Course Project

Reproducible Research Course Project 2

Peer-graded Assignment

Synonpsis

Storms and other severe weather events can cause both public health and economic problems for communities and municipalities. Many severe events can result in fatalities, injuries, and property damage, and preventing such outcomes to the extent possible is a key concern.

This report contains the results of an analysis where the goal was to identify the most hazardous weather events with respect to population health and those with the greatest economic impact in the U.S. based on data collected from the U.S. National Oceanic and Atmospheric Administration’s (NOAA).

The storm database includes weather events from 1950 through the year 2011 and contains data estimates such as the number fatalities and injuries for each weather event as well as economic cost damage to properties and crops for each weather event.

The estimates for fatalities and injuries were used to determine weather events with the most harmful impact to population health. Property damage and crop damage cost estimates were used to determine weather events with the greatest economic consequences.

Environment Setup

Load packages used in this analysis.

if (!require(ggplot2)) {
    install.packages("ggplot2")
    library(ggplot2)
}
## Loading required package: ggplot2
## Registered S3 methods overwritten by 'ggplot2':
##   method         from 
##   [.quosures     rlang
##   c.quosures     rlang
##   print.quosures rlang
if (!require(dplyr)) {
    install.packages("dplyr")
    library(dplyr, warn.conflicts = FALSE)
}
## Loading required package: dplyr
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
if (!require(xtable)) {
    install.packages("xtable")
    library(xtable, warn.conflicts = FALSE)
}
## Loading required package: xtable

Display session information.

sessionInfo()
## R version 3.6.0 (2019-04-26)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS Sierra 10.12.6
## 
## Matrix products: default
## BLAS:   /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] xtable_1.8-4  dplyr_0.8.1   ggplot2_3.1.1
## 
## loaded via a namespace (and not attached):
##  [1] Rcpp_1.0.1       knitr_1.23       magrittr_1.5     tidyselect_0.2.5
##  [5] munsell_0.5.0    colorspace_1.4-1 R6_2.4.0         rlang_0.3.4     
##  [9] stringr_1.4.0    plyr_1.8.4       tools_3.6.0      grid_3.6.0      
## [13] packrat_0.5.0    gtable_0.3.0     xfun_0.7         withr_2.1.2     
## [17] htmltools_0.3.6  assertthat_0.2.1 yaml_2.2.0       lazyeval_0.2.2  
## [21] digest_0.6.18    tibble_2.1.1     crayon_1.3.4     purrr_0.3.2     
## [25] glue_1.3.1       evaluate_0.13    rmarkdown_1.12   stringi_1.4.3   
## [29] compiler_3.6.0   pillar_1.4.0     scales_1.0.0     pkgconfig_2.0.2

Load Data

Download the compressed data file from the source URL (if not found locally) and then load the compressed data file via read.csv. Prior to processing the data, validate the downloaded data file and loaded dataset by checking the file size and dimensions respectively.

setwd("~/repos/coursera/github-assignments/reproducible-research-course-project-2")
stormDataFileURL <- "https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2"
stormDataFile <- "data/storm-data.csv.bz2"
if (!file.exists('data')) {
    dir.create('data')
}
if (!file.exists(stormDataFile)) {
    download.file(url = stormDataFileURL, destfile = stormDataFile)
}
stormData <- read.csv(stormDataFile, sep = ",", header = TRUE)
stopifnot(file.size(stormDataFile) == 49177144) 
stopifnot(dim(stormData) == c(902297,37))

