Regularization Methods

  1. Ridge Regression, also known as L2 Regularization
  2. Lasso regression - Least Absolute Square Operator, also known as L1 Regulaization
  3. Elastic Net regression

These methods are also called Shrinkage models. Regularization works well on high-dimensional data.

Ridge Regression keeps all variables as it shrinks parameters close to zero. Imposes penalty on the size of the coefficients to reduce the variance of the estimates.

Lasso Regression performs implicit variable selection as it shrinks some parameters exactly to zero.

#ridge regression
library(glmnet)
## Warning: package 'glmnet' was built under R version 3.5.2
## Loading required package: Matrix
## Loading required package: foreach
## Warning: package 'foreach' was built under R version 3.5.2
## Loaded glmnet 2.0-16
library(ISLR)
## Warning: package 'ISLR' was built under R version 3.5.2
#removing missing values from Hitters dataset of ISLR package 
Hit <- na.omit(Hitters)

str(Hit)
## 'data.frame':    263 obs. of  20 variables:
##  $ AtBat    : int  315 479 496 321 594 185 298 323 401 574 ...
##  $ Hits     : int  81 130 141 87 169 37 73 81 92 159 ...
##  $ HmRun    : int  7 18 20 10 4 1 0 6 17 21 ...
##  $ Runs     : int  24 66 65 39 74 23 24 26 49 107 ...
##  $ RBI      : int  38 72 78 42 51 8 24 32 66 75 ...
##  $ Walks    : int  39 76 37 30 35 21 7 8 65 59 ...
##  $ Years    : int  14 3 11 2 11 2 3 2 13 10 ...
##  $ CAtBat   : int  3449 1624 5628 396 4408 214 509 341 5206 4631 ...
##  $ CHits    : int  835 457 1575 101 1133 42 108 86 1332 1300 ...
##  $ CHmRun   : int  69 63 225 12 19 1 0 6 253 90 ...
##  $ CRuns    : int  321 224 828 48 501 30 41 32 784 702 ...
##  $ CRBI     : int  414 266 838 46 336 9 37 34 890 504 ...
##  $ CWalks   : int  375 263 354 33 194 24 12 8 866 488 ...
##  $ League   : Factor w/ 2 levels "A","N": 2 1 2 2 1 2 1 2 1 1 ...
##  $ Division : Factor w/ 2 levels "E","W": 2 2 1 1 2 1 2 2 1 1 ...
##  $ PutOuts  : int  632 880 200 805 282 76 121 143 0 238 ...
##  $ Assists  : int  43 82 11 40 421 127 283 290 0 445 ...
##  $ Errors   : int  10 14 3 4 25 7 9 19 0 22 ...
##  $ Salary   : num  475 480 500 91.5 750 ...
##  $ NewLeague: Factor w/ 2 levels "A","N": 2 1 2 2 1 1 1 2 1 1 ...
##  - attr(*, "na.action")= 'omit' Named int  1 16 19 23 31 33 37 39 40 42 ...
##   ..- attr(*, "names")= chr  "-Andy Allanson" "-Billy Beane" "-Bruce Bochte" "-Bob Boone" ...
#convert factor variables League & Division into numeric variables

Hit.data <- model.matrix( Salary ~ ., data = Hit)

The command, model.matrix, converts factor variable into numeric variable but it by default creates intercept variable, hence exclude the intercept variable.

#creating data with only independent variables by excluding intercept variable

x <- Hit.data[,-1]

#creating data with only target variable.
y <- Hit$Salary

Ridge regression

#Ridge regression, alpha = 0

ridge.reg <- glmnet(x,y, alpha=0)

