library(codebook)
library(readxl)
library(here)
## here() starts at C:/Users/Daniel/surfdrive/R/reproducing_registered_reports
library(rio)

codebook_data <- read_excel("Data_for_Analysis_of_Open_Data_and_Computational_Reproducibility_in_Registered_Reports_in_Psychology.xlsx", n_max = 62)
#Read codebook from second sheet in excel file.
dict <- read_excel("Data_for_Analysis_of_Open_Data_and_Computational_Reproducibility_in_Registered_Reports_in_Psychology.xlsx", sheet = "Codebook")

#Add variable labels to data
var_label(codebook_data) <- dict_to_list(dict)

#Add meta data
metadata(codebook_data)$name <- "Reproducibility of Registered Reports in psychology"
metadata(codebook_data)$description <- "Coded variables to examine data and code sharing and the computational reproducibility for Registered Reports in psychology"
metadata(codebook_data)$creator <- "Pepijn Obels, Daniel Lakens, Nicholas A. Coles, Jaroslav Gottfried"
metadata(codebook_data)$temporalCoverage <- "Spring 2018"

#Export codebook
rio::export(codebook_data, "reproducing_registered_reports_codebook.rds") # to R data structure file
codebook(codebook_data)
knitr::asis_output(data_info)

Metadata

Description

if (exists("name", meta)) {
  glue::glue(
    "__Dataset name__: {name}",
    .envir = meta)
}

Dataset name: Reproducibility of Registered Reports in psychology

cat(description)

Coded variables to examine data and code sharing and the computational reproducibility for Registered Reports in psychology

Metadata for search engines

  • Temporal Coverage: Spring 2018

  • Date published: 2019-05-22

  • Creator:Pepijn Obels, Daniel Lakens, Nicholas A. Coles, Jaroslav Gottfried

meta <- meta[setdiff(names(meta),
                     c("creator", "datePublished", "identifier",
                       "url", "citation", "spatialCoverage", 
                       "temporalCoverage", "description", "name"))]
pander::pander(meta)
  • keywords: doi, study, registered_report, domain, journal, replication, linked, url_dataset, file_format, availability, data_statement, comments_data_po, understandable, data_complete, codebook, not_software_specific, analysis_script_included, programming_language, included_language, url_scripts, run_script_final, reproducible_final, run_script_po, reproducible_po, comments_on_reproducibility_po, time_reproducing_po, run_script_jg, reproducible_jg, comments_on_reproducibility_jg, time_reproducing_jg, run_script_nc, reproducible_nc, comments_on_reproducibility_nc, time_reproducing_nc, run_script_dl, reproducible_dl, comments_on_reproducibility_dl, time_reproducing_dl and resolving_disagreements_between_coders
knitr::asis_output(survey_overview)

Variables

if (detailed_variables || detailed_scales) {
  knitr::asis_output(paste0(scales_items, sep = "\n\n\n", collapse = "\n\n\n"))
}

doi

Digital Object Identifier

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

0 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n empty n_unique min max
doi Digital Object Identifier character 0 62 62 0 62 16 32
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

study

First author name and Year

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

0 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n empty n_unique min max
study First author name and Year character 0 62 62 0 60 8 18
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

registered_report

True if the paper is a registered report / False if it is not a registered report

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

0 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n count mean
registered_report True if the paper is a registered report / False if it is not a registered report logical 0 62 62 TRU: 62, NA: 0 1
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

domain

The domain where the paper is published in (e.g. Psychology , Biology, Political Science)

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

0 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n empty n_unique min max
domain The domain where the paper is published in (e.g. Psychology , Biology, Political Science) character 0 62 62 0 1 10 10
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

journal

The journal where the paper is published in

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

0 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n empty n_unique min max
journal The journal where the paper is published in character 0 62 62 0 12 17 42
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

replication

True if the paper is a replication / False if the paper is not a replication

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

0 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n count mean
replication True if the paper is a replication / False if the paper is not a replication logical 0 62 62 FAL: 32, TRU: 30, NA: 0 0.48
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

linked

True if there is a link to the dataset(s) and/or script(s) / False if there is no link in the paper