Display dataset summary

names(stormData)
##  [1] "STATE__"    "BGN_DATE"   "BGN_TIME"   "TIME_ZONE"  "COUNTY"    
##  [6] "COUNTYNAME" "STATE"      "EVTYPE"     "BGN_RANGE"  "BGN_AZI"   
## [11] "BGN_LOCATI" "END_DATE"   "END_TIME"   "COUNTY_END" "COUNTYENDN"
## [16] "END_RANGE"  "END_AZI"    "END_LOCATI" "LENGTH"     "WIDTH"     
## [21] "F"          "MAG"        "FATALITIES" "INJURIES"   "PROPDMG"   
## [26] "PROPDMGEXP" "CROPDMG"    "CROPDMGEXP" "WFO"        "STATEOFFIC"
## [31] "ZONENAMES"  "LATITUDE"   "LONGITUDE"  "LATITUDE_E" "LONGITUDE_"
## [36] "REMARKS"    "REFNUM"
str(stormData)
## 'data.frame':    902297 obs. of  37 variables:
##  $ STATE__   : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ BGN_DATE  : Factor w/ 16335 levels "1/1/1966 0:00:00",..: 6523 6523 4242 11116 2224 2224 2260 383 3980 3980 ...
##  $ BGN_TIME  : Factor w/ 3608 levels "00:00:00 AM",..: 272 287 2705 1683 2584 3186 242 1683 3186 3186 ...
##  $ TIME_ZONE : Factor w/ 22 levels "ADT","AKS","AST",..: 7 7 7 7 7 7 7 7 7 7 ...
##  $ COUNTY    : num  97 3 57 89 43 77 9 123 125 57 ...
##  $ COUNTYNAME: Factor w/ 29601 levels "","5NM E OF MACKINAC BRIDGE TO PRESQUE ISLE LT MI",..: 13513 1873 4598 10592 4372 10094 1973 23873 24418 4598 ...
##  $ STATE     : Factor w/ 72 levels "AK","AL","AM",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ EVTYPE    : Factor w/ 985 levels "   HIGH SURF ADVISORY",..: 834 834 834 834 834 834 834 834 834 834 ...
##  $ BGN_RANGE : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ BGN_AZI   : Factor w/ 35 levels "","  N"," NW",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ BGN_LOCATI: Factor w/ 54429 levels ""," Christiansburg",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_DATE  : Factor w/ 6663 levels "","1/1/1993 0:00:00",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_TIME  : Factor w/ 3647 levels ""," 0900CST",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ COUNTY_END: num  0 0 0 0 0 0 0 0 0 0 ...
##  $ COUNTYENDN: logi  NA NA NA NA NA NA ...
##  $ END_RANGE : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ END_AZI   : Factor w/ 24 levels "","E","ENE","ESE",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_LOCATI: Factor w/ 34506 levels ""," CANTON"," TULIA",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ LENGTH    : num  14 2 0.1 0 0 1.5 1.5 0 3.3 2.3 ...
##  $ WIDTH     : num  100 150 123 100 150 177 33 33 100 100 ...
##  $ F         : int  3 2 2 2 2 2 2 1 3 3 ...
##  $ MAG       : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ FATALITIES: num  0 0 0 0 0 0 0 0 1 0 ...
##  $ INJURIES  : num  15 0 2 2 2 6 1 0 14 0 ...
##  $ PROPDMG   : num  25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
##  $ PROPDMGEXP: Factor w/ 19 levels "","-","?","+",..: 17 17 17 17 17 17 17 17 17 17 ...
##  $ CROPDMG   : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ CROPDMGEXP: Factor w/ 9 levels "","?","0","2",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ WFO       : Factor w/ 542 levels ""," CI","%SD",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ STATEOFFIC: Factor w/ 250 levels "","ALABAMA, Central",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ ZONENAMES : Factor w/ 25112 levels "","                                                                                                               "| __truncated__,..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ LATITUDE  : num  3040 3042 3340 3458 3412 ...
##  $ LONGITUDE : num  8812 8755 8742 8626 8642 ...
##  $ LATITUDE_E: num  3051 0 0 0 0 ...
##  $ LONGITUDE_: num  8806 0 0 0 0 ...
##  $ REMARKS   : Factor w/ 436781 levels "","\t","\t\t",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ REFNUM    : num  1 2 3 4 5 6 7 8 9 10 ...
head(stormData)

Data Processing

Create Subset of Data

When processing a large dataset, compute performance can be improved by taking a subset of the variables required for the analysis. For this analysis, the dataset will be trimmed to only include the necessary variables (listed below). In addition, only observations with value > 0 will be included.

Variable Description
EVTYPE Event type (Flood, Heat, Hurricane, Tornado, …)
FATALITIES Number of fatalities resulting from event
INJURIES Number of injuries resulting from event
PROPDMG Property damage in USD
PROPDMGEXP Unit multiplier for property damage (K, M, or B)
CROPDMG Crop damage in USD
CROPDMGEXP Unit multiplier for property damage (K, M, or B)
BGN_DATE Begin date of the event
END_DATE End date of the event
STATE State where the event occurred
stormDataTidy <- subset(stormData, EVTYPE != "?"
                                   &
                                   (FATALITIES > 0 | INJURIES > 0 | PROPDMG > 0 | CROPDMG > 0),
                                   select = c("EVTYPE",
                                              "FATALITIES",
                                              "INJURIES", 
                                              "PROPDMG",
                                              "PROPDMGEXP",
                                              "CROPDMG",
                                              "CROPDMGEXP",
                                              "BGN_DATE",
                                              "END_DATE",
                                              "STATE"))
dim(stormDataTidy)
## [1] 254632     10
sum(is.na(stormDataTidy))
## [1] 0

The working (tidy) dataset contains 254632 observations, 10 variables and no missing values.