ridge.reg
## 
## Call:  glmnet(x = x, y = y, alpha = 0) 
## 
##        Df      %Dev    Lambda
##   [1,] 19 6.185e-36 255300.00
##   [2,] 19 1.161e-02 232600.00
##   [3,] 19 1.272e-02 211900.00
##   [4,] 19 1.393e-02 193100.00
##   [5,] 19 1.525e-02 176000.00
##   [6,] 19 1.670e-02 160300.00
##   [7,] 19 1.827e-02 146100.00
##   [8,] 19 1.999e-02 133100.00
##   [9,] 19 2.186e-02 121300.00
##  [10,] 19 2.391e-02 110500.00
##  [11,] 19 2.613e-02 100700.00
##  [12,] 19 2.855e-02  91740.00
##  [13,] 19 3.118e-02  83590.00
##  [14,] 19 3.404e-02  76170.00
##  [15,] 19 3.714e-02  69400.00
##  [16,] 19 4.050e-02  63240.00
##  [17,] 19 4.414e-02  57620.00
##  [18,] 19 4.808e-02  52500.00
##  [19,] 19 5.233e-02  47840.00
##  [20,] 19 5.692e-02  43590.00
##  [21,] 19 6.186e-02  39710.00
##  [22,] 19 6.717e-02  36190.00
##  [23,] 19 7.287e-02  32970.00
##  [24,] 19 7.897e-02  30040.00
##  [25,] 19 8.549e-02  27370.00
##  [26,] 19 9.244e-02  24940.00
##  [27,] 19 9.983e-02  22730.00
##  [28,] 19 1.077e-01  20710.00
##  [29,] 19 1.160e-01  18870.00
##  [30,] 19 1.247e-01  17190.00
##  [31,] 19 1.339e-01  15660.00
##  [32,] 19 1.435e-01  14270.00
##  [33,] 19 1.536e-01  13000.00
##  [34,] 19 1.640e-01  11850.00
##  [35,] 19 1.748e-01  10800.00
##  [36,] 19 1.860e-01   9837.00
##  [37,] 19 1.974e-01   8963.00
##  [38,] 19 2.091e-01   8167.00
##  [39,] 19 2.210e-01   7442.00
##  [40,] 19 2.330e-01   6781.00
##  [41,] 19 2.451e-01   6178.00
##  [42,] 19 2.572e-01   5629.00
##  [43,] 19 2.692e-01   5129.00
##  [44,] 19 2.812e-01   4674.00
##  [45,] 19 2.929e-01   4258.00
##  [46,] 19 3.045e-01   3880.00
##  [47,] 19 3.157e-01   3535.00
##  [48,] 19 3.266e-01   3221.00
##  [49,] 19 3.371e-01   2935.00
##  [50,] 19 3.471e-01   2674.00
##  [51,] 19 3.568e-01   2437.00
##  [52,] 19 3.659e-01   2220.00
##  [53,] 19 3.746e-01   2023.00
##  [54,] 19 3.827e-01   1843.00
##  [55,] 19 3.904e-01   1680.00
##  [56,] 19 3.976e-01   1530.00
##  [57,] 19 4.043e-01   1394.00
##  [58,] 19 4.106e-01   1271.00
##  [59,] 19 4.164e-01   1158.00
##  [60,] 19 4.218e-01   1055.00
##  [61,] 19 4.269e-01    961.10
##  [62,] 19 4.316e-01    875.70
##  [63,] 19 4.359e-01    797.90
##  [64,] 19 4.400e-01    727.10
##  [65,] 19 4.437e-01    662.50
##  [66,] 19 4.473e-01    603.60
##  [67,] 19 4.506e-01    550.00
##  [68,] 19 4.537e-01    501.10
##  [69,] 19 4.566e-01    456.60
##  [70,] 19 4.593e-01    416.00
##  [71,] 19 4.619e-01    379.10
##  [72,] 19 4.643e-01    345.40
##  [73,] 19 4.667e-01    314.70
##  [74,] 19 4.689e-01    286.80
##  [75,] 19 4.710e-01    261.30
##  [76,] 19 4.731e-01    238.10
##  [77,] 19 4.751e-01    216.90
##  [78,] 19 4.771e-01    197.70
##  [79,] 19 4.789e-01    180.10
##  [80,] 19 4.808e-01    164.10
##  [81,] 19 4.826e-01    149.50
##  [82,] 19 4.845e-01    136.20
##  [83,] 19 4.863e-01    124.10
##  [84,] 19 4.880e-01    113.10
##  [85,] 19 4.898e-01    103.10
##  [86,] 19 4.916e-01     93.90
##  [87,] 19 4.934e-01     85.56
##  [88,] 19 4.952e-01     77.96
##  [89,] 19 4.970e-01     71.03
##  [90,] 19 4.988e-01     64.72
##  [91,] 19 5.006e-01     58.97
##  [92,] 19 5.024e-01     53.73
##  [93,] 19 5.042e-01     48.96
##  [94,] 19 5.060e-01     44.61
##  [95,] 19 5.077e-01     40.65
##  [96,] 19 5.095e-01     37.04
##  [97,] 19 5.113e-01     33.75
##  [98,] 19 5.130e-01     30.75
##  [99,] 19 5.148e-01     28.02
## [100,] 19 5.164e-01     25.53
#Print lambda values
ridge.reg$lambda
##   [1] 255282.09651 232603.53866 211939.68139 193111.54424 175956.04690
##   [6] 160324.59666 146081.80138 133104.29678 121279.67791 110505.52560
##  [11] 100688.51928  91743.62874  83593.37763  76167.17236  69400.69070
##  [16]  63235.32462  57617.67267  52499.07743  47835.20409  43585.65640
##  [21]  39713.62682  36185.57767  32970.95069  30041.90230  27373.06250
##  [26]  24941.31507  22725.59739  20706.71795  18867.19020  17191.08102
##  [31]  15663.87277  14272.33748  13004.42236  11849.14532  10796.49991
##  [36]   9837.36861   8963.44390   8167.15625   7441.60860   6780.51660
##  [41]   6178.15419   5629.30400   5129.21215   4673.54708   4258.36204
##  [46]   3880.06089   3535.36698   3221.29472   2935.12377   2674.37547
##  [51]   2436.79132   2220.31350   2023.06697   1843.34327   1679.58574
##  [56]   1530.37597   1394.42159   1270.54502   1157.67330   1054.82879
##  [61]    961.12071    875.73740    797.93930    727.05257    662.46322
##  [66]    603.61182    549.98861    501.12914    456.61020    416.04621
##  [71]    379.08581    345.40887    314.72370    286.76452    261.28915
##  [76]    238.07694    216.92684    197.65566    180.09647    164.09720
##  [81]    149.51926    136.23638    124.13351    113.10583    103.05782
##  [86]     93.90245     85.56042     77.95946     71.03376     64.72332
##  [91]     58.97348     53.73443     48.96082     44.61127     40.64813
##  [96]     37.03706     33.74679     30.74882     28.01718     25.52821
#print all ridge coefficients
coef(ridge.reg)
## 20 x 100 sparse Matrix of class "dgCMatrix"
##    [[ suppressing 100 column names 's0', 's1', 's2' ... ]]
##                                                                    
## (Intercept)  5.359259e+02  5.279266e+02  5.271582e+02  5.263173e+02
## AtBat        1.221172e-36  2.308443e-03  2.530141e-03  2.772795e-03
## Hits         4.429736e-36  8.386408e-03  9.193196e-03  1.007650e-02
## HmRun        1.784944e-35  3.369009e-02  3.692020e-02  4.045446e-02
## Runs         7.491019e-36  1.417283e-02  1.553533e-02  1.702684e-02
## RBI          7.912870e-36  1.495834e-02  1.639502e-02  1.796744e-02
## Walks        9.312961e-36  1.762818e-02  1.932377e-02  2.118006e-02
## Years        3.808598e-35  7.183685e-02  7.871918e-02  8.624857e-02
## CAtBat       1.048494e-37  1.980310e-04  2.170325e-04  2.378257e-04
## CHits        3.858759e-37  7.292122e-04  7.992257e-04  8.758489e-04
## CHmRun       2.910036e-36  5.498215e-03  6.026006e-03  6.603596e-03
## CRuns        7.741531e-37  1.462967e-03  1.603433e-03  1.757158e-03
## CRBI         7.989430e-37  1.509842e-03  1.654812e-03  1.813467e-03
## CWalks       8.452752e-37  1.595772e-03  1.748819e-03  1.916278e-03
## LeagueN     -1.301217e-35 -2.302321e-02 -2.506692e-02 -2.726959e-02
## DivisionW   -1.751460e-34 -3.339842e-01 -3.663713e-01 -4.018806e-01
## PutOuts      4.891197e-37  9.299203e-04  1.019803e-03  1.118291e-03
## Assists      7.989093e-38  1.517222e-04  1.663687e-04  1.824136e-04
## Errors      -3.725027e-37 -7.293365e-04 -8.021006e-04 -8.822976e-04
## NewLeagueN  -2.585026e-36 -3.616980e-03 -3.829358e-03 -4.034365e-03
##                                                                    
## (Intercept)  5.253971e+02  5.243905e+02  5.232897e+02  5.220865e+02
## AtBat        3.038296e-03  3.328712e-03  3.646278e-03  3.993410e-03
## Hits         1.104332e-02  1.210125e-02  1.325858e-02  1.452424e-02
## HmRun        4.432017e-02  4.854702e-02  5.316710e-02  5.821503e-02
## Runs         1.865911e-02  2.044493e-02  2.239818e-02  2.453385e-02
## RBI          1.968794e-02  2.156991e-02  2.362784e-02  2.587740e-02
## Walks        2.321176e-02  2.543486e-02  2.786670e-02  3.052604e-02
## Years        9.448282e-02  1.034849e-01  1.133226e-01  