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

0 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n count mean
linked True if there is a link to the dataset(s) and/or script(s) / False if there is no link in the paper logical 0 62 62 TRU: 45, FAL: 17, NA: 0 0.73
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

url_dataset

URL to the dataset of the paper

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

18 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n empty n_unique min max
url_dataset URL to the dataset of the paper character 18 44 62 0 44 21 64
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

file_format

The format of the datafiles (e.g. .csv , .txt)

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

20 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n empty n_unique min max
file_format The format of the datafiles (e.g. .csv , .txt) character 20 42 62 0 12 4 19
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

availability

True if the data of the paper is available (linked or searched on osf)/ False if there is no data available

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

0 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n count mean
availability True if the data of the paper is available (linked or searched on osf)/ False if there is no data available logical 0 62 62 TRU: 43, FAL: 19, NA: 0 0.69
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

data_statement

Statement about the data in the paper (e.g. linked to osf, link is dead//empty)

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

0 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n empty n_unique min max
data_statement Statement about the data in the paper (e.g. linked to osf, link is dead//empty) character 0 62 62 0 18 13 114
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

comments_data_po

Comments about the data that is provided by the paper (e.g. data is unclear / clearly described in codebook)

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

21 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n empty n_unique min max
comments_data_po Comments about the data that is provided by the paper (e.g. data is unclear / clearly described in codebook) character 21 41 62 0 37 17 183
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

understandable

True if the provided data is understandable(are the variables described /clear what they mean) / False if the data is incomprehensible

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

20 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n count mean
understandable True if the provided data is understandable(are the variables described /clear what they mean) / False if the data is incomprehensible logical 20 42 62 FAL: 21, TRU: 21, NA: 20 0.5
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

data_complete

True if all the data is there / False if there are other files mentioned in the paper/script that are not there

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

20 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n count mean
data_complete True if all the data is there / False if there are other files mentioned in the paper/script that are not there logical 20 42 62 TRU: 39, NA: 20, FAL: 3 0.93
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

codebook

True if there is a codebook included / False if there is no codebook

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

19 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n count mean
codebook True if there is a codebook included / False if there is no codebook logical 19 43 62 FAL: 32, NA: 19, TRU: 11 0.26
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

not_software_specific

True if the data is not software specific (relatively easy to load with free software) / False if the data is software-specific

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

19 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n count mean
not_software_specific True if the data is not software specific (relatively easy to load with free software) / False if the data is software-specific logical 19 43 62 TRU: 42, NA: 19, FAL: 1 0.98
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

analysis_script_included

True if there is a script included with the paper / False if there is no script included

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

17 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n count mean
analysis_script_included True if there is a script included with the paper / False if there is no script included logical 17 45 62 TRU: 40, NA: 17, FAL: 5 0.89
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

programming_language

The programming language that is used (e.g. SPSS,. R)

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

22 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n empty n_unique min max
programming_language The programming language that is used (e.g. SPSS,. R) character 22 40 62 0 7 1 11
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

included_language

Does the programming language match our inclusion criteria due to our expertise and is it included in the final dataset.

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

22 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n count mean
included_language Does the programming language match our inclusion criteria due to our expertise and is it included in the final dataset. logical 22 40 62 TRU: 35, NA: 22, FAL: 5 0.88
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

url_scripts

URL to the script of the paper

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

27 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n empty n_unique min max
url_scripts URL to the script of the paper character 27 35 62 0 35 21 84
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

run_script_final

Final decision if the script can run; True if the script runs / False if the script does not run

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

27 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n count mean
run_script_final Final decision if the script can run; True if the script runs / False if the script does not run logical 27 35 62 TRU: 30, NA: 27, FAL: 5 0.86
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

reproducible_final

Final decision if the paper is reproducible; True if it is reproducible / False if not reproducible

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

27 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n count mean
reproducible_final Final decision if the paper is reproducible; True if it is reproducible / False if not reproducible logical 27 35 62 NA: 27, TRU: 19, FAL: 16 0.54
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

run_script_po

Coder (P. Obels) decision on if the script can run; True if the script runs / False if the script does not run

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

27 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n count mean
run_script_po Coder (P. Obels) decision on if the script can run; True if the script runs / False if the script does not run logical 27 35 62 NA: 27, TRU: 26, FAL: 9 0.74
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

reproducible_po

Coder (P. Obels) decision on if the paper is reproducible; True if it is reproducible / False if not reproducible