Clean Event Type Data

There are a total of 487 unique Event Type values in the current tidy dataset.

length(unique(stormDataTidy$EVTYPE))
## [1] 487

Exploring the Event Type data revealed many values that appeared to be similar; however, they were entered with different spellings, pluralization, mixed case and even misspellings. For example, Strong Wind, STRONG WIND, Strong Winds, and STRONG WINDS.

The dataset was normalized by converting all Event Type values to uppercase and combining similar Event Type values into unique categories.

stormDataTidy$EVTYPE <- toupper(stormDataTidy$EVTYPE)
# AVALANCHE
stormDataTidy$EVTYPE <- gsub('.*AVALANCE.*', 'AVALANCHE', stormDataTidy$EVTYPE)

# BLIZZARD
stormDataTidy$EVTYPE <- gsub('.*BLIZZARD.*', 'BLIZZARD', stormDataTidy$EVTYPE)

# CLOUD
stormDataTidy$EVTYPE <- gsub('.*CLOUD.*', 'CLOUD', stormDataTidy$EVTYPE)

# COLD
stormDataTidy$EVTYPE <- gsub('.*COLD.*', 'COLD', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*FREEZ.*', 'COLD', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*FROST.*', 'COLD', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*ICE.*', 'COLD', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*LOW TEMPERATURE RECORD.*', 'COLD', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*LO.*TEMP.*', 'COLD', stormDataTidy$EVTYPE)

# DRY
stormDataTidy$EVTYPE <- gsub('.*DRY.*', 'DRY', stormDataTidy$EVTYPE)

# DUST
stormDataTidy$EVTYPE <- gsub('.*DUST.*', 'DUST', stormDataTidy$EVTYPE)

# FIRE
stormDataTidy$EVTYPE <- gsub('.*FIRE.*', 'FIRE', stormDataTidy$EVTYPE)

# FLOOD
stormDataTidy$EVTYPE <- gsub('.*FLOOD.*', 'FLOOD', stormDataTidy$EVTYPE)

# FOG
stormDataTidy$EVTYPE <- gsub('.*FOG.*', 'FOG', stormDataTidy$EVTYPE)

# HAIL
stormDataTidy$EVTYPE <- gsub('.*HAIL.*', 'HAIL', stormDataTidy$EVTYPE)

# HEAT
stormDataTidy$EVTYPE <- gsub('.*HEAT.*', 'HEAT', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*WARM.*', 'HEAT', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*HIGH.*TEMP.*', 'HEAT', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*RECORD HIGH TEMPERATURES.*', 'HEAT', stormDataTidy$EVTYPE)

# HYPOTHERMIA/EXPOSURE
stormDataTidy$EVTYPE <- gsub('.*HYPOTHERMIA.*', 'HYPOTHERMIA/EXPOSURE', stormDataTidy$EVTYPE)

# LANDSLIDE
stormDataTidy$EVTYPE <- gsub('.*LANDSLIDE.*', 'LANDSLIDE', stormDataTidy$EVTYPE)

# LIGHTNING
stormDataTidy$EVTYPE <- gsub('^LIGHTNING.*', 'LIGHTNING', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('^LIGNTNING.*', 'LIGHTNING', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('^LIGHTING.*', 'LIGHTNING', stormDataTidy$EVTYPE)

# MICROBURST
stormDataTidy$EVTYPE <- gsub('.*MICROBURST.*', 'MICROBURST', stormDataTidy$EVTYPE)

# MUDSLIDE
stormDataTidy$EVTYPE <- gsub('.*MUDSLIDE.*', 'MUDSLIDE', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*MUD SLIDE.*', 'MUDSLIDE', stormDataTidy$EVTYPE)

# RAIN
stormDataTidy$EVTYPE <- gsub('.*RAIN.*', 'RAIN', stormDataTidy$EVTYPE)

# RIP CURRENT
stormDataTidy$EVTYPE <- gsub('.*RIP CURRENT.*', 'RIP CURRENT', stormDataTidy$EVTYPE)

# STORM
stormDataTidy$EVTYPE <- gsub('.*STORM.*', 'STORM', stormDataTidy$EVTYPE)

# SUMMARY
stormDataTidy$EVTYPE <- gsub('.*SUMMARY.*', 'SUMMARY', stormDataTidy$EVTYPE)

# TORNADO
stormDataTidy$EVTYPE <- gsub('.*TORNADO.*', 'TORNADO', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*TORNDAO.*', 'TORNADO', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*LANDSPOUT.*', 'TORNADO', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*WATERSPOUT.*', 'TORNADO', stormDataTidy$EVTYPE)