1.240693e-01
## CAtBat       2.605725e-04  2.854488e-04  3.126446e-04  3.423652e-04
## CHits        9.596818e-04  1.051375e-03  1.151634e-03  1.261220e-03
## CHmRun       7.235506e-03  7.926636e-03  8.682286e-03  9.508181e-03
## CRuns        1.925348e-03  2.109308e-03  2.310454e-03  2.530310e-03
## CRBI         1.987051e-03  2.176912e-03  2.384511e-03  2.611422e-03
## CWalks       2.099451e-03  2.299751e-03  2.518700e-03  2.757945e-03
## LeagueN     -2.963873e-02 -3.218103e-02 -3.490201e-02 -3.780550e-02
## DivisionW   -4.408093e-01 -4.834822e-01 -5.302543e-01 -5.815128e-01
## PutOuts      1.226192e-03  1.344385e-03  1.473830e-03  1.615569e-03
## Assists      1.999873e-04  2.192317e-04  2.403011e-04  2.633633e-04
## Errors      -9.707209e-04 -1.068256e-03 -1.175890e-03 -1.294729e-03
## NewLeagueN  -4.225737e-03 -4.395524e-03 -4.533726e-03 -4.627857e-03
##                                                                    
## (Intercept)  5.207716e+02  5.193354e+02  5.177674e+02  5.160563e+02
## AtBat        4.372716e-03  4.787004e-03  5.239292e-03  5.732818e-03
## Hits         1.590790e-02  1.742001e-02  1.907183e-02  2.087547e-02
## HmRun        6.372805e-02  6.974621e-02  7.631240e-02  8.347254e-02
## Runs         2.686815e-02  2.941856e-02  3.220389e-02  3.524437e-02
## RBI          2.833550e-02  3.102036e-02  3.395155e-02  3.715009e-02
## Walks        3.343318e-02  3.661001e-02  4.008014e-02  4.386895e-02
## Years        1.358036e-01  1.486101e-01  1.625792e-01  1.778076e-01
## CAtBat       3.748319e-04  4.102827e-04  4.489731e-04  4.911767e-04
## CHits        1.380952e-03  1.511717e-03  1.654462e-03  1.810209e-03
## CHmRun       1.041050e-02  1.139588e-02  1.247147e-02  1.364492e-02
## CRuns        2.770526e-03  3.032875e-03  3.319264e-03  3.631737e-03
## CRBI         2.859348e-03  3.130119e-03  3.425705e-03  3.748215e-03
## CWalks       3.019257e-03  3.304540e-03  3.615839e-03  3.955341e-03
## LeagueN     -4.089313e-02 -4.416363e-02 -4.761196e-02 -5.122831e-02
## DivisionW   -6.376806e-01 -6.992187e-01 -7.666298e-01 -8.404614e-01
## PutOuts      1.770736e-03  1.940563e-03  2.126387e-03  2.329658e-03
## Assists      2.886002e-04  3.162091e-04  3.464037e-04  3.794152e-04
## Errors      -1.426011e-03 -1.571121e-03 -1.731619e-03 -1.909256e-03
## NewLeagueN  -4.662425e-03 -4.618317e-03 -4.472067e-03 -4.194993e-03
##                                                                    
## (Intercept)  5.141900e+02  5.121557e+02  5.099397e+02  5.075264e+02
## AtBat        6.271048e-03  6.857679e-03  7.496648e-03  8.192805e-03
## Hits         2.284394e-02  2.499119e-02  2.733212e-02  2.988423e-02
## HmRun        9.127555e-02  9.977347e-02  1.090214e-01  1.190848e-01
## Runs         3.856170e-02  4.217909e-02  4.612129e-02  5.041627e-02
## RBI          4.063847e-02  4.444070e-02  4.858233e-02  5.309210e-02
## Walks        4.800372e-02  5.251365e-02  5.742993e-02  6.278724e-02
## Years        1.943982e-01  2.124603e-01  2.321095e-01  2.534840e-01
## CAtBat       5.371862e-04  5.873132e-04  6.418886e-04  7.012864e-04
## CHits        1.980047e-03  2.165140e-03  2.366725e-03  2.586160e-03
## CHmRun       1.492443e-02  1.631872e-02  1.783708e-02  1.948950e-02
## CRuns        3.972483e-03  4.343837e-03  4.748283e-03  5.188464e-03
## CRBI         4.099909e-03  4.483199e-03  4.900651e-03  5.354977e-03
## CWalks       4.325379e-03  4.728439e-03  5.167155e-03  5.644308e-03
## LeagueN     -5.499691e-02 -5.889454e-02 -6.288881e-02 -6.693503e-02
## DivisionW   -9.213097e-01 -1.009823e+00 -1.106707e+00 -1.212726e+00
## PutOuts      2.551947e-03  2.794952e-03  3.060508e-03  3.350592e-03
## Assists      4.154929e-04  4.549059e-04  4.979437e-04  5.449142e-04
## Errors      -2.106007e-03 -2.324099e-03 -2.566050e-03 -2.834762e-03
## NewLeagueN  -3.752182e-03 -3.101295e-03 -2.191175e-03 -9.595900e-04
##                                                                    
## (Intercept)  5.049021e+02  5.020499e+02  4.989526e+02  4.955925e+02
## AtBat        8.949413e-03  9.771646e-03  1.066438e-02  1.163271e-02
## Hits         3.266166e-02  3.568358e-02  3.896891e-02  4.253756e-02
## HmRun        1.300125e-01  1.418739e-01  1.547358e-01  1.686669e-01
## Runs         5.508922e-02  6.017095e-02  6.569256e-02  7.168666e-02
## RBI          5.799597e-02  6.332539e-02  6.911206e-02  7.538906e-02
## Walks        6.861852e-02  7.496229e-02  8.185807e-02  8.934739e-02
## Years        2.766833e-01  3.018534e-01  3.291327e-01  3.586635e-01
## CAtBat       7.658359e-04  8.359434e-04  9.120145e-04  9.944705e-04
## CHits        2.824757e-03  3.084012e-03  3.365454e-03  3.670681e-03
## CHmRun       2.128613e-02  2.323800e-02  2.535657e-02  2.765375e-02
## CRuns        5.667151e-03  6.187283e-03  6.751930e-03  7.364295e-03
## CRBI         5.849067e-03  6.385943e-03  6.968777e-03  7.600879e-03
## CWalks       6.162839e-03  6.725813e-03  7.336432e-03  7.998010e-03
## LeagueN     -7.097770e-02 -7.494234e-02 -7.873553e-02 -8.224030e-02
## DivisionW   -1.328711e+00 -1.455563e+00 -1.594257e+00 -1.745848e+00
## PutOuts      3.667340e-03  4.013041e-03  4.390155e-03  4.801315e-03
## Assists      5.961548e-04  6.520195e-04  7.128874e-04  7.791613e-04
## Errors      -3.133391e-03 -3.465650e-03 -3.835727e-03 -4.248398e-03
## NewLeagueN   6.663878e-04  2.775656e-03  5.473674e-03  8.885759e-03
##                                                                    
## (Intercept)  4.919511e+02  4.880093e+02 483.747661592 479.146314293
## AtBat        1.268189e-02  1.381736e-02   0.015044666   0.016369408
## Hits         4.641037e-02  5.060905e-02   0.055156096   0.060074668
## HmRun        1.837376e-01  2.000197e-01   0.217585175   0.236505646
## Runs         7.818726e-02  8.522959e-02   0.092849976   0.101085540
## RBI          8.219067e-02  8.955224e-02   0.097509906   0.106100310
## Walks        9.747368e-02  1.062822e-01   0.115819593   0.126134099
## Years        3.905913e-01  4.250635e-01   0.462227267   0.502228207
## CAtBat       1.083746e-03  1.180288e-03   0.001284549   0.001396984
## CHits        4.001345e-03  4.359152e-03   0.004745841   0.005163178
## CHmRun       3.014187e-02  3.283362e-02   0.035741917   0.038879848
## CRuns        8.027696e-03  8.745552e-03   0.009521354   0.010358643
## CRBI         8.285675e-03  9.026700e-03   0.009827563   0.010691924
## CWalks       8.713957e-03  9.487753e-03   0.010322913   0.011222956
## LeagueN     -8.531179e-02 -8.777229e-02  -0.089405568  -0.089950537
## DivisionW   -1.911474e+00 -2.092364e+00  -2.289842195  -2.505332119
## PutOuts      5.249336e-03  5.737218e-03   0.006268152   0.006845522
## Assists      8.512677e-04  9.296566e-04   0.001014800   0.001107192
## Errors      -4.709121e-03 -5.224140e-03  -0.005800612  -0.006446752
## NewLeagueN   1.316032e-02  1.847250e-02   0.025028251   0.033068851
##                                                                    
## (Intercept) 474.185313045 468.844820657 463.105377067 456.948207629
## AtBat         0.017797210   0.019333626   0.020984065   0.022753690
## Hits          0.065388435   0.071121398   0.077297668   0.083941203
## HmRun         0.256851123   0.278688786   0.302081508   0.327086165