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

27 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n count mean
reproducible_po Coder (P. Obels) decision on if the paper is reproducible; True if it is reproducible / False if not reproducible logical 27 35 62 NA: 27, TRU: 19, FAL: 16 0.54
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

comments_on_reproducibility_po

Coder (P. Obels) comments on his own reproducibility process

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

25 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n empty n_unique min max
comments_on_reproducibility_po Coder (P. Obels) comments on his own reproducibility process character 25 37 62 0 36 16 483
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

time_reproducing_po

Time it took to reproduce for Coder (P. Obels)

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

27 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n mean sd p0 p25 p50 p75 p100 hist
time_reproducing_po Time it took to reproduce for Coder (P. Obels) numeric 27 35 62 20.57 19.43 0 10 15 25 120 ▇▆▁▁▁▁▁▁
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

run_script_jg

Coder (J. Gottfried) decision on if the script can run; True if the script runs / False if the script does not run

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

42 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n empty n_unique min max
run_script_jg Coder (J. Gottfried) decision on if the script can run; True if the script runs / False if the script does not run character 42 20 62 0 3 4 9
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

reproducible_jg

Coder (J. Gottfried) decision on if the paper is reproducible; True if it is reproducible / False if not reproducible

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

42 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n empty n_unique min max
reproducible_jg Coder (J. Gottfried) decision on if the paper is reproducible; True if it is reproducible / False if not reproducible character 42 20 62 0 4 4 9
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

comments_on_reproducibility_jg

Coder (J. Gottfried) comments on his own reproducibility process

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

42 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n empty n_unique min max
comments_on_reproducibility_jg Coder (J. Gottfried) comments on his own reproducibility process character 42 20 62 0 20 26 382
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

time_reproducing_jg

Time it took to reproduce for Coder (J. Gottfried)

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

42 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n mean sd p0 p25 p50 p75 p100 hist
time_reproducing_jg Time it took to reproduce for Coder (J. Gottfried) numeric 42 20 62 25.5 9.72 5 20 25 31.25 40 ▂▂▂▇▆▅▃▅
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

run_script_nc

Coder (N. A. Coles) decision on if the script can run; True if the script runs / False if the script does not run

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

46 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n count mean
run_script_nc Coder (N. A. Coles) decision on if the script can run; True if the script runs / False if the script does not run logical 46 16 62 NA: 46, TRU: 12, FAL: 4 0.75
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

reproducible_nc

Coder (N. A. Coles) decision on if the paper is reproducible; True if it is reproducible / False if not reproducible

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

46 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n empty n_unique min max
reproducible_nc Coder (N. A. Coles) decision on if the paper is reproducible; True if it is reproducible / False if not reproducible character 46 16 62 0 3 4 9
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

comments_on_reproducibility_nc

Coder (N. A. Coles) comments on his own reproducibility process

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

46 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n empty n_unique min max
comments_on_reproducibility_nc Coder (N. A. Coles) comments on his own reproducibility process character 46 16 62 0 16 37 1787
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

time_reproducing_nc

Time it took to reproduce for Coder (N. A. Coles)

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

46 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n mean sd p0 p25 p50 p75 p100 hist
time_reproducing_nc Time it took to reproduce for Coder (N. A. Coles) numeric 46 16 62 32.5 20.95 3 21.25 30 42.75 81 ▆▁▇▅▃▂▁▂
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

run_script_dl

Coder (D. Lakens) decision on if the script can run; True if the script runs / False if the script does not run

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

60 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n count mean
run_script_dl Coder (D. Lakens) decision on if the script can run; True if the script runs / False if the script does not run logical 60 2 62 NA: 60, TRU: 2 1
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

reproducible_dl

Coder (D. Lakens) decision on if the paper is reproducible; True if it is reproducible / False if not reproducible

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

60 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n count mean
reproducible_dl Coder (D. Lakens) decision on if the paper is reproducible; True if it is reproducible / False if not reproducible logical 60 2 62 NA: 60, TRU: 2 1
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

comments_on_reproducibility_dl

Coder (D. Lakens) comments on his own reproducibility process

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

60 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n empty n_unique min max
comments_on_reproducibility_dl Coder (D. Lakens) comments on his own reproducibility process character 60 2 62 0 2 115 154
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

time_reproducing_dl

Time it took to reproduce for Coder (D. Lakens)

