Initial Visualization

ggplot(diamonds, aes(cut,price)) + geom_boxplot()

ggplot(diamonds, aes(color,price)) + geom_boxplot()

ggplot(diamonds, aes(clarity,price)) + geom_boxplot()

ggplot(diamonds, aes(carat, price)) +
  geom_hex(bins=50)
## Warning: Computation failed in `stat_binhex()`:
## Package `hexbin` required for `stat_binhex`.
## Please install and try again.

Subset Data and replot

diamonds2 <- diamonds %>%
  filter(carat <= 2.5)  %>%
  mutate(lprice = log2(price), lcarat = log2(carat))

ggplot(diamonds2, aes(lcarat, lprice)) +
  geom_hex(bins=50)
## Warning: Computation failed in `stat_binhex()`:
## Package `hexbin` required for `stat_binhex`.
## Please install and try again.

Simple model and visualization

mod_diamond <- lm(lprice ~ lcarat, data = diamonds2)

grid <- diamonds2 %>%
  data_grid(carat = seq_range(carat, 20)) %>%
  mutate(lcarat = log2(carat)) %>%
  add_predictions(mod_diamond, "lprice") %>%
  mutate(price = 2 ^ lprice)

ggplot(diamonds2, aes(carat, price)) +
  geom_hex(bins = 50) +
  geom_line(data = grid, color = "green", size = 1)
## Warning: Computation failed in `stat_binhex()`:
## Package `hexbin` required for `stat_binhex`.
## Please install and try again.

Add residuals and plot

diamonds2 <- diamonds2 %>%
  add_residuals(mod_diamond, "lresid")

ggplot(diamonds2, aes(lcarat, lresid)) +
  geom_hex(bins = 50)
## Warning: Computation failed in `stat_binhex()`:
## Package `hexbin` required for `stat_binhex`.
## Please install and try again.

ggplot(diamonds2, aes(cut,lresid)) + geom_boxplot()

ggplot(diamonds2, aes(color,lresid)) + geom_boxplot()

ggplot(diamonds2, aes(clarity,lresid)) + geom_boxplot()

Four parameter model and visualization

mod_diamond2 <- lm(
  lprice ~ lcarat + color + cut + clarity, diamonds2
)

grid <- diamonds2 %>%
  data_grid(cut, .model = mod_diamond2) %>%
  add_predictions(mod_diamond2)
grid
## # A tibble: 5 x 5
##   cut       lcarat color clarity  pred
##   <ord>      <dbl> <chr> <chr>   <dbl>
## 1 Fair      -0.515 G     VS2      11.2
## 2 Good      -0.515 G     VS2      11.3
## 3 Very Good -0.515 G     VS2      11.4
## 4 Premium   -0.515 G     VS2      11.4
## 5 Ideal     -0.515 G     VS2      11.4
ggplot(grid, aes(cut, pred)) +
  geom_point()

Plot residuals of four parameter model

diamonds2 <- diamonds2 %>%
  add_residuals(mod_diamond2, "lresid2")

ggplot(diamonds2, aes(lcarat, lresid2)) +
  geom_hex(bins = 50)
## Warning: Computation failed in `stat_binhex()`:
## Package `hexbin` required for `stat_binhex`.
## Please install and try again.

diamonds2 %>%
  filter(abs(lresid2) > 1) %>%
  add_predictions(mod_diamond2) %>%
  mutate(pred = round(2^pred)) %>%
  select(price, pred, carat:table, x:z) %>%
  arrange(price)
## # A tibble: 16 x 11
##    price  pred carat cut       color clarity depth table     x     y     z
##    <int> <dbl> <dbl> <ord>     <ord> <ord>   <dbl> <dbl> <dbl> <dbl> <dbl>
##  1  1013   264 0.25  Fair      F     SI2      54.4    64  4.3   4.23  2.32
##  2  1186   284 0.25  Premium   G     SI2      59      60  5.33  5.28  3.12
##  3  1186   284 0.25  Premium   G     SI2      58.8    60  5.33  5.28  3.12
##  4  1262  2644 1.03  Fair      E     I1       78.2    54  5.72  5.59  4.42
##  5  1415   639 0.35  Fair      G     VS2      65.9    54  5.57  5.53  3.66
##  6  1415   639 0.35  Fair      G     VS2      65.9    54  5.57  5.53  3.66
##  7  1715   576 0.32  Fair      F     VS2      59.6    60  4.42  4.34  2.61
##  8  1776   412 0.290 Fair      F     SI1      55.8    60  4.48  4.41  2.48
##  9  2160   314 0.34  Fair      F     I1       55.8    62  4.72  4.6   2.6 
## 10  2366   774 0.3   Very Good D     VVS2     60.6    58  4.33  4.35  2.63
## 11  3360  1373 0.51  Premium   F     SI1      62.7    62  5.09  4.96  3.15
## 12  3807  1540 0.61  Good      F     SI2      62.5    65  5.36  5.29  3.33
## 13  3920  1705 0.51  Fair      F     VVS2     65.4    60  4.98  4.9   3.23
## 14  4368  1705 0.51  Fair      F     VVS2     60.7    66  5.21  5.11  3.13
## 15 10011  4048 1.01  Fair      D     SI2      64.6    58  6.25  6.2   4.02
## 16 10470 23622 2.46  Premium   E     SI2      59.7    59  8.82  8.76  5.25

Question #1

In the plot of lcarat vs. lprice, there are some bright vertical strips. What do they represent?

Those are diamonds that have much higher value than the others that are classified as similar “cut style”. In general, these diamonds are the ones that have standard weights or exact whole number weights, such as 1 cara, 2 caras. We can see these as “Outliers”

Question #2

If log(price) = a_0 + a_1 * log(carat), what does that say about the relationship between price and carat?

It shows that the price of the diamond is completely dependent on the carat. It is a perfect linear relationship.

Question #3

Extract the diamonds that have very high and very low residuals. Is there anything unusual about these diamonds? Are they particularly bad or good, or do you think these are pricing errors?

# Use this chunk to place your code for extracting the high and low residuals
mod <- lm(lprice ~ lcarat + color + clarity + cut, data = diamonds2)
diamonds2 %>%
  filter(abs(lresid2) > 1) %>%
  add_predictions(mod_diamond2) %>%
  mutate(carat = round(2 ^carat)) %>%
  select(price, carat, lresid2) %>%
  arrange(price)
## # A tibble: 16 x 3
##    price carat lresid2
##    <int> <dbl>   <dbl>
##  1  1013     1    1.94
##  2  1186     1    2.06
##  3  1186     1    2.06
##  4  1262     2   -1.07
##  5  1415     1    1.15
##  6  1415     1    1.15
##  7  1715     1    1.57
##  8  1776     1    2.11
##  9  2160     1    2.78
## 10  2366     1    1.61
## 11  3360     1    1.29
## 12  3807     2    1.31
## 13  3920     1    1.20
## 14  4368     1    1.36
## 15 10011     2    1.31
## 16 10470     6   -1.17

no strong patterns. The price of diamond does not follow a standard rule.

Question #4

Does the final model, mod_diamonds2, do a good job of predicting diamond prices? Would you trust it to tell you how much to spend if you were buying a diamond and why?

# Use this chunk to place your code for assessing how well the model predicts diamond prices
diamonds2_pred <- diamonds2 %>%
  add_predictions(mod_diamond) %>%
  mutate(pred_price = 2 ^pred, diff = pred_price - price)

ggplot(diamonds2_pred, aes(pred_price, price)) + geom_point() + geom_abline(intercept = 0, slope = 1)

There is some pattern in the graph but the model does not do a good job predicting the price.