reliable  ~ condition, d))
## 
## Call:
## lm(formula = reliable ~ condition, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.1818 -0.1818  0.0101  0.8182  1.0101 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      8.9899     0.1125  79.888   <2e-16 ***
## conditionhuman   0.1919     0.1591   1.206    0.229    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.12 on 196 degrees of freedom
## Multiple R-squared:  0.007365,   Adjusted R-squared:  0.002301 
## F-statistic: 1.454 on 1 and 196 DF,  p-value: 0.2293
summary(lm(companionship  ~ condition, d))
## 
## Call:
## lm(formula = companionship ~ condition, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.1414 -0.1414 -0.1010  0.8586  0.8990 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      6.1010     0.1067  57.166   <2e-16 ***
## conditionhuman   0.0404     0.1509   0.268    0.789    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.062 on 196 degrees of freedom
## Multiple R-squared:  0.0003655,  Adjusted R-squared:  -0.004735 
## F-statistic: 0.07166 on 1 and 196 DF,  p-value: 0.7892
summary(lm(sexual_grat  ~ condition, d))
## 
## Call:
## lm(formula = sexual_grat ~ condition, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.2424 -0.7677  0.2323  1.2323  2.2323 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      4.7677     0.1640  29.073   <2e-16 ***
## conditionhuman   0.4747     0.2319   2.047    0.042 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.632 on 196 degrees of freedom
## Multiple R-squared:  0.02093,    Adjusted R-squared:  0.01594 
## F-statistic:  4.19 on 1 and 196 DF,  p-value: 0.04199
summary(lm(love  ~ condition, d))
## 
## Call:
## lm(formula = love ~ condition, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.1010 -0.2323  0.7677  0.8990  0.8990 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      6.1010     0.1100  55.481   <2e-16 ***
## conditionhuman   0.1313     0.1555   0.844    0.399    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.094 on 196 degrees of freedom
## Multiple R-squared:  0.003624,   Adjusted R-squared:  -0.001459 
## F-statistic: 0.713 on 1 and 196 DF,  p-value: 0.3995
summary(lm(expertise_relationship  ~ condition, d))
## 
## Call:
## lm(formula = expertise_relationship ~ condition, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.5960 -1.2121  0.0960  0.7879  2.7879 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      4.5960     0.1577  29.149   <2e-16 ***
## conditionhuman  -0.3838     0.2230  -1.721   0.0868 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.569 on 196 degrees of freedom
## Multiple R-squared:  0.01489,    Adjusted R-squared:  0.009867 
## F-statistic: 2.963 on 1 and 196 DF,  p-value: 0.08676
summary(lm(self_growth  ~ condition, d))
## 
## Call:
## lm(formula = self_growth ~ condition, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.5253 -0.5253  0.4747  1.4747  1.5354 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     5.46465    0.14273   38.29   <2e-16 ***
## conditionhuman  0.06061    0.20186    0.30    0.764    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.42 on 196 degrees of freedom
## Multiple R-squared:  0.0004597,  Adjusted R-squared:  -0.00464 
## F-statistic: 0.09015 on 1 and 196 DF,  p-value: 0.7643
summary(lm(self_esteem  ~ condition, d))
## 
## Call:
## lm(formula = self_esteem ~ condition, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.1616 -1.1616 -0.1111  1.8384  1.8889 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     5.16162    0.16731  30.850   <2e-16 ***
## conditionhuman -0.05051    0.23662  -0.213    0.831    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.665 on 196 degrees of freedom
## Multiple R-squared:  0.0002324,  Adjusted R-squared:  -0.004868 
## F-statistic: 0.04556 on 1 and 196 DF,  p-value: 0.8312
summary(lm(exclusitivity  ~ condition, d))
## 
## Call:
## lm(formula = exclusitivity ~ condition, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.0101 -1.0101  0.1818  1.1818  2.1818 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      5.0101     0.1866  26.848   <2e-16 ***
## conditionhuman  -0.1919     0.2639  -0.727    0.468    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.857 on 196 degrees of freedom
## Multiple R-squared:  0.002691,   Adjusted R-squared:  -0.002397 
## F-statistic: 0.5289 on 1 and 196 DF,  p-value: 0.468
summary(lm(security  ~ condition, d))
## 
## Call:
## lm(formula = security ~ condition, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4949 -1.1717  0.5051  1.5051  1.8283 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      5.1717     0.1581  32.718   <2e-16 ***
## conditionhuman   0.3232     0.2235   1.446     0.15    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.573 on 196 degrees of freedom
## Multiple R-squared:  0.01055,    Adjusted R-squared:  0.005506 
## F-statistic: 2.091 on 1 and 196 DF,  p-value: 0.1498
summary(lm(social_support  ~ condition, d))
## 
## Call:
## lm(formula = social_support ~ condition, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3131 -1.9192 -0.1212  1.6869  2.8788 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      4.1212     0.1989  20.717   <2e-16 ***
## conditionhuman   0.1919     0.2813   0.682    0.496    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.979 on 196 degrees of freedom
## Multiple R-squared:  0.002369,   Adjusted R-squared:  -0.002721 
## F-statistic: 0.4654 on 1 and 196 DF,  p-value: 0.4959
summary(lm(happiness  ~ condition, d))
## 
## Call:
## lm(formula = happiness ~ condition, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.1111 -0.8788  0.1212  0.8889  1.1212 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      5.8788     0.1108  53.046   <2e-16 ***
## conditionhuman   0.2323     0.1567   1.482     0.14    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.103 on 196 degrees of freedom
## Multiple R-squared:  0.01109,    Adjusted R-squared:  0.006041 
## F-statistic: 2.197 on 1 and 196 DF,  p-value: 0.1399
summary(lm(learning_about_other_sex  ~ condition, d))
## 
## Call:
## lm(formula = learning_about_other_sex ~ condition, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3232 -1.2424 -0.2424  0.7576  2.7576 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     4.32323    0.16741  25.824   <2e-16 ***
## conditionhuman -0.08081    0.23676  -0.341    0.733    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.666 on 196 degrees of freedom
## Multiple R-squared:  0.000594,   Adjusted R-squared:  -0.004505 
## F-statistic: 0.1165 on 1 and 196 DF,  p-value: 0.7332