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

60 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n mean sd p0 p25 p50 p75 p100 hist
time_reproducing_dl Time it took to reproduce for Coder (D. Lakens) numeric 60 2 62 15 7.07 10 12.5 15 17.5 20 ▇▁▁▁▁▁▁▇
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

resolving_disagreements_between_coders

how the disagreements between the coders where resolved after a closer look together

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  any(stringr::str_detect(item_nomiss, stringr::fixed(", "))) &&
  !is.null(item_info) &&
  (exists("type", item_info) && 
    any(stringr::str_detect(item_info$type, 
                            pattern = stringr::fixed("multiple"))))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is_numeric_or_time_var(item_nomiss) || many_labels
  
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    if(could_disclose_unique_values(item_nomiss) && is.character(item_nomiss)) {
      new_height <- old_height
    }
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (!could_disclose_unique_values(item_nomiss)) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
  if (is.character(item_nomiss)) {
      char_count <- stringr::str_count(item_nomiss)
      attributes(char_count)$label <- item_label
      plot_labelled(char_count, 
                    item_name, wrap_at, FALSE, trans = "log1p", "characters")
  } else {
      cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
  }
}

knitr::opts_chunk$set(fig.height = old_height)

39 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n empty n_unique min max
resolving_disagreements_between_coders how the disagreements between the coders where resolved after a closer look together character 39 23 62 0 23 67 321
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}
missingness_report

Missingness report

if (length(md_pattern)) {
  if (knitr::is_html_output()) {
    rmarkdown::paged_table(md_pattern, options = list(rows.print = 10))
  } else {
    knitr::kable(md_pattern)
  }
}
items

Codebook table

export_table(metadata_table)
jsonld

JSON-LD metadata The following JSON-LD can be found by search engines, if you share this codebook publicly on the web.