# SURF
stormDataTidy$EVTYPE <- gsub('.*SURF.*', 'SURF', stormDataTidy$EVTYPE)

# VOLCANIC
stormDataTidy$EVTYPE <- gsub('.*VOLCANIC.*', 'VOLCANIC', stormDataTidy$EVTYPE)

# WET
stormDataTidy$EVTYPE <- gsub('.*WET.*', 'WET', stormDataTidy$EVTYPE)

# WIND
stormDataTidy$EVTYPE <- gsub('.*WIND.*', 'WIND', stormDataTidy$EVTYPE)

# WINTER
stormDataTidy$EVTYPE <- gsub('.*WINTER.*', 'WINTER', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*WINTRY.*', 'WINTER', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*SNOW.*', 'WINTER', stormDataTidy$EVTYPE)

After tidying the dataset, the number of unique Event Type values were reduced to 81

length(unique(stormDataTidy$EVTYPE))
## [1] 81

Clean Date Data

Format date variables for any type of optional reporting or further analysis.

In the raw dataset, the BNG_START and END_DATE variables are stored as factors which should be made available as actual date types that can be manipulated and reported on. For now, time variables will be ignored.

Create four new variables based on date variables in the tidy dataset:

Variable Description
DATE_START Begin date of the event stored as a date type
DATE_END End date of the event stored as a date type
YEAR Year the event started
DURATION Duration (in hours) of the event
stormDataTidy$DATE_START <- as.Date(stormDataTidy$BGN_DATE, format = "%m/%d/%Y")
stormDataTidy$DATE_END <- as.Date(stormDataTidy$END_DATE, format = "%m/%d/%Y")
stormDataTidy$YEAR <- as.integer(format(stormDataTidy$DATE_START, "%Y"))
stormDataTidy$DURATION <- as.numeric(stormDataTidy$DATE_END - stormDataTidy$DATE_START)/3600

Clean Economic Data

According to the “National Weather Service Storm Data Documentation” (page 12), information about Property Damage is logged using two variables: PROPDMG and PROPDMGEXP. PROPDMG is the mantissa (the significand) rounded to three significant digits and PROPDMGEXP is the exponent (the multiplier). The same approach is used for Crop Damage where the CROPDMG variable is encoded by the CROPDMGEXP variable.

The documentation also specifies that the PROPDMGEXP and CROPDMGEXP are supposed to contain an alphabetical character used to signify magnitude and logs “K” for thousands, “M” for millions, and “B” for billions. A quick review of the data, however, shows that there are several other characters being logged.

table(toupper(stormDataTidy$PROPDMGEXP))
## 
##             -      +      0      2      3      4      5      6      7 
##  11585      1      5    210      1      1      4     18      3      3 
##      B      H      K      M 
##     40      7 231427  11327
table(toupper(stormDataTidy$CROPDMGEXP))
## 
##             ?      0      B      K      M 
## 152663      6     17      7  99953   1986

In order to calculate costs, the PROPDMGEXP and CROPDMGEXP variables will be mapped to a multiplier factor which will then be used to calculate the actual costs for both property and crop damage. Two new variables will be created to store damage costs:

  • PROP_COST
  • CROP_COST
# function to get multiplier factor
getMultiplier <- function(exp) {
    exp <- toupper(exp);
    if (exp == "")  return (10^0);
    if (exp == "-") return (10^0);
    if (exp == "?") return (10^0);
    if (exp == "+") return (10^0);
    if (exp == "0") return (10^0);
    if (exp == "1") return (10^1);
    if (exp == "2") return (10^2);
    if (exp == "3") return (10^3);
    if (exp == "4") return (10^4);
    if (exp == "5") return (10^5);
    if (exp == "6") return (10^6);
    if (exp == "7") return (10^7);
    if (exp == "8") return (10^8);
    if (exp == "9") return (10^9);
    if (exp == "H") return (10^2);
    if (exp == "K") return (10^3);
    if (exp == "M") return (10^6);
    if (exp == "B") return (10^9);
    return (NA);
}