Separating gender. First looking at just males:


  1   2 
 95 103 

Call:
lm(formula = human_DV ~ condition * interest.dating.now, data = male)

Residuals:
    Min      1Q  Median      3Q     Max 
-4.4636 -0.5669  0.2080  0.7129  2.3153 

Coefficients:
                                   Estimate Std. Error t value Pr(>|t|)
(Intercept)                          2.8913     0.6725   4.299 4.29e-05
conditionhuman                      -0.6289     0.9391  -0.670    0.505
interest.dating.now                  0.7645     0.1414   5.406 5.15e-07
conditionhuman:interest.dating.now   0.1155     0.1915   0.603    0.548
                                      
(Intercept)                        ***
conditionhuman                        
interest.dating.now                ***
conditionhuman:interest.dating.now    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.261 on 91 degrees of freedom
Multiple R-squared:  0.4552,    Adjusted R-squared:  0.4372 
F-statistic: 25.34 on 3 and 91 DF,  p-value: 5.244e-12


Call:
lm(formula = human_DV ~ condition, data = male)

Residuals:
    Min      1Q  Median      3Q     Max 
-5.3883 -0.8452  0.1979  1.1979  2.6117 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)      6.3883     0.2462  25.952   <2e-16 ***
conditionhuman   0.1638     0.3463   0.473    0.637    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.688 on 93 degrees of freedom
Multiple R-squared:  0.0024,    Adjusted R-squared:  -0.008327 
F-statistic: 0.2237 on 1 and 93 DF,  p-value: 0.6373

Then female


Call:
lm(formula = human_DV ~ condition * interest.dating.now, data = female)

