Initial Visualization

ggplot(diamonds, aes(cut,price)) + geom_boxplot()

ggplot(diamonds, aes(color,price)) + geom_boxplot()

ggplot(diamonds, aes(clarity,price)) + geom_boxplot()

ggplot(diamonds, aes(carat, price)) +
  geom_hex(bins=50)

Subset Data and replot

diamonds2 <- diamonds %>%
  filter(carat <= 2.5)  %>%
  mutate(lprice = log2(price), lcarat = log2(carat))

ggplot(diamonds2, aes(lcarat, lprice)) +
  geom_hex(bins=50)

Simple model and visualization

mod_diamond <- lm(lprice ~ lcarat, data = diamonds2)

grid <- diamonds2 %>%
  data_grid(carat = seq_range(carat, 20)) %>%
  mutate(lcarat = log2(carat)) %>%
  add_predictions(mod_diamond, "lprice") %>%
  mutate(price = 2 ^ lprice)

ggplot(diamonds2, aes(carat, price)) +
  geom_hex(bins = 50) +
  geom_line(data = grid, color = "green", size = 1)

Add residuals and plot

diamonds2 <- diamonds2 %>%
  add_residuals(mod_diamond, "lresid")

ggplot(diamonds2, aes(lcarat, lresid)) +
  geom_hex(bins = 50)

ggplot(diamonds2, aes(cut,lresid)) + geom_boxplot()

ggplot(diamonds2, aes(color,lresid)) + geom_boxplot()

ggplot(diamonds2, aes(clarity,lresid)) + geom_boxplot()

Four parameter model and visualization

mod_diamond2 <- lm(
  lprice ~ lcarat + color + cut + clarity, diamonds2
)

grid <- diamonds2 %>%
  data_grid(cut, .model = mod_diamond2) %>%
  add_predictions(mod_diamond2)
grid
## # A tibble: 5 x 5
##   cut       lcarat color clarity  pred
##   <ord>      <dbl> <chr> <chr>   <dbl>
## 1 Fair      -0.515 G     VS2      11.2
## 2 Good      -0.515 G     VS2      11.3
## 3 Very Good -0.515 G     VS2      11.4
## 4 Premium   -0.515 G     VS2      11.4
## 5 Ideal     -0.515 G     VS2      11.4
ggplot(grid, aes(cut, pred)) +
  geom_point()

Plot residuals of four parameter model

diamonds2 <- diamonds2 %>%
  add_residuals(mod_diamond2, "lresid2")

ggplot(diamonds2, aes(lcarat, lresid2)) +
  geom_hex(bins = 50)

diamonds2 %>%
  filter(abs(lresid2) > 1) %>%
  add_predictions(mod_diamond2) %>%
  mutate(pred = round(2^pred)) %>%
  select(price, pred, carat:table, x:z) %>%
  arrange(price)
## # A tibble: 16 x 11
##    price  pred carat cut       color clarity depth table     x     y     z
##    <int> <dbl> <dbl> <ord>     <ord> <ord>   <dbl> <dbl> <dbl> <dbl> <dbl>
##  1  1013   264 0.25  Fair      F     SI2      54.4    64  4.3   4.23  2.32
##  2  1186   284 0.25  Premium   G     SI2      59      60  5.33  5.28  3.12
##  3  1186   284 0.25  Premium   G     SI2      58.8    60  5.33  5.28  3.12
##  4  1262  2644 1.03  Fair      E     I1       78.2    54  5.72  5.59  4.42
##  5  1415   639 0.35  Fair      G     VS2      65.9    54  5.57  5.53  3.66
##  6  1415   639 0.35  Fair      G     VS2      65.9    54  5.57  5.53  3.66
##  7  1715   576 0.32  Fair      F     VS2      59.6    60  4.42  4.34  2.61
##  8  1776   412 0.290 Fair      F     SI1      55.8    60  4.48  4.41  2.48
##  9  2160   314 0.34  Fair      F     I1       55.8    62  4.72  4.6   2.6 
## 10  2366   774 0.3   Very Good D     VVS2     60.6    58  4.33  4.35  2.63
## 11  3360  1373 0.51  Premium   F     SI1      62.7    62  5.09  4.96  3.15
## 12  3807  1540 0.61  Good      F     SI2      62.5    65  5.36  5.29  3.33
## 13  3920  1705 0.51  Fair      F     VVS2     65.4    60  4.98  4.9   3.23
## 14  4368  1705 0.51  Fair      F     VVS2     60.7    66  5.21  5.11  3.13
## 15 10011  4048 1.01  Fair      D     SI2      64.6    58  6.25  6.2   4.02
## 16 10470 23622 2.46  Premium   E     SI2      59.7    59  8.82  8.76  5.25

Question #1

In the plot of lcarat vs. lprice, there are some bright vertical strips. What do they represent?

Those bright strips represent a high density of population is aggregated at some specific weights that are deemed to be the popular choices when people buying diamonds.

Question #2

If log(price) = a_0 + a_1 * log(carat), what does that say about the relationship between price and carat?

The equation describes a linear relationship between log-normalized price and log-normalized carat. log transformation means price and carat doesn’t have a linear relationship naturally. Instead, the percentage change in price is constant given a fixed percentage change in carat (i.e. if carat goes up by a%, price will go always up by b%).

Question #3

Extract the diamonds that have very high and very low residuals. Is there anything unusual about these diamonds? Are they particularly bad or good, or do you think these are pricing errors?

There are no pricing errors, but more expensive diamonds do have higher carats/clarity.

# Use this chunk to place your code for extracting the high and low residuals
diamonds2 <-
  diamonds %>% 
  mutate(lprice = log2(price),
         lcarat = log2(carat))
mod1 <- lm(lprice ~ lcarat + color + clarity + cut, data = diamonds2)
bottom <-
  diamonds2 %>% 
  add_residuals(mod1) %>% 
  arrange(resid) %>% 
  slice(1:10)
top <-
  diamonds2 %>% 
  add_residuals(mod1) %>% 
  arrange(-resid) %>% 
  slice(1:10)
bind_rows(bottom, top) %>% 
  select(price, carat, resid)
## # A tibble: 20 x 3
##    price carat  resid
##    <int> <dbl>  <dbl>
##  1  6512 3     -1.46 
##  2 10470 2.46  -1.17 
##  3 10453 3.05  -1.14 
##  4 14220 3.01  -1.12 
##  5  9925 3.01  -1.12 
##  6 18701 3.51  -1.09 
##  7  1262 1.03  -1.04 
##  8  8040 3.01  -1.02 
##  9 12587 3.5   -0.990
## 10  8044 3     -0.985
## 11  2160 0.34   2.81 
## 12  1776 0.290  2.10 
## 13  1186 0.25   2.06 
## 14  1186 0.25   2.06 
## 15  1013 0.25   1.94 
## 16  2366 0.3    1.61 
## 17  1715 0.32   1.57 
## 18  4368 0.51   1.36 
## 19 10011 1.01   1.31 
## 20  3807 0.61   1.31

Question #4

Does the final model, mod_diamonds2, do a good job of predicting diamond prices? Would you trust it to tell you how much to spend if you were buying a diamond and why?

Not a very good one. The predictors are not normalized and the consequence is that the model’s residual error is quite high.

# Use this chunk to place your code for assessing how well the model predicts diamond prices
diamonds2 %>% 
  add_residuals(mod1) %>% 
  mutate(resid = 2 ^ abs(resid)) %>% 
  ggplot(aes(resid)) +
  geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.