Reproducible Research Course Project 2
Peer-graded Assignment
This course project is available on GitHub
Storms and other severe weather events can cause both public health and economic problems for communities and municipalities. Many severe events can result in fatalities, injuries, and property damage, and preventing such outcomes to the extent possible is a key concern.
This report contains the results of an analysis where the goal was to identify the most hazardous weather events with respect to population health and those with the greatest economic impact in the U.S. based on data collected from the U.S. National Oceanic and Atmospheric Administration’s (NOAA).
The storm database includes weather events from 1950 through the year 2011 and contains data estimates such as the number fatalities and injuries for each weather event as well as economic cost damage to properties and crops for each weather event.
The estimates for fatalities and injuries were used to determine weather events with the most harmful impact to population health. Property damage and crop damage cost estimates were used to determine weather events with the greatest economic consequences.
Load packages used in this analysis.
if (!require(ggplot2)) {
install.packages("ggplot2")
library(ggplot2)
}
## Loading required package: ggplot2
## Registered S3 methods overwritten by 'ggplot2':
## method from
## [.quosures rlang
## c.quosures rlang
## print.quosures rlang
if (!require(dplyr)) {
install.packages("dplyr")
library(dplyr, warn.conflicts = FALSE)
}
## Loading required package: dplyr
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
if (!require(xtable)) {
install.packages("xtable")
library(xtable, warn.conflicts = FALSE)
}
## Loading required package: xtable
Display session information.
sessionInfo()
## R version 3.6.0 (2019-04-26)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS Sierra 10.12.6
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] xtable_1.8-4 dplyr_0.8.1 ggplot2_3.1.1
##
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.1 knitr_1.23 magrittr_1.5 tidyselect_0.2.5
## [5] munsell_0.5.0 colorspace_1.4-1 R6_2.4.0 rlang_0.3.4
## [9] stringr_1.4.0 plyr_1.8.4 tools_3.6.0 grid_3.6.0
## [13] packrat_0.5.0 gtable_0.3.0 xfun_0.7 withr_2.1.2
## [17] htmltools_0.3.6 assertthat_0.2.1 yaml_2.2.0 lazyeval_0.2.2
## [21] digest_0.6.18 tibble_2.1.1 crayon_1.3.4 purrr_0.3.2
## [25] glue_1.3.1 evaluate_0.13 rmarkdown_1.12 stringi_1.4.3
## [29] compiler_3.6.0 pillar_1.4.0 scales_1.0.0 pkgconfig_2.0.2
Download the compressed data file from the source URL (if not found locally) and then load the compressed data file via read.csv. Prior to processing the data, validate the downloaded data file and loaded dataset by checking the file size and dimensions respectively.
setwd("~/repos/coursera/github-assignments/reproducible-research-course-project-2")
stormDataFileURL <- "https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2"
stormDataFile <- "data/storm-data.csv.bz2"
if (!file.exists('data')) {
dir.create('data')
}
if (!file.exists(stormDataFile)) {
download.file(url = stormDataFileURL, destfile = stormDataFile)
}
stormData <- read.csv(stormDataFile, sep = ",", header = TRUE)
stopifnot(file.size(stormDataFile) == 49177144)
stopifnot(dim(stormData) == c(902297,37))
Display dataset summary
names(stormData)
## [1] "STATE__" "BGN_DATE" "BGN_TIME" "TIME_ZONE" "COUNTY"
## [6] "COUNTYNAME" "STATE" "EVTYPE" "BGN_RANGE" "BGN_AZI"
## [11] "BGN_LOCATI" "END_DATE" "END_TIME" "COUNTY_END" "COUNTYENDN"
## [16] "END_RANGE" "END_AZI" "END_LOCATI" "LENGTH" "WIDTH"
## [21] "F" "MAG" "FATALITIES" "INJURIES" "PROPDMG"
## [26] "PROPDMGEXP" "CROPDMG" "CROPDMGEXP" "WFO" "STATEOFFIC"
## [31] "ZONENAMES" "LATITUDE" "LONGITUDE" "LATITUDE_E" "LONGITUDE_"
## [36] "REMARKS" "REFNUM"
str(stormData)