Residuals:
    Min      1Q  Median      3Q     Max 
-6.2628 -0.7828  0.2172  0.9822  2.9672 

Coefficients:
                                   Estimate Std. Error t value Pr(>|t|)
(Intercept)                         3.79772    0.71039   5.346 5.78e-07
conditionhuman                      0.60245    0.95325   0.632 0.528845
interest.dating.now                 0.49501    0.14426   3.431 0.000877
conditionhuman:interest.dating.now  0.02801    0.19648   0.143 0.886935
                                      
(Intercept)                        ***
conditionhuman                        
interest.dating.now                ***
conditionhuman:interest.dating.now    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.351 on 99 degrees of freedom
Multiple R-squared:  0.2486,    Adjusted R-squared:  0.2258 
F-statistic: 10.92 on 3 and 99 DF,  p-value: 2.947e-06


Call:
lm(formula = human_DV ~ condition, data = female)

Residuals:
    Min      1Q  Median      3Q     Max 
-5.1490 -0.9642 -0.0294  1.2206  2.8510 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)      6.1490     0.2094  29.360   <2e-16 ***
conditionhuman   0.6304     0.2976   2.118   0.0366 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.51 on 101 degrees of freedom
Multiple R-squared:  0.04253,   Adjusted R-squared:  0.03305 
F-statistic: 4.486 on 1 and 101 DF,  p-value: 0.03663

Merging 2 studies for more power


Call:
lm(formula = interest_dating_robot_week ~ AI_mindC, data = male)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.2870 -1.8052 -0.9584  2.1182  5.9831 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept)   1.3234     0.5681   2.329  0.02200 * 
AI_mindC      0.5292     0.1880   2.814  0.00597 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.37 on 93 degrees of freedom
Multiple R-squared:  0.07848,   Adjusted R-squared:  0.06857 
F-statistic:  7.92 on 1 and 93 DF,  p-value: 0.005966

Call:
lm(formula = interest_dating_robot_week ~ AI_competentC, data = male)

Residuals:
   Min     1Q Median     3Q    Max 
-2.771 -1.811 -1.171  1.722  5.656 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)  
(Intercept)     0.0378     1.1655   0.032   0.9742  
AI_competentC   0.5333     0.2225   2.397   0.0185 *
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.396 on 93 degrees of freedom
Multiple R-squared:  0.05818,   Adjusted R-squared:  0.04805 
F-statistic: 5.745 on 1 and 93 DF,  p-value: 0.01854

Call:
lm(formula = interest.dating.now ~ study, data = dc)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.7263 -0.7263  0.2737  0.4545  2.4545 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   4.3646     0.2990  14.599   <2e-16 ***
study         0.1809     0.1963   0.921    0.358    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.432 on 214 degrees of freedom
Multiple R-squared:  0.003951,  Adjusted R-squared:  -0.0007037 
F-statistic: 0.8488 on 1 and 214 DF,  p-value: 0.3579

Call:
lm(formula = AI_mindC ~ study, data = dc)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.7305 -1.0628 -0.2628  0.9372  4.5372 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   2.1951     0.2610   8.409 5.81e-15 ***
study         0.2677     0.1714   1.562     0.12    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.25 on 214 degrees of freedom
Multiple R-squared:  0.01127,   Adjusted R-squared:  0.006652 
F-statistic:  2.44 on 1 and 214 DF,  p-value: 0.1198

Call:
lm(formula = AI_competentC ~ study, data = dc)

Residuals:
    Min      1Q  Median      3Q     Max 
-4.1200 -0.7421  0.0579  0.6800  2.2579 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   4.3643     0.2150  20.300  < 2e-16 ***
study         0.3779     0.1412   2.677  0.00801 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.03 on 214 degrees of freedom
Multiple R-squared:  0.03239,   Adjusted R-squared:  0.02787 
F-statistic: 7.165 on 1 and 214 DF,  p-value: 0.008012