## Runs          0.109973935   0.119552961   0.129860139   0.140932201
## RBI           0.115360215   0.125326067   0.136033474   0.147516599
## Walks         0.137274755   0.149291235   0.162233326   0.176150370
## Years         0.545207628   0.591299931   0.640629455   0.693306925
## CAtBat        0.001518047   0.001648183   0.001787822   0.001937367
## CHits         0.005612933   0.006096860   0.006616675   0.007174028
## CHmRun        0.042260488   0.045896759   0.049801233   0.053985923
## CRuns         0.011260970   0.012231856   0.013274742   0.014392938
## CRBI          0.011623456   0.012625803   0.013702528   0.014857059
## CWalks        0.012191351   0.013231466   0.014346505   0.015539437
## LeagueN      -0.089094216  -0.086463942  -0.081618904  -0.074041051
## DivisionW    -2.740362651  -2.996572699  -3.275715907  -3.579665051
## PutOuts       0.007472906   0.008154075   0.008892993   0.009693807
## Assists       0.001207344   0.001315787   0.001433062   0.001559722
## Errors       -0.007172000  -0.007987217  -0.008904911  -0.009939494
## NewLeagueN    0.042875822   0.054776282   0.069148642   0.086428568
##                                                                    
## (Intercept) 450.355572640 443.311156774 435.800495283 427.811431715
## AtBat         0.024647307   0.026669246   0.028823214   0.031112155
## Hits          0.091075510   0.098723311   0.106906168   0.115644080
## HmRun         0.353751746   0.382117244   0.412209365   0.444040072
## Runs          0.152804511   0.165510412   0.179080505   0.193541867
## RBI           0.159807478   0.172935255   0.186925343   0.201798518
## Walks         0.191090618   0.207100510   0.224223877   0.242501069
## Years         0.749425497   0.809056419   0.872244375   0.939002552
## CAtBat        0.002097190   0.002267620   0.002448929   0.002641325
## CHits         0.007770471   0.008407423   0.009086134   0.009807647
## CHmRun        0.058462034   0.063239703   0.068327710   0.073733174
## CRuns         0.015589554   0.016867437   0.018229095   0.019676620
## CRBI          0.016092623   0.017412178   0.018818334   0.020313277
## CWalks        0.016812912   0.018169177   0.019609978   0.021136460
## LeagueN      -0.063125467  -0.048170386  -0.028367058  -0.002789760
## DivisionW    -3.910416019  -4.270091300  -4.660942851  -5.085354236
## PutOuts       0.010560844   0.011498598   0.012511718   0.013604991
## Assists       0.001696321   0.001843413   0.002001540   0.002171225
## Errors       -0.011107583  -0.012428341  -0.013923860  -0.015619598
## NewLeagueN    0.107115096   0.131776734   0.161057318   0.195681347
##                                                                    
## (Intercept) 419.334599510 410.363917329 400.897085328 390.936067133
## AtBat         0.033538086   0.036101933   0.038803355   0.041640582
## Hits          0.124955049   0.134854634   0.145355502   0.156466974
## HmRun         0.477603991   0.512875750   0.549807288   0.588325228
## Runs          0.208917221   0.225224063   0.242473788   0.260670813
## RBI           0.217569965   0.234248292   0.251834532   0.270321167
## Walks         0.261968041   0.282655394   0.304587407   0.327781089
## Years         1.009307551   1.083094248   1.160250757   1.240613665
## CAtBat        0.002844938   0.003059805   0.003285864   0.003522938
## CHits         0.010572757   0.011381972   0.012235468   0.013133062
## CHmRun        0.079461241   0.085514771   0.091894035   0.098596432
## CRuns         0.021211604   0.022835064   0.024547359   0.026348120
## CRBI          0.021898684   0.023575640   0.025344562   0.027205123
## CWalks        0.022749060   0.024447405   0.026230202   0.028095145
## LeagueN       0.029613681   0.070030403   0.119789528   0.180367095
## DivisionW    -5.545841909  -6.045055496  -6.585776918  -7.170918186
## PutOuts       0.014783328   0.016051734   0.017415295   0.018879147
## Assists       0.002352967   0.002547223   0.002754403   0.002974856
## Errors       -0.017544869  -0.019733383  -0.022223838  -0.025060567
## NewLeagueN    0.236458460   0.284286613   0.340153513   0.405135721
##                                                                    
## (Intercept) 380.492001784 369.568362783 358.186065513 346.367852244
## AtBat         0.044601862   0.047696486   0.050910899   0.054236024
## Hits          0.168180638   0.180522659   0.193478909   0.207041822
## HmRun         0.628287833   0.669638545   0.712181235   0.755720834
## Runs          0.279806688   0.299879722   0.320864302   0.342729951
## RBI           0.289690984   0.309918827   0.330965687   0.352782287
## Walks         0.352247366   0.377984110   0.404982592   0.433223258
## Years         1.323965458   1.410041670   1.498497785   1.588934652
## CAtBat        0.003770853   0.004028993   0.004296876   0.004573803
## CHits         0.014074659   0.015058492   0.016083473   0.017147736
## CHmRun        0.105619085   0.112948331   0.120573793   0.128479555
## CRuns         0.028236573   0.030210051   0.032265967   0.034400551
## CRBI          0.029156255   0.031195810   0.033320966   0.035527920
## CWalks        0.030038719   0.032056449   0.034142435   0.036289544
## LeagueN       0.253341924   0.340565448   0.443918334   0.565448488
## DivisionW    -7.803531736  -8.486752347  -9.223862979 -10.018238760
## PutOuts       0.020448554   0.022128498   0.023924185   0.025840685
## Assists       0.003209162   0.003457036   0.003718803   0.003994483
## Errors       -0.028289576  -0.031976068  -0.036182095  -0.040981539
## NewLeagueN    0.480374030   0.567144196   0.666736238   0.780506780
##                                                                    
## (Intercept) 334.142203618 321.543327245 308.611009893 295.390327867
## AtBat         0.057660699   0.061171635   0.064753402   0.068388463
## Hits          0.221199117   0.235933811   0.251224367   0.267044985
## HmRun         0.800028666   0.844842352   0.889866431   0.934773736
## Runs          0.365436270   0.388932818   0.413159235   0.438045590
## RBI           0.375307668   0.398469148   0.422182538   0.446352642
## Walks         0.462676142   0.493300787   0.525046401   0.557852273
## Years         1.680890574   1.773842516   1.867208708   1.960352606
## CAtBat        0.004858935   0.005151298   0.005449792   0.005753196
## CHits         0.018248980   0.019384479   0.020551121   0.021745444
## CHmRun        0.136646242   0.145051152   0.153668504   0.162469784
## CRuns         0.036609149   0.038886258   0.041225592   0.043620173
## CRBI          0.037811979   0.040167593   0.042588428   0.045067462
## CWalks        0.038489350   0.040732151   0.043007010   0.045301835
## LeagueN       0.707320749   0.871795427   1.061200615   1.277898182
## DivisionW   -10.873344870 -11.792720308 -12.779957814 -13.838679352
## PutOuts       0.027882981   0.030055940   0.032364288   0.034812580
## Assists       0.004283996   0.004587163   0.004903716   0.005233310
## Errors       -0.046457523  -0.052703088  -0.059821784  -0.067928129
## NewLeagueN    0.909841612   1.056128713   1.220725354   1.404919249
##                                                                    
## (Intercept) 