## 'data.frame': 902297 obs. of 37 variables:
## $ STATE__ : num 1 1 1 1 1 1 1 1 1 1 ...
## $ BGN_DATE : Factor w/ 16335 levels "1/1/1966 0:00:00",..: 6523 6523 4242 11116 2224 2224 2260 383 3980 3980 ...
## $ BGN_TIME : Factor w/ 3608 levels "00:00:00 AM",..: 272 287 2705 1683 2584 3186 242 1683 3186 3186 ...
## $ TIME_ZONE : Factor w/ 22 levels "ADT","AKS","AST",..: 7 7 7 7 7 7 7 7 7 7 ...
## $ COUNTY : num 97 3 57 89 43 77 9 123 125 57 ...
## $ COUNTYNAME: Factor w/ 29601 levels "","5NM E OF MACKINAC BRIDGE TO PRESQUE ISLE LT MI",..: 13513 1873 4598 10592 4372 10094 1973 23873 24418 4598 ...
## $ STATE : Factor w/ 72 levels "AK","AL","AM",..: 2 2 2 2 2 2 2 2 2 2 ...
## $ EVTYPE : Factor w/ 985 levels " HIGH SURF ADVISORY",..: 834 834 834 834 834 834 834 834 834 834 ...
## $ BGN_RANGE : num 0 0 0 0 0 0 0 0 0 0 ...
## $ BGN_AZI : Factor w/ 35 levels ""," N"," NW",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ BGN_LOCATI: Factor w/ 54429 levels ""," Christiansburg",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ END_DATE : Factor w/ 6663 levels "","1/1/1993 0:00:00",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ END_TIME : Factor w/ 3647 levels ""," 0900CST",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ COUNTY_END: num 0 0 0 0 0 0 0 0 0 0 ...
## $ COUNTYENDN: logi NA NA NA NA NA NA ...
## $ END_RANGE : num 0 0 0 0 0 0 0 0 0 0 ...
## $ END_AZI : Factor w/ 24 levels "","E","ENE","ESE",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ END_LOCATI: Factor w/ 34506 levels ""," CANTON"," TULIA",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ LENGTH : num 14 2 0.1 0 0 1.5 1.5 0 3.3 2.3 ...
## $ WIDTH : num 100 150 123 100 150 177 33 33 100 100 ...
## $ F : int 3 2 2 2 2 2 2 1 3 3 ...
## $ MAG : num 0 0 0 0 0 0 0 0 0 0 ...
## $ FATALITIES: num 0 0 0 0 0 0 0 0 1 0 ...
## $ INJURIES : num 15 0 2 2 2 6 1 0 14 0 ...
## $ PROPDMG : num 25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
## $ PROPDMGEXP: Factor w/ 19 levels "","-","?","+",..: 17 17 17 17 17 17 17 17 17 17 ...
## $ CROPDMG : num 0 0 0 0 0 0 0 0 0 0 ...
## $ CROPDMGEXP: Factor w/ 9 levels "","?","0","2",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ WFO : Factor w/ 542 levels ""," CI","%SD",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ STATEOFFIC: Factor w/ 250 levels "","ALABAMA, Central",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ ZONENAMES : Factor w/ 25112 levels ""," "| __truncated__,..: 1 1 1 1 1 1 1 1 1 1 ...
## $ LATITUDE : num 3040 3042 3340 3458 3412 ...
## $ LONGITUDE : num 8812 8755 8742 8626 8642 ...
## $ LATITUDE_E: num 3051 0 0 0 0 ...
## $ LONGITUDE_: num 8806 0 0 0 0 ...
## $ REMARKS : Factor w/ 436781 levels "","\t","\t\t",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ REFNUM : num 1 2 3 4 5 6 7 8 9 10 ...
head(stormData)
When processing a large dataset, compute performance can be improved by taking a subset of the variables required for the analysis. For this analysis, the dataset will be trimmed to only include the necessary variables (listed below). In addition, only observations with value > 0 will be included.
| Variable | Description |
|---|---|
| EVTYPE | Event type (Flood, Heat, Hurricane, Tornado, …) |
| FATALITIES | Number of fatalities resulting from event |
| INJURIES | Number of injuries resulting from event |
| PROPDMG | Property damage in USD |
| PROPDMGEXP | Unit multiplier for property damage (K, M, or B) |
| CROPDMG | Crop damage in USD |
| CROPDMGEXP | Unit multiplier for property damage (K, M, or B) |
| BGN_DATE | Begin date of the event |
| END_DATE | End date of the event |
| STATE | State where the event occurred |
stormDataTidy <- subset(stormData, EVTYPE != "?"