{
  "name": "Reproducibility of Registered Reports in psychology",
  "description": "Coded variables to examine data and code sharing and the computational reproducibility for Registered Reports in psychology\n\n\n## Table of variables\nThis table contains variable names, labels, their central tendencies and other attributes.\n\n|name                                   |label                                                                                                                                  |data_type |missing |complete |n  |empty |n_unique |count                    |min |max  |mean  |sd    |p0 |p25   |p50 |p75   |p100 |hist     |\n|:--------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------|:---------|:-------|:--------|:--|:-----|:--------|:------------------------|:---|:----|:-----|:-----|:--|:-----|:---|:-----|:----|:--------|\n|doi                                    |Digital Object Identifier                                                                                                              |character |0       |62       |62 |0     |62       |NA                       |16  |32   |NA    |NA    |NA |NA    |NA  |NA    |NA   |NA       |\n|study                                  |First author name and Year                                                                                                             |character |0       |62       |62 |0     |60       |NA                       |8   |18   |NA    |NA    |NA |NA    |NA  |NA    |NA   |NA       |\n|registered_report                      |True if the paper is a registered report / False if it is not a registered report                                                      |logical   |0       |62       |62 |NA    |NA       |TRU: 62, NA: 0           |NA  |NA   |1     |NA    |NA |NA    |NA  |NA    |NA   |NA       |\n|domain                                 |The domain where the paper is published in (e.g. Psychology , Biology, Political Science)                                              |character |0       |62       |62 |0     |1        |NA                       |10  |10   |NA    |NA    |NA |NA    |NA  |NA    |NA   |NA       |\n|journal                                |The journal where the paper is published in                                                                                            |character |0       |62       |62 |0     |12       |NA                       |17  |42   |NA    |NA    |NA |NA    |NA  |NA    |NA   |NA       |\n|replication                            |True if the paper is a replication / False if the paper is not a replication                                                           |logical   |0       |62       |62 |NA    |NA       |FAL: 32, TRU: 30, NA: 0  |NA  |NA   |0.48  |NA    |NA |NA    |NA  |NA    |NA   |NA       |\n|linked                                 |True if there is a link to the dataset(s) and/or script(s) / False if there is no link in the paper                                    |logical   |0       |62       |62 |NA    |NA       |TRU: 45, FAL: 17, NA: 0  |NA  |NA   |0.73  |NA    |NA |NA    |NA  |NA    |NA   |NA       |\n|url_dataset                            |URL to the dataset of the paper                                                                                                        |character |18      |44       |62 |0     |44       |NA                       |21  |64   |NA    |NA    |NA |NA    |NA  |NA    |NA   |NA       |\n|file_format                            |The format of the datafiles (e.g.  .csv , .txt)                                                                                        |character |20      |42       |62 |0     |12       |NA                       |4   |19   |NA    |NA    |NA |NA    |NA  |NA    |NA   |NA       |\n|availability                           |True if the data of the paper is available (linked or searched on osf)/ False if there is no data available                            |logical   |0       |62       |62 |NA    |NA       |TRU: 43, FAL: 19, NA: 0  |NA  |NA   |0.69  |NA    |NA |NA    |NA  |NA    |NA   |NA       |\n|data_statement                         |Statement about the data in the paper (e.g. linked to osf, link is dead//empty)                                                        |character |0       |62       |62 |0     |18       |NA                       |13  |114  |NA    |NA    |NA |NA    |NA  |NA    |NA   |NA       |\n|comments_data_po                       |Comments about the data that is provided by the paper (e.g. data is unclear / clearly described in codebook)                           |character |21      |41       |62 |0     |37       |NA                       |17  |183  |NA    |NA    |NA |NA    |NA  |NA    |NA   |NA       |\n|understandable                         |True if the provided data is understandable(are the variables described /clear what they mean) / False if the data is incomprehensible |logical   |20      |42       |62 |NA    |NA       |FAL: 21, TRU: 21, NA: 20 |NA  |NA   |0.5   |NA    |NA |NA    |NA  |NA    |NA   |NA       |\n|data_complete                          |True if all the data is there / False if there are other files mentioned in the paper/script that are not there                        |logical   |20      |42       |62 |NA    |NA       |TRU: 39, NA: 20, FAL: 3  |NA  |NA   |0.93  |NA    |NA |NA    |NA  |NA    |NA   |NA       |\n|codebook                               |True if there is a codebook included / False