281.931216326 268.287904623 254.518230732 240.682852868
## AtBat         0.072057246   0.075738253   0.079408204   0.083042199
## Hits          0.283366032   0.300154605   0.317375220   0.334990594
## HmRun         0.979207509   1.022784254   1.065097242   1.105720592
## Runs          0.463512982   0.489474364   0.515835606   0.542496737
## RBI           0.470874048   0.495632198   0.520504722   0.545363021
## Walks         0.591648458   0.626356704   0.661891620   0.698162047
## Years         2.052588075   2.143185625   2.231379423   2.316374816
## CAtBat        0.006060191   0.006369369   0.006679258   0.006988341
## CHits         0.022963700   0.024201921   0.025455999   0.026721778
## CHmRun        0.171424207   0.180499284   0.189661477   0.198876945
## CRuns         0.046062448   0.048544437   0.051057906   0.053594554
## CRBI          0.047597117   0.050169414   0.052776152   0.055409116
## CWalks        0.047603487   0.049897906   0.052170266   0.054405147
## LeagueN       1.524243647   1.802540410   2.114989214   2.463634043
## DivisionW   -14.972506497 -16.185025086 -17.479743461 -18.860043740
## PutOuts       0.037405174   0.040146198   0.043039515   0.046088692
## Assists       0.005575545   0.005930000   0.006296277   0.006674057
## Errors       -0.077147908  -0.087618226  -0.099487299  -0.112913894
## NewLeagueN    1.609883955   1.836629069   2.085946053   2.358350945
##                                                                    
## (Intercept) 226.844379891 213.066444060 199.418113624 185.946732481
## AtBat         0.086613902   0.090095728   0.093426871   0.096634022
## Hits          0.352962515   0.371252755   0.389767263   0.408580477
## HmRun         1.144213851   1.180126954   1.212875007   1.242303538
## Runs          0.569353372   0.596298285   0.623229048   0.650047294
## RBI           0.570074066   0.594502389   0.618547529   0.642033634
## Walks         0.735072618   0.772525465   0.810467707   0.848737420
## Years         2.397356090   2.473494235   2.544170910   2.608433223
## CAtBat        0.007295083   0.007597952   0.007897059   0.008188531
## CHits         0.027995153   0.029272172   0.030554662   0.031829975
## CHmRun        0.208112349   0.217335715   0.226545984   0.235663247
## CRuns         0.056146219   0.058705097   0.061265846   0.063816873
## CRBI          0.058060281   0.060722036   0.063384832   0.066045116
## CWalks        0.056586702   0.058698830   0.060720300   0.062642350
## LeagueN       2.850306094   3.276567808   3.743295031   4.252099472
## DivisionW   -20.329125634 -21.889942546 -23.545192292 -25.296959245
## PutOuts       0.049296951   0.052667119   0.056202373   0.059902888
## Assists       0.007063169   0.007463678   0.007879196   0.008305300
## Errors       -0.128066380  -0.145121335  -0.164203267  -0.185603401
## NewLeagueN    2.654025549   2.972759111   3.313773161   3.676189320
##                                                                    
## (Intercept) 172.720339542 159.796625704 147.229940279 135.070668968
## AtBat         0.099662970   0.102483884   0.105066772   0.107381506
## Hits          0.427613302   0.446840518   0.466242140   0.485804000
## HmRun         1.267838795   1.289060569   1.305566982   1.316978600
## Runs          0.676642658   0.702915317   0.728770397   0.754119185
## RBI           0.664847505   0.686866068   0.707973643   0.728063747
## Walks         0.887265878   0.925962427   0.964741607   1.003524587
## Years         2.665510662   2.714623467   2.755005485   2.785904099
## CAtBat        0.008472029   0.008746278   0.009010094   0.009262397
## CHits         0.033099124   0.034359576   0.035609341   0.036847056
## CHmRun        0.244686353   0.253594870   0.262373079   0.271010647
## CRuns         0.066354566   0.068874010   0.071371505   0.073844717
## CRBI          0.068696462   0.071334608   0.073956619   0.076561000
## CWalks        0.064445823   0.066114944   0.067634293   0.068988790
## LeagueN       4.803143578   5.396487429   6.031739769   6.708052714
## DivisionW   -27.147059491 -29.096663728 -31.146274915 -33.295635026
## PutOuts       0.063770572   0.067805862   0.072008376   0.076376801
## Assists       0.008745578   0.009201998   0.009677269   0.010174962
## Errors       -0.209468234  -0.235989097  -0.265353793  -0.297742859
## NewLeagueN    4.058198317   4.457548059   4.871395868   5.296302663
##                                                                   
## (Intercept) 123.364687896 112.152893255 101.470804106  91.34824416
## AtBat         0.109397777   0.111084965   0.112411969   0.11334700
## Hits          0.505518240   0.525383722   0.545406468   0.56560020
## HmRun         1.322942515   1.323136611   1.317274357   1.30511042
## Runs          0.778880335   0.802981121   0.826358772   0.84896187
## RBI           0.747040927   0.764822642   0.781341162   0.79654539
## Walks         1.042240653   1.080828728   1.119238917   1.15743392
## Years         2.806580422   2.816310761   2.814390631   2.80014228
## CAtBat        0.009502226   0.009728753   0.009941306   0.01013939
## CHits         0.038072060   0.039284480   0.040485305   0.04167644
## CHmRun        0.279503233   0.287852974   0.296068770   0.30416623
## CRuns         0.076292787   0.078716386   0.081117693   0.08350026
## CRBI          0.079147743   0.081718296   0.084275441   0.08682308
## CWalks        0.070163610   0.071144012   0.071915095   0.07246150
## LeagueN       7.424132485   8.178267752   8.968376868   9.79207432
## DivisionW   -35.543634366 -37.888226969 -40.326355895 -42.85389265
## PutOuts       0.080908779   0.085600796   0.090448054   0.09544436
## Assists       0.010699624   0.011256892   0.011853584   0.01249776
## Errors       -0.333325577  -0.372255918  -0.414668745  -0.46067665
## NewLeagueN    5.728243831   6.162638103   6.594395070   7.01798093
##                                                                
## (Intercept)  81.80912119  72.87133790  64.54687932  56.84211884
## AtBat         0.11385741   0.11390958   0.11346895   0.11250016
## Hits          0.58598709   0.60659877   0.62747760   0.64867794
## HmRun         1.28644724   1.26114229   1.22911527   1.19035371
## Runs          0.87075166   0.89170313   0.91180536   0.93106082
## RBI           0.81040237   0.82289826   0.83403818   0.84384486
## Walks         1.19539015   1.23309825   1.27056270   1.30780054
## Years         2.77292594   2.73215348   2.67730126   2.60791691
## CAtBat        0.01032270   0.01049116   0.01064486   0.01078408
## CHits         0.04286072   0.04404185   0.04522429   0.04641299
## CHmRun        0.31216718   0.32009858   0.32799094   0.33587641
## CRuns         0.08586877   0.08822869   0.09058589   0.09294633
## CRBI          0.08936592   0.09190920   0.09445842   0.09701925
## CWalks        0.07276715   0.07281501   0.07258712   0.07206472
## LeagueN      10.64675536  11.52969556  12.43815958  13.36951042
## DivisionW   -45.46559519 -48.15508912 -50.91487654 -53.73637654
## PutOuts       0.10058200   0.10585167   0.11124236   0.11674136
## Assists       0.01319872   0.01396697   0.01481403   0.01575224
## Errors       -0.51036787  -0.56380551  -0.62102829  -0.68205215
## NewLeagueN    7.42750076   7.81679432   8.17954077   8.50936701
##                                                                
## (Intercept)  49.66071253  43.19811550  37.35435452  32.11979366
## AtBat         0.11100896   0.10892860   0.10621244   0.10282090
## Hits          0.67065961   0.69282433   0.71552124   0.73884964
## HmRun         1.14705569   1.09527613   1.03694724   0.97229778
## Runs          0.94979681   0.96731179   0.98399499   0.99988070
## RBI           0.85258323   0.85970919   0.86561767   0.87037858
## Walks         1.34484630   1.38155943   1.41814249   1.45465328
## Years         2.53231022   2.43283529   2.31716859   2.18495419
## CAtBat        0.01091417   0.01102056   0.01111261   0.01119052
## CHits         0.04758007   0.04877693   0.04999657   0.05124466
## CHmRun        0.34338316   0.35123985   0.35920440   0.36730879
## CRuns         0.09521714   0.09760090   0.10001535   0.10246862
## CRBI          0.09956753   0.10219578   0.10486285   0.10757714
## CWalks        0.07127246   0.07014231   0.06866213   0.06681191
## LeagueN      14.32669056  15.29747611  16.28421405  17.28537184
## DivisionW   -56.60831617 -59.52349944 -62.46922340 -65.43365772
## PutOuts       0.12232144   0.12799058   0.13372132   0.13949521
## Assists       0.01678133   0.01793012   0.01920903   0.02063139
## Errors       -0.74749993  -0.81627639  -0.88872621  -0.96476647
## NewLeagueN    8.80224343   9.04758049   9.24139657   9.37812039
##                                                                
## (Intercept)  27.48122385  23.35433066  19.88127229  16.95362750
## AtBat         0.09871046   0.09395554   0.08832442   0.08182542
## Hits          0.76291617   0.78834250   0.81428191   0.84131229
## HmRun         0.90161601   0.82742595   0.74548748   0.65860519
## Runs          1.01501167   1.02948109   1.04302309   1.05593994
## RBI           0.87407730   0.87674606   0.87837874   0.87925295
## Walks         1.49116764   1.52742252   1.56402050   1.60093596
## Years         2.03595690   1.87852192   1.69351221   1.49123197
## CAtBat        0.01125484   0.01129989   0.01132964   0.01134725
## CHits         0.05252781   0.05377450   0.05512854   0.05653905
## CHmRun        0.37558468   0.38342242   0.39208576   0.40100461
## CRuns         0.10496767   0.10742946   0.11007712   0.11279509
## CRBI          0.11034553   0.11322294   0.11617340   0.11920092
## CWalks        0.06457003   0.06205832   0.05900961   0.05550229
## LeagueN      18.29984048  19.33207105  20.37082664  21.42171930
## DivisionW   -68.40455396 -71.36780965 -74.31450740 -77.23051972
## PutOuts       0.14529280   0.15108124   0.15686653   0.16261472
## Assists       0.02221041   0.02392623   0.02584713   0.02796086
## Errors       -1.04428666  -1.12800772  -1.21408593  -1.30312467
## NewLeagueN    9.45260305   9.46236555   9.39876389   9.26063415
##                                                                
## (Intercept)  14.55643468  12.63381060  11.26303439  10.35569021
## AtBat         0.07441067   0.06620425   0.05681886   0.04633830
## Hits          0.86958000   0.89973720   0.93088191   0.96376522
## HmRun         0.56719135   0.47343820   0.37390139   0.27163150
## Runs          1.06824527   1.07970774   1.09069163   1.10118079
## RBI           0.87942459   0.87868071   0.87757438   0.87606196
## Walks         1.63826451   1.67551222   1.71399148   1.75331031
## Years         1.27103489   1.03942211   0.78041117   0.50454902
## CAtBat        0.01135160   0.01132298   0.01129281   0.01124891
## CHits         0.05801169   0.05944063   0.06105328   0.06274116
## CHmRun        0.41020878   0.41896545   0.42884413   0.43896753
## CRuns         0.11560090   0.11847102   0.12153596   0.12471202
## CRBI          0.12231947   0.12568482   0.12905186   0.13253839
## CWalks        0.05151658   0.04725138   0.04225513   0.03672947
## LeagueN      22.48506168  23.56451409  24.65329547  25.75710221
## DivisionW   -80.10405700 -82.92243236 -85.67844190 -88.36043501
## PutOuts       0.16830574   0.17391052   0.17943174   0.18483877
## Assists       0.03027682   0.03276148   0.03550485   0.03847012
## Errors       -1.39490474  -1.48995450  -1.58633587  -1.68470903
## NewLeagueN    9.04508554   8.75201941   8.37544584   7.91725605
##                                                                  
## (Intercept)   9.88559249   9.88291317  10.275516171  11.089425330
## AtBat         0.03490091   0.02203798   0.008088528  -0.007441506
## Hits          0.99895354   1.03565510   1.075046172   1.116358483
## HmRun         0.16809480   0.06098960  -0.046053680  -0.155150648
## Runs          1.11069309   1.12003913   1.128360907   1.136603508
## RBI           0.87378443   0.87157484   0.868722584   0.866089829
## Walks         1.79291526   1.83449226   1.876642472   1.921230858
## Years         0.21529405  -0.09893987  -0.425145088  -0.774801522
## CAtBat        0.01116099   0.01108217   0.010952415   0.010834527
## CHits         0.06439189   0.06627447   0.068113575   0.070207840
## CHmRun        0.44865817   0.45953755   0.469845084   0.481333855
## CRuns         0.12805488   0.13156927   0.135302716   0.139206329
## CRBI          0.13636588   0.14012418   0.144283368   0.148340356
## CWalks        0.03088644   0.02419398   0.017175670   0.009253631
## LeagueN      26.87720380  28.01101288  29.161665128  30.327721487
## DivisionW   -90.95870286 -93.46888824 -95.881062917 -98.193701089
## PutOuts       0.19011040   0.19524711   0.200221069   0.205034904
## Assists       0.04162273   0.04505173   0.048671621   0.052568534
## Errors       -1.78525046  -1.88631880  -1.988817461  -2.091238621
## NewLeagueN    7.37938543   6.75760342   6.058926704   5.279536552
##                                                                    
## (Intercept)  1.226775e+01  1.381737e+01   15.70484847   17.90970899
## AtBat       -2.419845e-02 -4.269835e-02   -0.06256388   -0.08413294
## Hits         1.160708e+00  1.207444e+00    1.25757731    1.31086031
## HmRun       -2.631285e-01 -3.713857e-01   -0.47748576   -0.58154451
## Runs         1.143697e+00  1.150774e+00    1.15651180    1.16164000
## RBI          8.628801e-01  8.599947e-01    0.85653655    0.85311884
## Walks        1.966769e+00  2.015222e+00    2.06502273    2.11744797
## Years       -1.136139e+00 -1.517933e+00   -1.91097346   -2.31727741
## CAtBat       1.065732e-02  1.049592e-02    0.01026407    0.01001251
## CHits        7.226562e-02  7.459755e-02    0.07690091    0.07936051
## CHmRun       4.922058e-01  5.041878e-01    0.51551046    0.52708730
## CRuns        1.434083e-01  1.477624e-01    0.15251315    0.15751258
## CRBI         1.528435e-01  1.572011e-01    0.16204498    0.16699038
## CWalks       9.709713e-04 -8.252262e-03   -0.01787305   -0.02821953
## LeagueN      3.150933e+01  3.270677e+01   33.91642380   35.13804585
## DivisionW   -1.003989e+02 -1.024976e+02 -104.48392249 -106.35913149
## PutOuts      2.096675e-01  2.141219e-01    0.21838467    0.22245636
## Assists      5.665892e-02  6.101918e-02    0.06557221    0.07035289
## Errors      -2.194190e+00 -2.296448e+00   -2.39828780   -2.49896136