&
(FATALITIES > 0 | INJURIES > 0 | PROPDMG > 0 | CROPDMG > 0),
select = c("EVTYPE",
"FATALITIES",
"INJURIES",
"PROPDMG",
"PROPDMGEXP",
"CROPDMG",
"CROPDMGEXP",
"BGN_DATE",
"END_DATE",
"STATE"))
dim(stormDataTidy)
## [1] 254632 10
sum(is.na(stormDataTidy))
## [1] 0
The working (tidy) dataset contains 254632 observations, 10 variables and no missing values.
There are a total of 487 unique Event Type values in the current tidy dataset.
length(unique(stormDataTidy$EVTYPE))
## [1] 487
Exploring the Event Type data revealed many values that appeared to be similar; however, they were entered with different spellings, pluralization, mixed case and even misspellings. For example, Strong Wind, STRONG WIND, Strong Winds, and STRONG WINDS.
The dataset was normalized by converting all Event Type values to uppercase and combining similar Event Type values into unique categories.
stormDataTidy$EVTYPE <- toupper(stormDataTidy$EVTYPE)
# AVALANCHE
stormDataTidy$EVTYPE <- gsub('.*AVALANCE.*', 'AVALANCHE', stormDataTidy$EVTYPE)
# BLIZZARD
stormDataTidy$EVTYPE <- gsub('.*BLIZZARD.*', 'BLIZZARD', stormDataTidy$EVTYPE)
# CLOUD
stormDataTidy$EVTYPE <- gsub('.*CLOUD.*', 'CLOUD', stormDataTidy$EVTYPE)
# COLD
stormDataTidy$EVTYPE <- gsub('.*COLD.*', 'COLD', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*FREEZ.*', 'COLD', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*FROST.*', 'COLD', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*ICE.*', 'COLD', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*LOW TEMPERATURE RECORD.*', 'COLD', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*LO.*TEMP.*', 'COLD', stormDataTidy$EVTYPE)
# DRY
stormDataTidy$EVTYPE <- gsub('.*DRY.*', 'DRY', stormDataTidy$EVTYPE)
# DUST
stormDataTidy$EVTYPE <- gsub('.*DUST.*', 'DUST', stormDataTidy$EVTYPE)
# FIRE
stormDataTidy$EVTYPE <- gsub('.*FIRE.*', 'FIRE', stormDataTidy$EVTYPE)
# FLOOD
stormDataTidy$EVTYPE <- gsub('.*FLOOD.*', 'FLOOD', stormDataTidy$EVTYPE)
# FOG
stormDataTidy$EVTYPE <- gsub('.*FOG.*', 'FOG', stormDataTidy$EVTYPE)
# HAIL
stormDataTidy$EVTYPE <- gsub('.*HAIL.*', 'HAIL', stormDataTidy$EVTYPE)
# HEAT
stormDataTidy$EVTYPE <- gsub('.*HEAT.*', 'HEAT', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*WARM.*', 'HEAT', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*HIGH.*TEMP.*', 'HEAT', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*RECORD HIGH TEMPERATURES.*', 'HEAT', stormDataTidy$EVTYPE)
# HYPOTHERMIA/EXPOSURE
stormDataTidy$EVTYPE <- gsub('.*HYPOTHERMIA.*', 'HYPOTHERMIA/EXPOSURE', stormDataTidy$EVTYPE)
# LANDSLIDE
stormDataTidy$EVTYPE <- gsub('.*LANDSLIDE.*', 'LANDSLIDE', stormDataTidy$EVTYPE)
# LIGHTNING
stormDataTidy$EVTYPE <- gsub('^LIGHTNING.*', 'LIGHTNING', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('^LIGNTNING.*', 'LIGHTNING', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('^LIGHTING.*', 'LIGHTNING', stormDataTidy$EVTYPE)
# MICROBURST
stormDataTidy$EVTYPE <- gsub('.*MICROBURST.*', 'MICROBURST', stormDataTidy$EVTYPE)
# MUDSLIDE
stormDataTidy$EVTYPE <- gsub('.*MUDSLIDE.*', 'MUDSLIDE', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*MUD SLIDE.*', 'MUDSLIDE', stormDataTidy$EVTYPE)
# RAIN
stormDataTidy$EVTYPE <- gsub('.*RAIN.*', 'RAIN', stormDataTidy$EVTYPE)
# RIP CURRENT
stormDataTidy$EVTYPE <- gsub('.*RIP CURRENT.*', 'RIP CURRENT', stormDataTidy$EVTYPE)
# STORM
stormDataTidy$EVTYPE <- gsub('.*STORM.*', 'STORM', stormDataTidy$EVTYPE)
# SUMMARY
stormDataTidy$EVTYPE <- gsub('.*SUMMARY.*', 'SUMMARY', stormDataTidy$EVTYPE)
# TORNADO
stormDataTidy$EVTYPE <- gsub('.*TORNADO.*', 'TORNADO', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*TORNDAO.*', 'TORNADO', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*LANDSPOUT.*', 'TORNADO', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*WATERSPOUT.*', 'TORNADO', stormDataTidy$EVTYPE)