if there is no codebook                                                                   |logical   |19      |43       |62 |NA    |NA       |FAL: 32, NA: 19, TRU: 11 |NA  |NA   |0.26  |NA    |NA |NA    |NA  |NA    |NA   |NA       |\n|not_software_specific                  |True if the data is not software specific (relatively easy to load with free software) / False if the data is software-specific        |logical   |19      |43       |62 |NA    |NA       |TRU: 42, NA: 19, FAL: 1  |NA  |NA   |0.98  |NA    |NA |NA    |NA  |NA    |NA   |NA       |\n|analysis_script_included               |True if there is a script included with the paper / False if there is no script included                                               |logical   |17      |45       |62 |NA    |NA       |TRU: 40, NA: 17, FAL: 5  |NA  |NA   |0.89  |NA    |NA |NA    |NA  |NA    |NA   |NA       |\n|programming_language                   |The programming language that is used (e.g. SPSS,. R)                                                                                  |character |22      |40       |62 |0     |7        |NA                       |1   |11   |NA    |NA    |NA |NA    |NA  |NA    |NA   |NA       |\n|included_language                      |Does the programming language match our inclusion criteria due to our expertise and is it included in the final dataset.               |logical   |22      |40       |62 |NA    |NA       |TRU: 35, NA: 22, FAL: 5  |NA  |NA   |0.88  |NA    |NA |NA    |NA  |NA    |NA   |NA       |\n|url_scripts                            |URL to the script of the paper                                                                                                         |character |27      |35       |62 |0     |35       |NA                       |21  |84   |NA    |NA    |NA |NA    |NA  |NA    |NA   |NA       |\n|run_script_final                       |Final decision if the script can run; True if the script runs / False if the script does not run                                       |logical   |27      |35       |62 |NA    |NA       |TRU: 30, NA: 27, FAL: 5  |NA  |NA   |0.86  |NA    |NA |NA    |NA  |NA    |NA   |NA       |\n|reproducible_final                     |Final decision if the paper is reproducible; True if it is reproducible / False if not reproducible                                    |logical   |27      |35       |62 |NA    |NA       |NA: 27, TRU: 19, FAL: 16 |NA  |NA   |0.54  |NA    |NA |NA    |NA  |NA    |NA   |NA       |\n|run_script_po                          |Coder (P. Obels) decision on if the script can run; True if the script runs / False if the script does not run                         |logical   |27      |35       |62 |NA    |NA       |NA: 27, TRU: 26, FAL: 9  |NA  |NA   |0.74  |NA    |NA |NA    |NA  |NA    |NA   |NA       |\n|reproducible_po                        |Coder (P. Obels) decision on if the paper is reproducible; True if it is reproducible / False if not reproducible                      |logical   |27      |35       |62 |NA    |NA       |NA: 27, TRU: 19, FAL: 16 |NA  |NA   |0.54  |NA    |NA |NA    |NA  |NA    |NA   |NA       |\n|comments_on_reproducibility_po         |Coder (P. Obels) comments on his own reproducibility process                                                                           |character |25      |37       |62 |0     |36       |NA                       |16  |483  |NA    |NA    |NA |NA    |NA  |NA    |NA   |NA       |\n|time_reproducing_po                    |Time it took to reproduce for Coder (P. Obels)                                                                                         |numeric   |27      |35       |62 |NA    |NA       |NA                       |NA  |NA   |20.57 |19.43 |0  |10    |15  |25    |120  |▇▆▁▁▁▁▁▁ |\n|run_script_jg                          |Coder (J. Gottfried) decision on if the script can run; True if the script runs / False if the script does not run                     |character |42      |20       |62 |0     |3        |NA                       |4   |9    |NA    |NA    |NA |NA    |NA  |NA    |NA   |NA       |\n|reproducible_jg                        |Coder (J. Gottfried) decision on if the paper is reproducible; True if it is reproducible / False if not reproducible                  |character |42      |20       |62 |0     |4        |NA                       |4   |9    |NA    |NA    |NA |NA    |NA  |NA    |NA   |NA       |\n|comments_on_reproducibility_jg         |Coder (J. Gottfried) comments on his own reproducibility process                                                                       |character |42      |20       |62 |0     |20       |NA                       |26  |382  |NA    |NA    |NA |NA    |NA  |NA    |NA   |NA       |\n|time_reproducing_jg                    |Time it took to reproduce for Coder (J. Gottfried)                                                                                     |numeric   |42      |20       |62 |NA    |NA       |NA                       |NA  |NA   |25.5  |9.72  |5  |20    |25  |31.25 |40   |▂▂▂▇▆▅▃▅ |\n|run_script_nc                          |Coder (N. A. Coles) decision on if the script can run; True if the script runs / False if the script does not run                      |logical   |46      |16       |62 |NA    |NA       |NA: 46, TRU: 12, FAL: 4  |NA  |NA   |0.75  |NA    |NA |NA    |NA  |NA    |NA   |NA       |\n|reproducible_nc                        |Coder (N. A. Coles) decision on