## NewLeagueN   4.428640e+00  3.503041e+00    2.51422817    1.46288664
##                                                                    
## (Intercept)  2.042569e+01  2.322775e+01  2.628708e+01  2.959266e+01
## AtBat       -1.076199e-01 -1.326867e-01 -1.596436e-01 -1.886732e-01
## Hits         1.367370e+00  1.427859e+00  1.492213e+00  1.560599e+00
## HmRun       -6.831310e-01 -7.806457e-01 -8.736810e-01 -9.615323e-01
## Runs         1.166491e+00  1.169713e+00  1.172052e+00  1.173737e+00
## RBI          8.498208e-01  8.459378e-01  8.419675e-01  8.378370e-01
## Walks        2.173219e+00  2.231001e+00  2.291941e+00  2.356685e+00
## Years       -2.739338e+00 -3.169167e+00 -3.606777e+00 -4.053798e+00
## CAtBat       9.765985e-03  9.437049e-03  9.081117e-03  8.726137e-03
## CHits        8.208094e-02  8.479218e-02  8.766490e-02  9.080053e-02
## CHmRun       5.394969e-01  5.511666e-01  5.629019e-01  5.752954e-01
## CRuns        1.627131e-01  1.684242e-01  1.744269e-01  1.806427e-01
## CRBI         1.718068e-01  1.771098e-01  1.824907e-01  1.876852e-01
## CWalks      -3.948045e-02 -5.119556e-02 -6.363472e-02 -7.696108e-02
## LeagueN      3.637129e+01  3.760851e+01  3.884910e+01  4.009234e+01
## DivisionW   -1.081248e+02 -1.097775e+02 -1.113213e+02 -1.127601e+02
## PutOuts      2.263377e-01  2.300240e-01  2.335185e-01  2.368253e-01
## Assists      7.537864e-02  8.058875e-02  8.600338e-02  9.163105e-02
## Errors      -2.597976e+00 -2.695216e+00 -2.790180e+00 -2.882509e+00
## NewLeagueN   3.517716e-01 -8.053887e-01 -2.006618e+00 -3.248330e+00
##                                                                    
## (Intercept)  3.313791e+01  3.687610e+01  4.080513e+01  4.489952e+01
## AtBat       -2.194352e-01 -2.521934e-01 -2.869253e-01 -3.236275e-01
## Hits         1.633540e+00  1.711071e+00  1.793412e+00  1.880772e+00
## HmRun       -1.043506e+00 -1.118487e+00 -1.186104e+00 -1.245525e+00
## Runs         1.173320e+00  1.171549e+00  1.167987e+00  1.162431e+00
## RBI          8.329465e-01  8.276589e-01  8.216738e-01  8.148652e-01
## Walks        2.423953e+00  2.494675e+00  2.568828e+00  2.646408e+00
## Years       -4.504274e+00 -4.955202e+00 -5.406734e+00 -5.855617e+00
## CAtBat       8.270074e-03  7.776529e-03  7.226223e-03  6.615397e-03
## CHits        9.394021e-02  9.722801e-02  1.006546e-01  1.042079e-01
## CHmRun       5.868901e-01  5.983159e-01  6.096034e-01  6.206532e-01
## CRuns        1.875131e-01  1.947169e-01  2.023873e-01  2.105312e-01
## CRBI         1.933475e-01  1.990595e-01  2.048436e-01  2.106881e-01
## CWalks      -9.077116e-02 -1.052462e-01 -1.203776e-01 -1.361228e-01
## LeagueN      4.132647e+01  4.255111e+01  4.376094e+01  4.495100e+01
## DivisionW   -1.140917e+02 -1.153218e+02 -1.164536e+02 -1.174905e+02
## PutOuts      2.399476e-01  2.428889e-01  2.456566e-01  2.482565e-01
## Assists      9.742921e-02  1.033987e-01  1.095343e-01  1.158216e-01
## Errors      -2.971818e+00 -3.057862e+00 -3.140289e+00 -3.218841e+00
## NewLeagueN  -4.514032e+00 -5.801048e+00 -7.100963e+00 -8.405519e+00
##                                                                    
## (Intercept)  4.913958e+01  5.350440e+01  5.797287e+01  6.252374e+01
## AtBat       -3.622792e-01 -4.028403e-01 -4.452517e-01 -4.894343e-01
## Hits         1.973313e+00  2.071175e+00  2.174458e+00  2.283221e+00
## HmRun       -1.296148e+00 -1.337393e+00 -1.368755e+00 -1.389807e+00
## Runs         1.154631e+00  1.144325e+00  1.131239e+00  1.115101e+00
## RBI          8.070830e-01  7.981701e-01  7.879725e-01  7.763423e-01
## Walks        2.727395e+00  2.811719e+00  2.899267e+00  2.989885e+00
## Years       -6.299563e+00 -6.736089e+00 -7.162738e+00 -7.577105e+00
## CAtBat       5.938497e-03  5.189262e-03  4.361308e-03  3.447937e-03
## CHits        1.078833e-01  1.116714e-01  1.155620e-01  1.195433e-01
## CHmRun       6.314485e-01  6.419584e-01  6.521595e-01  6.620336e-01
## CRuns        2.191741e-01  2.283429e-01  2.380637e-01  2.483633e-01
## CRBI         2.165690e-01  2.224670e-01  2.283610e-01  2.342300e-01
## CWalks      -1.524506e-01 -1.693195e-01 -1.866829e-01 -2.044893e-01
## LeagueN      4.611629e+01  4.725194e+01  4.835330e+01  4.941609e+01
## DivisionW   -1.184363e+02 -1.192949e+02 -1.200702e+02 -1.207661e+02
## PutOuts      2.506956e-01  2.529811e-01  2.551205e-01  2.571211e-01
## Assists      1.222480e-01  1.287998e-01  1.354622e-01  1.422202e-01
## Errors      -3.293277e+00 -3.363384e+00 -3.428986e+00 -3.489938e+00
## NewLeagueN  -9.706721e+00 -1.099665e+01 -1.226767e+01 -1.351256e+01
##                                                                    
## (Intercept)  6.713573e+01   71.78758387  7.645824e+01  8.112693e+01
## AtBat       -5.352890e-01   -0.58269657 -6.315180e-01 -6.815959e-01
## Hits         2.397469e+00    2.51715271  2.642160e+00  2.772312e+00
## HmRun       -1.400213e+00   -1.39973429 -1.388233e+00 -1.365680e+00
## Runs         1.095639e+00    1.07259572  1.045729e+00  1.014826e+00
## RBI          7.631426e-01    0.74825248  7.315713e-01  7.130225e-01
## Walks        3.083376e+00    3.17950552  3.278001e+00  3.378558e+00
## Years       -7.976859e+00   -8.35976896 -8.723734e+00 -9.066800e+00
## CAtBat       2.442244e-03    0.00133718  1.256355e-04 -1.199478e-03
## CHits        1.236025e-01    0.12772556  1.318975e-01  1.361029e-01
## CHmRun       6.715658e-01    0.68074413  6.895578e-01  6.979958e-01
## CRuns        2.592688e-01    0.27080732  2.830055e-01  2.958896e-01
## CRBI         2.400538e-01    0.24581306  2.514905e-01  2.570711e-01
## CWalks      -2.226824e-01   -0.24120197 -2.599851e-01 -2.789666e-01
## LeagueN      5.043646e+01   51.41107137  5.233720e+01  5.321272e+01
## DivisionW   -1.213866e+02 -121.93563374 -1.224170e+02 -1.228345e+02
## PutOuts      2.589908e-01    0.26073685  2.623667e-01  2.638876e-01
## Assists      1.490576e-01    0.15595798  1.629044e-01  1.698796e-01
## Errors      -3.546133e+00   -3.59749877 -3.644002e+00 -3.685645e+00
## NewLeagueN  -1.472457e+01  -15.89754176 -1.702598e+01 -1.810510e+01
#print 50th ridge coefficient
coef(ridge.reg)[,50]
##   (Intercept)         AtBat          Hits         HmRun          Runs 
## 213.066444060   0.090095728   0.371252755   1.180126954   0.596298285 
##           RBI         Walks         Years        CAtBat         CHits 
##   0.594502389   0.772525465   2.473494235   0.007597952   0.029272172 
##        CHmRun         CRuns          CRBI        CWalks       LeagueN 
##   0.217335715   0.058705097   0.060722036   0.058698830   3.276567808 
##     DivisionW       PutOuts       Assists        Errors    NewLeagueN 
## -21.889942546   0.052667119   0.007463678  -0.145121335   2.972759111
summary(ridge.reg)
##           Length Class     Mode   
## a0         100   -none-    numeric
## beta      1900   dgCMatrix S4     
## df         100   -none-    numeric
## dim          2   -none-    numeric
## lambda     100   -none-    numeric
## dev.ratio  100   -none-    numeric
## nulldev      1   -none-    numeric
## npasses      1   -none-    numeric
## jerr         1   -none-    numeric
## offset       1   -none-    logical
## call         4   -none-    call   
## nobs         1   -none-    numeric

