ggplot(diamonds, aes(cut,price)) + geom_boxplot()
ggplot(diamonds, aes(color,price)) + geom_boxplot()
ggplot(diamonds, aes(clarity,price)) + geom_boxplot()
ggplot(diamonds, aes(carat, price)) +
geom_hex(bins=50)
diamonds2 <- diamonds %>%
filter(carat <= 2.5) %>%
mutate(lprice = log2(price), lcarat = log2(carat))
ggplot(diamonds2, aes(lcarat, lprice)) +
geom_hex(bins=50)
mod_diamond <- lm(lprice ~ lcarat, data = diamonds2)
grid <- diamonds2 %>%
data_grid(carat = seq_range(carat, 20)) %>%
mutate(lcarat = log2(carat)) %>%
add_predictions(mod_diamond, "lprice") %>%
mutate(price = 2 ^ lprice)
ggplot(diamonds2, aes(carat, price)) +
geom_hex(bins = 50) +
geom_line(data = grid, color = "green", size = 1)
diamonds2 <- diamonds2 %>%
add_residuals(mod_diamond, "lresid")
ggplot(diamonds2, aes(lcarat, lresid)) +
geom_hex(bins = 50)
ggplot(diamonds2, aes(cut,lresid)) + geom_boxplot()
ggplot(diamonds2, aes(color,lresid)) + geom_boxplot()
ggplot(diamonds2, aes(clarity,lresid)) + geom_boxplot()
mod_diamond2 <- lm(
lprice ~ lcarat + color + cut + clarity, diamonds2
)
grid <- diamonds2 %>%
data_grid(cut, .model = mod_diamond2) %>%
add_predictions(mod_diamond2)
grid
## # A tibble: 5 x 5
## cut lcarat color clarity pred
## <ord> <dbl> <chr> <chr> <dbl>
## 1 Fair -0.515 G VS2 11.2
## 2 Good -0.515 G VS2 11.3
## 3 Very Good -0.515 G VS2 11.4
## 4 Premium -0.515 G VS2 11.4
## 5 Ideal -0.515 G VS2 11.4
ggplot(grid, aes(cut, pred)) +
geom_point()
diamonds2 <- diamonds2 %>%
add_residuals(mod_diamond2, "lresid2")
ggplot(diamonds2, aes(lcarat, lresid2)) +
geom_hex(bins = 50)
diamonds2 %>%
filter(abs(lresid2) > 1) %>%
add_predictions(mod_diamond2) %>%
mutate(pred = round(2^pred)) %>%
select(price, pred, carat:table, x:z) %>%
arrange(price)
## # A tibble: 16 x 11
## price pred carat cut color clarity depth table x y z
## <int> <dbl> <dbl> <ord> <ord> <ord> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1013 264 0.25 Fair F SI2 54.4 64 4.3 4.23 2.32
## 2 1186 284 0.25 Premium G SI2 59 60 5.33 5.28 3.12
## 3 1186 284 0.25 Premium G SI2 58.8 60 5.33 5.28 3.12
## 4 1262 2644 1.03 Fair E I1 78.2 54 5.72 5.59 4.42
## 5 1415 639 0.35 Fair G VS2 65.9 54 5.57 5.53 3.66
## 6 1415 639 0.35 Fair G VS2 65.9 54 5.57 5.53 3.66
## 7 1715 576 0.32 Fair F VS2 59.6 60 4.42 4.34 2.61
## 8 1776 412 0.290 Fair F SI1 55.8 60 4.48 4.41 2.48
## 9 2160 314 0.34 Fair F I1 55.8 62 4.72 4.6 2.6
## 10 2366 774 0.3 Very Good D VVS2 60.6 58 4.33 4.35 2.63
## 11 3360 1373 0.51 Premium F SI1 62.7 62 5.09 4.96 3.15
## 12 3807 1540 0.61 Good F SI2 62.5 65 5.36 5.29 3.33
## 13 3920 1705 0.51 Fair F VVS2 65.4 60 4.98 4.9 3.23
## 14 4368 1705 0.51 Fair F VVS2 60.7 66 5.21 5.11 3.13
## 15 10011 4048 1.01 Fair D SI2 64.6 58 6.25 6.2 4.02
## 16 10470 23622 2.46 Premium E SI2 59.7 59 8.82 8.76 5.25
In the plot of lcarat vs. lprice, there are some bright vertical strips. What do they represent?
Answer: From the plot of lcarat vs lprice, we could know that they have linear relationship and the distribution has a higher density on y-axis. They represent many diamonds have similar carat but with different price.
If log(price) = a_0 + a_1 * log(carat), what does that say about the relationship between price and carat?
Answer: From the log-transformation model, the linear relationship between log(price) and log(carat) means that for every 1% increase in carat, the price will increase by 1%.
Extract the diamonds that have very high and very low residuals. Is there anything unusual about these diamonds? Are they particularly bad or good, or do you think these are pricing errors?
diamonds2 <- diamonds %>%
filter(carat <= 2.5) %>%
mutate(lprice = log2(price), lcarat = log2(carat))
mod_diamond <- lm(lprice ~ lcarat + color + clarity + cut, data = diamonds2)
diamonds2 <- diamonds2 %>%
add_residuals(mod_diamond,'lresid')
summary(diamonds2$lresid)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -1.17388 -0.12437 -0.00094 0.00000 0.11920 2.78322
diamonds3 <- diamonds2 %>% filter(lresid > quantile(lresid)[[3]] | lresid < quantile(lresid)[[1]] )
table(diamonds3$cut)
##
## Fair Good Very Good Premium Ideal
## 780 2562 6020 7048 10497
table(diamonds3$clarity)
##
## I1 SI2 SI1 VS2 VS1 VVS2 VVS1 IF
## 391 5032 6898 5879 3810 2395 1686 816
diamonds3 %>%
ggplot(aes(clarity,price))+
geom_boxplot()+
facet_grid(~cut)
Conclusion: Yes, it has few errors. From the graph of the clarity vs price, some diamonds have lower price but with better clarity.
Does the final model, mod_diamonds2, do a good job of predicting diamond prices? Would you trust it to tell you how much to spend if you were buying a diamond and why?
diamonds2 <- diamonds2 %>%
add_predictions(mod_diamond) %>%
mutate(pred = round(2 ^ pred),
err = pred - price)
diamonds2 %>%
add_residuals(mod_diamond) %>%
mutate(resid = 2 ^ abs(resid)) %>%
ggplot(aes(resid)) +
geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Conclusion: Based on the plots of the residuals, the prediction is good for most of the diamonds. However, the P-value is greater than 5%, and it may result in some error with unusual data. Therefore, I may not use it to buy a diamond.