# SURF
stormDataTidy$EVTYPE <- gsub('.*SURF.*', 'SURF', stormDataTidy$EVTYPE)
# VOLCANIC
stormDataTidy$EVTYPE <- gsub('.*VOLCANIC.*', 'VOLCANIC', stormDataTidy$EVTYPE)
# WET
stormDataTidy$EVTYPE <- gsub('.*WET.*', 'WET', stormDataTidy$EVTYPE)
# WIND
stormDataTidy$EVTYPE <- gsub('.*WIND.*', 'WIND', stormDataTidy$EVTYPE)
# WINTER
stormDataTidy$EVTYPE <- gsub('.*WINTER.*', 'WINTER', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*WINTRY.*', 'WINTER', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*SNOW.*', 'WINTER', stormDataTidy$EVTYPE)
After tidying the dataset, the number of unique Event Type values were reduced to 81
length(unique(stormDataTidy$EVTYPE))
## [1] 81
Format date variables for any type of optional reporting or further analysis.
In the raw dataset, the BNG_START and END_DATE variables are stored as factors which should be made available as actual date types that can be manipulated and reported on. For now, time variables will be ignored.
Create four new variables based on date variables in the tidy dataset:
| Variable | Description |
|---|---|
| DATE_START | Begin date of the event stored as a date type |
| DATE_END | End date of the event stored as a date type |
| YEAR | Year the event started |
| DURATION | Duration (in hours) of the event |
stormDataTidy$DATE_START <- as.Date(stormDataTidy$BGN_DATE, format = "%m/%d/%Y")
stormDataTidy$DATE_END <- as.Date(stormDataTidy$END_DATE, format = "%m/%d/%Y")
stormDataTidy$YEAR <- as.integer(format(stormDataTidy$DATE_START, "%Y"))
stormDataTidy$DURATION <- as.numeric(stormDataTidy$DATE_END - stormDataTidy$DATE_START)/3600
According to the “National Weather Service Storm Data Documentation” (page 12), information about Property Damage is logged using two variables: PROPDMG and PROPDMGEXP. PROPDMG is the mantissa (the significand) rounded to three significant digits and PROPDMGEXP is the exponent (the multiplier). The same approach is used for Crop Damage where the CROPDMG variable is encoded by the CROPDMGEXP variable.
The documentation also specifies that the PROPDMGEXP and CROPDMGEXP are supposed to contain an alphabetical character used to signify magnitude and logs “K” for thousands, “M” for millions, and “B” for billions. A quick review of the data, however, shows that there are several other characters being logged.
table(toupper(stormDataTidy$PROPDMGEXP))
##
## - + 0 2 3 4 5 6 7
## 11585 1 5 210 1 1 4 18 3 3
## B H K M
## 40 7 231427 11327
table(toupper(stormDataTidy$CROPDMGEXP))
##
## ? 0 B K M
## 152663 6 17 7 99953 1986
In order to calculate costs, the PROPDMGEXP and CROPDMGEXP variables will be mapped to a multiplier factor which will then be used to calculate the actual costs for both property and crop damage. Two new variables will be created to store damage costs:
# function to get multiplier factor
getMultiplier <- function(exp) {
exp <- toupper(exp);
if (exp == "") return (10^0);
if (exp == "-") return (10^0);
if (exp == "?") return (10^0);
if (exp == "+") return (10^0);
if (exp == "0") return (10^0);
if (exp == "1") return (10^1);
if (exp == "2") return (10^2);
if (exp == "3") return (10^3);
if (exp == "4") return (10^4);
if (exp == "5") return (10^5);
if (exp == "6") return (10^6);
if (exp == "7") return (10^7);
if (exp == "8") return (10^8);
if (exp == "9") return (10^9);
if (exp == "H") return (10^2);
if (exp == "K") return (10^3);
if (exp == "M") return (10^6);
if (exp == "B") return (10^9);
return (NA);
}
# calculate property damage and crop damage costs (in billions)
stormDataTidy$PROP_COST <- with(stormDataTidy, as.numeric(PROPDMG) * sapply(PROPDMGEXP, getMultiplier))/10^9
stormDataTidy$CROP_COST <- with(stormDataTidy, as.numeric(CROPDMG) * sapply(CROPDMGEXP, getMultiplier))/10^9
Create a summarized dataset of health impact data (fatalities + injuries). Sort the results in descending order by health impact.