Call:
lm(formula = AI_lifelikeC ~ study, data = dc)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.2989 -0.6989  0.1011  0.8030  3.7011 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   3.0950     0.2320  13.341   <2e-16 ***
study         0.1020     0.1523   0.669    0.504    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.111 on 214 degrees of freedom
Multiple R-squared:  0.00209,   Adjusted R-squared:  -0.002573 
F-statistic: 0.4481 on 1 and 214 DF,  p-value: 0.5039

Call:
lm(formula = AI_likingC ~ study, data = dc)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.3411 -0.5411  0.0589  0.4893  2.4893 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  4.48043    0.21510  20.829   <2e-16 ***
study        0.03031    0.14124   0.215     0.83    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.03 on 214 degrees of freedom
Multiple R-squared:  0.0002151, Adjusted R-squared:  -0.004457 
F-statistic: 0.04605 on 1 and 214 DF,  p-value: 0.8303

  1   2 
121  95 

Call:
lm(formula = interest_date_this_week ~ condition * AI_competentC, 
    data = dc)

Residuals:
    Min      1Q  Median      3Q     Max 
-4.7288 -1.2771  0.3546  1.4500  3.7432 

Coefficients:
                             Estimate Std. Error t value Pr(>|t|)    
(Intercept)                    4.6570     0.9100   5.118 6.92e-07 ***
conditionhuman                 0.1174     1.2806   0.092    0.927    
AI_competentC                  0.1531     0.1788   0.856    0.393    
conditionhuman:AI_competentC  -0.0191     0.2552  -0.075    0.940    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.95 on 212 degrees of freedom
Multiple R-squared:  0.00598,   Adjusted R-squared:  -0.008086 
F-statistic: 0.4251 on 3 and 212 DF,  p-value: 0.7352

Call:
lm(formula = interest_date_this_week ~ condition * AI_mindC, 
    data = dc)

Residuals:
   Min     1Q Median     3Q    Max 
-4.636 -1.220  0.180  1.448  3.905 

Coefficients:
                        Estimate Std. Error t value Pr(>|t|)    
(Intercept)               4.8616     0.4339  11.205   <2e-16 ***
conditionhuman            0.2425     0.6120   0.396    0.692    
AI_mindC                  0.2336     0.1635   1.429    0.155    
conditionhuman:AI_mindC  -0.1180     0.2160  -0.546    0.585    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.943 on 212 degrees of freedom
Multiple R-squared:  0.01263,   Adjusted R-squared:  -0.001345 
F-statistic: 0.9037 on 3 and 212 DF,  p-value: 0.4402

Call:
lm(formula = interest_date_this_week ~ condition, data = dc)

Residuals:
    Min      1Q  Median      3Q     Max 
-4.4234 -1.4190  0.5766  1.5766  3.5810 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)    5.419048   0.189941  28.530   <2e-16 ***
conditionhuman 0.004376   0.264962   0.017    0.987    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.946 on 214 degrees of freedom
Multiple R-squared:  1.274e-06, Adjusted R-squared:  -0.004672 
F-statistic: 0.0002727 on 1 and 214 DF,  p-value: 0.9868

Call:
lm(formula = interest_date_this_week ~ condition * interest.dating.now, 
    data = dc)

Residuals:
    Min      1Q  Median      3Q     Max 
-4.7289 -0.7656  0.1036  1.2344  3.2711 

Coefficients:
                                   Estimate Std. Error t value Pr(>|t|)
(Intercept)                          2.4759     0.5105   4.850 2.39e-06
conditionhuman                      -1.3615     0.7338  -1.855   0.0649
interest.dating.now                  0.6506     0.1075   6.051 6.44e-09
conditionhuman:interest.dating.now   0.2622     0.1517   1.729   0.0853
                                      
(Intercept)                        ***
conditionhuman                     .  
interest.dating.now                ***
conditionhuman:interest.dating.now .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.588 on 212 degrees of freedom
Multiple R-squared:  0.3404,    Adjusted R-squared:  0.3311 
F-statistic: 36.47 on 3 and 212 DF,  p-value: < 2.2e-16