if the paper is reproducible; True if it is reproducible / False if not reproducible                   |character |46      |16       |62 |0     |3        |NA                       |4   |9    |NA    |NA    |NA |NA    |NA  |NA    |NA   |NA       |\n|comments_on_reproducibility_nc         |Coder (N. A. Coles) comments on his own reproducibility process                                                                        |character |46      |16       |62 |0     |16       |NA                       |37  |1787 |NA    |NA    |NA |NA    |NA  |NA    |NA   |NA       |\n|time_reproducing_nc                    |Time it took to reproduce for Coder (N. A. Coles)                                                                                      |numeric   |46      |16       |62 |NA    |NA       |NA                       |NA  |NA   |32.5  |20.95 |3  |21.25 |30  |42.75 |81   |▆▁▇▅▃▂▁▂ |\n|run_script_dl                          |Coder (D. Lakens) decision on if the script can run; True if the script runs / False if the script does not run                        |logical   |60      |2        |62 |NA    |NA       |NA: 60, TRU: 2           |NA  |NA   |1     |NA    |NA |NA    |NA  |NA    |NA   |NA       |\n|reproducible_dl                        |Coder (D. Lakens) decision on if the paper is reproducible; True if it is reproducible / False if not reproducible                     |logical   |60      |2        |62 |NA    |NA       |NA: 60, TRU: 2           |NA  |NA   |1     |NA    |NA |NA    |NA  |NA    |NA   |NA       |\n|comments_on_reproducibility_dl         |Coder (D. Lakens) comments on his own reproducibility process                                                                          |character |60      |2        |62 |0     |2        |NA                       |115 |154  |NA    |NA    |NA |NA    |NA  |NA    |NA   |NA       |\n|time_reproducing_dl                    |Time it took to reproduce for Coder (D. Lakens)                                                                                        |numeric   |60      |2        |62 |NA    |NA       |NA                       |NA  |NA   |15    |7.07  |10 |12.5  |15  |17.5  |20   |▇▁▁▁▁▁▁▇ |\n|resolving_disagreements_between_coders |how the disagreements between the coders where resolved after a closer look together                                                   |character |39      |23       |62 |0     |23       |NA                       |67  |321  |NA    |NA    |NA |NA    |NA  |NA    |NA   |NA       |\n\n### Note\nThis dataset was automatically described using the [codebook R package](https://rubenarslan.github.io/codebook/) (version 0.8.1).",
  "creator": "Pepijn Obels, Daniel Lakens, Nicholas A. Coles, Jaroslav Gottfried",
  "temporalCoverage": "Spring 2018",
  "datePublished": "2019-05-22",
  "keywords": ["doi", "study", "registered_report", "domain", "journal", "replication", "linked", "url_dataset", "file_format", "availability", "data_statement", "comments_data_po", "understandable", "data_complete", "codebook", "not_software_specific", "analysis_script_included", "programming_language", "included_language", "url_scripts", "run_script_final", "reproducible_final", "run_script_po", "reproducible_po", "comments_on_reproducibility_po", "time_reproducing_po", "run_script_jg", "reproducible_jg", "comments_on_reproducibility_jg", "time_reproducing_jg", "run_script_nc", "reproducible_nc", "comments_on_reproducibility_nc", "time_reproducing_nc", "run_script_dl", "reproducible_dl", "comments_on_reproducibility_dl", "time_reproducing_dl", "resolving_disagreements_between_coders"],
  "@context": "http://schema.org/",
  "@type": "Dataset",
  "variableMeasured": [
    {
      "name": "doi",
      "description": "Digital Object Identifier",
      "@type": "propertyValue"
    },
    {
      "name": "study",
      "description": "First author name and Year",
      "@type": "propertyValue"
    },
    {
      "name": "registered_report",
      "description": "True if the paper is a registered report / False if it is not a registered report",
      "@type": "propertyValue"
    },
    {
      "name": "domain",
      "description": "The domain where the paper is published in (e.g. Psychology , Biology, Political Science)",
      "@type": "propertyValue"
    },
    {
      "name": "journal",
      "description": "The journal where the paper is published in",
      "@type": "propertyValue"
    },
    {
      "name": "replication",
      "description": "True if the paper is a replication / False if the paper is not a replication",
      "@type": "propertyValue"
    },
    {
      "name": "linked",
      "description": "True if there is a link to the dataset(s) and/or script(s) / False if there is no link in the paper",
      "@type": "propertyValue"
    },
    {
      "name": "url_dataset",
      "description": "URL to the dataset of the paper",
      "@type": "propertyValue"
    },
    {
      "name": "file_format",
      "description": "The format of the datafiles (e.g.  .csv , .txt)",
      "@type": "propertyValue"
    },
    {
      "name": "availability",
      "description": "True if the data of the paper is available (linked or searched on osf)/ False if there is no data available",
      "@type": "propertyValue"
    },
    {
      "name": "data_statement",
      "description": "Statement about the data in the paper (e.g. linked to osf, link is dead//empty)",
      "@type": "propertyValue"
    },