# calculate property damage and crop damage costs (in billions)
stormDataTidy$PROP_COST <- with(stormDataTidy, as.numeric(PROPDMG) * sapply(PROPDMGEXP, getMultiplier))/10^9
stormDataTidy$CROP_COST <- with(stormDataTidy, as.numeric(CROPDMG) * sapply(CROPDMGEXP, getMultiplier))/10^9

Summarize Data

Create a summarized dataset of health impact data (fatalities + injuries). Sort the results in descending order by health impact.

healthImpactData <- aggregate(x = list(HEALTH_IMPACT = stormDataTidy$FATALITIES + stormDataTidy$INJURIES), 
                                  by = list(EVENT_TYPE = stormDataTidy$EVTYPE), 
                                  FUN = sum,
                                  na.rm = TRUE)
healthImpactData <- healthImpactData[order(healthImpactData$HEALTH_IMPACT, decreasing = TRUE),]

Create a summarized dataset of damage impact costs (property damage + crop damage). Sort the results in descending order by damage cost.

damageCostImpactData <- aggregate(x = list(DAMAGE_IMPACT = stormDataTidy$PROP_COST + stormDataTidy$CROP_COST), 
                                  by = list(EVENT_TYPE = stormDataTidy$EVTYPE), 
                                  FUN = sum,
                                  na.rm = TRUE)
damageCostImpactData <- damageCostImpactData[order(damageCostImpactData$DAMAGE_IMPACT, decreasing = TRUE),]

Results

Event Types Most Harmful to Population Health

Fatalities and injuries have the most harmful impact on population health. The results below display the 10 most harmful weather events in terms of population health in the U.S.

print(xtable(head(healthImpactData, 10),
             caption = "Top 10 Weather Events Most Harmful to Population Health"),
             caption.placement = 'top',
             type = "html",
             include.rownames = FALSE,
             html.table.attributes='class="table-bordered", width="100%"')
Top 10 Weather Events Most Harmful to Population Health
EVENT_TYPE HEALTH_IMPACT
TORNADO 97075.00
HEAT 12392.00
FLOOD 10127.00
WIND 9893.00
LIGHTNING 6049.00
STORM 4780.00
COLD 3100.00
WINTER 1924.00
FIRE 1698.00
HAIL 1512.00


healthImpactChart <- ggplot(head(healthImpactData, 10),
                            aes(x = reorder(EVENT_TYPE, HEALTH_IMPACT), y = HEALTH_IMPACT, fill = EVENT_TYPE)) +
                            coord_flip() +
                            geom_bar(stat = "identity") + 
                            xlab("Event Type") +
                            ylab("Total Fatalities and Injures") +
                            theme(plot.title = element_text(size = 14, hjust = 0.5)) +
                            ggtitle("Top 10 Weather Events Most Harmful to\nPopulation Health")
print(healthImpactChart)

Event Types with Greatest Economic Consequences

Property and crop damage have the most harmful impact on the economy. The results below display the 10 most harmful weather events in terms economic consequences in the U.S.

print(xtable(head(damageCostImpactData, 10),
             caption = "Top 10 Weather Events with Greatest Economic Consequences"),
             caption.placement = 'top',
             type = "html",
             include.rownames = FALSE,
             html.table.attributes='class="table-bordered", width="100%"')
Top 10 Weather Events with Greatest Economic Consequences
EVENT_TYPE DAMAGE_IMPACT
FLOOD 180.58
HURRICANE/TYPHOON 71.91
STORM 70.45
TORNADO 57.43
HAIL 20.74
DROUGHT 15.02
HURRICANE 14.61
COLD 12.70
WIND 12.01
FIRE 8.90


damageCostImpactChart <- ggplot(head(damageCostImpactData, 10),
                            aes(x = reorder(EVENT_TYPE, DAMAGE_IMPACT), y = DAMAGE_IMPACT, fill = EVENT_TYPE)) +
                            coord_flip() +
                            geom_bar(stat = "identity") + 
                            xlab("Event Type") +
                            ylab("Total Property / Crop Damage Cost\n(in Billions)") +
                            theme(plot.title = element_text(size = 14, hjust = 0.5)) +
                            ggtitle("Top 10 Weather Events with\nGreatest Economic Consequences")
print(damageCostImpactChart)

Conclusion

Based on the evidence demonstrated in this analysis and supported by the included data and graphs, the following conclusions can be drawn:

  • Which types of weather events are most harmful to population health?

    Tornadoes are responsible for the greatest number of fatalities and injuries.

  • Which types of weather events have the greatest economic consequences?

    Floods are responsible for causing the most property damage and crop damage costs.