healthImpactData <- aggregate(x = list(HEALTH_IMPACT = stormDataTidy$FATALITIES + stormDataTidy$INJURIES),
by = list(EVENT_TYPE = stormDataTidy$EVTYPE),
FUN = sum,
na.rm = TRUE)
healthImpactData <- healthImpactData[order(healthImpactData$HEALTH_IMPACT, decreasing = TRUE),]
Create a summarized dataset of damage impact costs (property damage + crop damage). Sort the results in descending order by damage cost.
damageCostImpactData <- aggregate(x = list(DAMAGE_IMPACT = stormDataTidy$PROP_COST + stormDataTidy$CROP_COST),
by = list(EVENT_TYPE = stormDataTidy$EVTYPE),
FUN = sum,
na.rm = TRUE)
damageCostImpactData <- damageCostImpactData[order(damageCostImpactData$DAMAGE_IMPACT, decreasing = TRUE),]
Fatalities and injuries have the most harmful impact on population health. The results below display the 10 most harmful weather events in terms of population health in the U.S.
print(xtable(head(healthImpactData, 10),
caption = "Top 10 Weather Events Most Harmful to Population Health"),
caption.placement = 'top',
type = "html",
include.rownames = FALSE,
html.table.attributes='class="table-bordered", width="100%"')
| EVENT_TYPE | HEALTH_IMPACT |
|---|---|
| TORNADO | 97075.00 |
| HEAT | 12392.00 |
| FLOOD | 10127.00 |
| WIND | 9893.00 |
| LIGHTNING | 6049.00 |
| STORM | 4780.00 |
| COLD | 3100.00 |
| WINTER | 1924.00 |
| FIRE | 1698.00 |
| HAIL | 1512.00 |
healthImpactChart <- ggplot(head(healthImpactData, 10),
aes(x = reorder(EVENT_TYPE, HEALTH_IMPACT), y = HEALTH_IMPACT, fill = EVENT_TYPE)) +
coord_flip() +
geom_bar(stat = "identity") +
xlab("Event Type") +
ylab("Total Fatalities and Injures") +
theme(plot.title = element_text(size = 14, hjust = 0.5)) +
ggtitle("Top 10 Weather Events Most Harmful to\nPopulation Health")
print(healthImpactChart)
Property and crop damage have the most harmful impact on the economy. The results below display the 10 most harmful weather events in terms economic consequences in the U.S.
print(xtable(head(damageCostImpactData, 10),
caption = "Top 10 Weather Events with Greatest Economic Consequences"),
caption.placement = 'top',
type = "html",
include.rownames = FALSE,
html.table.attributes='class="table-bordered", width="100%"')
| EVENT_TYPE | DAMAGE_IMPACT |
|---|---|
| FLOOD | 180.58 |
| HURRICANE/TYPHOON | 71.91 |
| STORM | 70.45 |
| TORNADO | 57.43 |
| HAIL | 20.74 |
| DROUGHT | 15.02 |
| HURRICANE | 14.61 |
| COLD | 12.70 |
| WIND | 12.01 |
| FIRE | 8.90 |
damageCostImpactChart <- ggplot(head(damageCostImpactData, 10),
aes(x = reorder(EVENT_TYPE, DAMAGE_IMPACT), y = DAMAGE_IMPACT, fill = EVENT_TYPE)) +
coord_flip() +
geom_bar(stat = "identity") +
xlab("Event Type") +
ylab("Total Property / Crop Damage Cost\n(in Billions)") +
theme(plot.title = element_text(size = 14, hjust = 0.5)) +
ggtitle("Top 10 Weather Events with\nGreatest Economic Consequences")
print(damageCostImpactChart)
Based on the evidence demonstrated in this analysis and supported by the included data and graphs, the following conclusions can be drawn:
Which types of weather events are most harmful to population health?
Tornadoes are responsible for the greatest number of fatalities and injuries.
Which types of weather events have the greatest economic consequences?
Floods are responsible for causing the most property damage and crop damage costs.