    {
      "name": "comments_data_po",
      "description": "Comments about the data that is provided by the paper (e.g. data is unclear / clearly described in codebook)",
      "@type": "propertyValue"
    },
    {
      "name": "understandable",
      "description": "True if the provided data is understandable(are the variables described /clear what they mean) / False if the data is incomprehensible",
      "@type": "propertyValue"
    },
    {
      "name": "data_complete",
      "description": "True if all the data is there / False if there are other files mentioned in the paper/script that are not there",
      "@type": "propertyValue"
    },
    {
      "name": "codebook",
      "description": "True if there is a codebook included / False if there is no codebook",
      "@type": "propertyValue"
    },
    {
      "name": "not_software_specific",
      "description": "True if the data is not software specific (relatively easy to load with free software) / False if the data is software-specific",
      "@type": "propertyValue"
    },
    {
      "name": "analysis_script_included",
      "description": "True if there is a script included with the paper / False if there is no script included",
      "@type": "propertyValue"
    },
    {
      "name": "programming_language",
      "description": "The programming language that is used (e.g. SPSS,. R)",
      "@type": "propertyValue"
    },
    {
      "name": "included_language",
      "description": "Does the programming language match our inclusion criteria due to our expertise and is it included in the final dataset.",
      "@type": "propertyValue"
    },
    {
      "name": "url_scripts",
      "description": "URL to the script of the paper",
      "@type": "propertyValue"
    },
    {
      "name": "run_script_final",
      "description": "Final decision if the script can run; True if the script runs / False if the script does not run",
      "@type": "propertyValue"
    },
    {
      "name": "reproducible_final",
      "description": "Final decision if the paper is reproducible; True if it is reproducible / False if not reproducible",
      "@type": "propertyValue"
    },
    {
      "name": "run_script_po",
      "description": "Coder (P. Obels) decision on if the script can run; True if the script runs / False if the script does not run",
      "@type": "propertyValue"
    },
    {
      "name": "reproducible_po",
      "description": "Coder (P. Obels) decision on if the paper is reproducible; True if it is reproducible / False if not reproducible",
      "@type": "propertyValue"
    },
    {
      "name": "comments_on_reproducibility_po",
      "description": "Coder (P. Obels) comments on his own reproducibility process",
      "@type": "propertyValue"
    },
    {
      "name": "time_reproducing_po",
      "description": "Time it took to reproduce for Coder (P. Obels)",
      "@type": "propertyValue"
    },
    {
      "name": "run_script_jg",
      "description": "Coder (J. Gottfried) decision on if the script can run; True if the script runs / False if the script does not run",
      "@type": "propertyValue"
    },
    {
      "name": "reproducible_jg",
      "description": "Coder (J. Gottfried) decision on if the paper is reproducible; True if it is reproducible / False if not reproducible",
      "@type": "propertyValue"
    },
    {
      "name": "comments_on_reproducibility_jg",
      "description": "Coder (J. Gottfried) comments on his own reproducibility process",
      "@type": "propertyValue"
    },
    {
      "name": "time_reproducing_jg",
      "description": "Time it took to reproduce for Coder (J. Gottfried)",
      "@type": "propertyValue"
    },
    {
      "name": "run_script_nc",
      "description": "Coder (N. A. Coles) decision on if the script can run; True if the script runs / False if the script does not run",
      "@type": "propertyValue"
    },
    {
      "name": "reproducible_nc",
      "description": "Coder (N. A. Coles) decision on if the paper is reproducible; True if it is reproducible / False if not reproducible",
      "@type": "propertyValue"
    },
    {
      "name": "comments_on_reproducibility_nc",
      "description": "Coder (N. A. Coles) comments on his own reproducibility process",
      "@type": "propertyValue"
    },
    {
      "name": "time_reproducing_nc",
      "description": "Time it took to reproduce for Coder (N. A. Coles)",
      "@type": "propertyValue"
    },
    {
      "name": "run_script_dl",
      "description": "Coder (D. Lakens) decision on if the script can run; True if the script runs / False if the script does not run",
      "@type": "propertyValue"
    },
    {
      "name": "reproducible_dl",
      "description": "Coder (D. Lakens) decision on if the paper is reproducible; True if it is reproducible / False if not reproducible",
      "@type": "propertyValue"
    },
    {
      "name": "comments_on_reproducibility_dl",
      "description": "Coder (D. Lakens) comments on his own reproducibility process",
      "@type": "propertyValue"
    },
    {
      "name": "time_reproducing_dl",
      "description": "Time it took to reproduce for Coder (D. Lakens)",
      "@type": "propertyValue"
    },
    {
      "name": "resolving_disagreements_between_coders",
      "description": "how the disagreements between the coders where resolved after a closer look together",
      "@type": "propertyValue"
    }
  ]
}`