*Use cross-validation method to choose minimum lambda value. cv.glmnet by default selects minimum lambda value which is the best fit model.

#choose minimum lambda value with cross-validation

cv.ridge.reg <- cv.glmnet(x,y,alpha=0)

cv.ridge.reg
## $lambda
##  [1] 255282.09651 232603.53866 211939.68139 193111.54424 175956.04690
##  [6] 160324.59666 146081.80138 133104.29678 121279.67791 110505.52560
## [11] 100688.51928  91743.62874  83593.37763  76167.17236  69400.69070
## [16]  63235.32462  57617.67267  52499.07743  47835.20409  43585.65640
## [21]  39713.62682  36185.57767  32970.95069  30041.90230  27373.06250
## [26]  24941.31507  22725.59739  20706.71795  18867.19020  17191.08102
## [31]  15663.87277  14272.33748  13004.42236  11849.14532  10796.49991
## [36]   9837.36861   8963.44390   8167.15625   7441.60860   6780.51660
## [41]   6178.15419   5629.30400   5129.21215   4673.54708   4258.36204
## [46]   3880.06089   3535.36698   3221.29472   2935.12377   2674.37547
## [51]   2436.79132   2220.31350   2023.06697   1843.34327   1679.58574
## [56]   1530.37597   1394.42159   1270.54502   1157.67330   1054.82879
## [61]    961.12071    875.73740    797.93930    727.05257    662.46322
## [66]    603.61182    549.98861    501.12914    456.61020    416.04621
## [71]    379.08581    345.40887    314.72370    286.76452    261.28915
## [76]    238.07694    216.92684    197.65566    180.09647    164.09720
## [81]    149.51926    136.23638    124.13351    113.10583    103.05782
## [86]     93.90245     85.56042     77.95946     71.03376     64.72332
## [91]     58.97348     53.73443     48.96082     44.61127     40.64813
## [96]     37.03706     33.74679     30.74882     28.01718
## 
## $cvm
##  [1] 204417.8 202915.5 202334.9 202022.1 201758.3 201470.1 201155.7
##  [8] 200812.6 200438.6 200031.2 199587.5 199104.8 198580.0 198010.1
## [15] 197391.7 196721.2 195995.5 195210.7 194363.2 193449.5 192465.8
## [22] 191408.6 190274.7 189060.8 187764.1 186382.4 184913.6 183356.5
## [29] 181710.7 179976.4 178155.0 176248.7 174261.1 172196.8 170061.8
## [36] 167863.5 165610.4 163311.9 160979.0 158623.4 156257.7 153894.9
## [43] 151548.4 149231.5 146957.1 144737.8 142585.2 140509.6 138520.2
## [50] 136624.6 134828.9 133137.1 131552.6 130076.8 128709.4 127449.0
## [57] 126293.0 125238.0 124279.7 123413.3 122633.5 121935.0 121312.2
## [64] 120758.9 120269.9 119844.6 119474.6 119153.2 118875.9 118640.3
## [71] 118444.4 118281.5 118146.5 118042.3 117957.0 117892.3 117846.3
## [78] 117810.9 117788.2 117773.3 117763.6 117757.2 117754.7 117746.8
## [85] 117742.4 117726.2 117714.4 117684.2 117662.6 117614.2 117577.1
## [92] 117508.4 117455.9 117368.2 117301.1 117194.1 117113.4 116992.2
## [99] 116898.9
## 
## $cvsd
##  [1] 24426.33 24542.70 24330.92 24276.44 24265.46 24253.44 24240.31
##  [8] 24225.95 24210.27 24193.15 24174.46 24154.07 24131.85 24107.64
## [15] 24081.29 24052.64 24021.47 23987.63 23950.94 23911.19 23868.18
## [22] 23821.70 23771.55 23717.54 23659.46 23597.15 23530.43 23459.17
## [29] 23383.24 23302.58 23217.16 23127.00 23032.18 22932.87 22829.30
## [36] 22721.80 22610.76 22496.76 22380.36 22262.28 22143.33 22024.38
## [43] 21906.37 21790.29 21677.14 21567.91 21463.56 21364.97 21272.95
## [50] 21188.15 21110.98 21041.80 20980.94 20928.34 20883.81 20847.01
## [57] 20817.49 20794.65 20777.84 20766.33 20759.38 20756.25 20756.25
## [64] 20758.65 20763.18 20769.97 20777.22 20784.76 20792.44 20800.28
## [71] 20808.89 20816.85 20824.58 20832.12 20839.16 20846.16 20853.17
## [78] 20859.90 20866.30 20872.99 20879.29 20885.62 20892.47 20898.35
## [85] 20905.38 20911.34 20918.08 20924.05 20931.61 20937.64 20945.20
## [92] 20951.52 20959.85 20966.92 20976.79 20984.68 20996.35 21006.71
## [99] 21020.09
## 
## $cvup
##  [1] 228844.2 227458.2 226665.8 226298.6 226023.7 225723.6 225396.0
##  [8] 225038.6 224648.9 224224.3 223761.9 223258.9 222711.9 222117.8
## [15] 221473.0 220773.9 220016.9 219198.3 218314.2 217360.7 216334.0
## [22] 215230.3 214046.2 212778.3 211423.6 209979.5 208444.0 206815.7
## [29] 205094.0 203279.0 201372.1 199375.7 197293.2 195129.6 192891.1
## [36] 190585.3 188221.1 185808.6 183359.3 180885.7 178401.0 175919.3
## [43] 173454.8 171021.8 168634.3 166305.8 164048.7 161874.5 159793.1
## [50] 157812.8 155939.9 154178.9 152533.6 151005.2 149593.2 148296.0
## [57] 147110.5 146032.7 145057.6 144179.6 143392.9 142691.2 142068.4
## [64] 141517.5 141033.0 140614.6 140251.8 139938.0 139668.3 139440.6
## [71] 139253.3 139098.4 138971.1 138874.5 138796.1 138738.4 138699.5
## [78] 138670.8 138654.5 138646.3 138642.9 138642.8 138647.2 138645.1
## [85] 138647.8 138637.5 138632.5 138608.3 138594.2 138551.8 138522.3
## [92] 138459.9 138415.7 138335.1 138277.9 138178.8 138109.8 137998.9
## [99] 137919.0
## 
## $cvlo
##  [1] 179991.50 178372.77 178003.93 177745.68 177492.81 177216.70 176915.37
##  [8] 176586.68 176228.37 175838.01 175413.03 174950.71 174448.19 173902.47
## [15] 173310.38 172668.61 171974.00 171223.04 170412.29 169538.29 168597.61
## [22] 167586.94 166503.12 165343.23 164104.67 162785.21 161383.15 159897.38
## [29] 158327.48 156673.86 154937.83 153121.70 151228.87 149263.89 147232.49
## [36] 145141.67 142999.60 140815.12 138598.61 136361.12 134114.38 131870.56
## [43] 129642.04 127441.19 125280.00 123169.93 121121.60 119144.60 117247.23
## [50] 115436.50 113717.96 112095.26 110571.69 109148.48 107825.61 106602.00
## [57] 105475.56 104443.39 103501.89 102646.96 101874.13 101178.73 100555.94
## [64] 100000.21  99506.69  99074.67  98697.37  98368.45  98083.43  97840.07
## [71]  97635.53  97464.65  97321.92  97210.22  97117.81  97046.10  96993.18
## [78]  96950.97  96921.86  96900.28  96884.30  96871.58  96862.28  96848.42
## [85]  96837.01  96814.87  96796.29  96760.17  96731.03  96676.55  96631.85
## [92]  96556.88  96496.03  96401.26  96324.29  96209.45  96117.07  95985.45
## [99]  95878.80
## 
## $nzero
##  s0  s1  s2  s3  s4  s5  s6  s7  s8  s9 s10 s11 s12 s13 s14 s15 s16 s17 
##  19  19  19  19  19  19  19  19  19  19  19  19  19  19  19  19  19  19 
## s18 s19 s20 s21 s22 s23 s24 s25 s26 s27 s28 s29 s30 s31 s32 s33 s34 s35 
##  19  19  19  19  19  19  19  19  19  19  19  19  19  19  19  19  19  19 
## s36 s37 s38 s39 s40 s41 s42 s43 s44 s45 s46 s47 s48 s49 s50 s51 s52 s53 
##  19  19  19  19  19  19  19  19  19  19  19  19  19  19  19  19  19  19 
## s54 s55 s56 s57 s58 s59 s60 s61 s62 s63 s64 s65 s66 s67 s68 s69 s70 s71 
##  19  19  19  19  19  19  19  19  19  19  19  19  19  19  19  19  19  19 
## s72 s73 s74 s75 s76 s77 s78 s79 s80 s81 s82 s83 s84 s85 s86 s87 s88 s89 
##  19  19  19  19  19  19  19  19  19  19  19  19  19  19  19  19  19  19 
## s90 s91 s92 s93 s94 s95 s96 s97 s98 
##  19  19  19  19  19  19  19  19  19 
## 
## $name
##                  mse 
## "Mean-Squared Error" 
## 
## $glmnet.fit
## 
## Call:  glmnet(x = x, y = y, alpha = 0) 
## 
##        Df      %Dev    Lambda
##   [1,] 19 6.185e-36 255300.00
##   [2,] 19 1.161e-02 232600.00
##   [3,] 19 1.272e-02 211900.00
##   [4,] 19 1.393e-02 193100.00
##   [5,] 19 1.525e-02 176000.00
##   [6,] 19 1.670e-02 160300.00
##   [7,] 19 1.827e-02 146100.00
##   [8,] 19 1.999e-02 133100.00
##   [9,] 19 2.186e-02 121300.00
##  [10,] 19 2.391e-02 110500.00
##  [11,] 19 2.613e-02 100700.00
##  [12,] 19 2.855e-02  91740.00
##  [13,] 19 3.118e-02  83590.00
##  [14,] 19 3.404e-02  76170.00
##  [15,] 19 3.714e-02  69400.00
##  [16,] 19 4.050e-02  63240.00
##  [17,] 19 4.414e-02  57620.00
##  [18,] 19 4.808e-02  52500.00
##  [19,] 19 5.233e-02  47840.00
##  [20,] 19 5.692e-02  43590.00
##  [21,] 19 6.186e-02  39710.00
##  [22,] 19 6.717e-02  36190.00
##  [23,] 19 7.287e-02  32970.00
##  [24,] 19 7.897e-02  30040.00
##  [25,] 19 8.549e-02  27370.00
##  [26,] 19 9.244e-02  24940.00
##  [27,] 19 9.983e-02  22730.00
##  [28,] 19 1.077e-01  20710.00
##  [29,] 19 1.160e-01  18870.00
##  [30,] 19 1.247e-01  17190.00
##  [31,] 19 1.339e-01  15660.00
##  [32,] 19 1.435e-01  14270.00
##  [33,] 19 1.536e-01  13000.00
##  [34,] 19 1.640e-01  11850.00
##  [35,] 19 1.748e-01  10800.00
##  [36,] 19 1.860e-01   9837.00
##  [37,] 19 1.974e-01   8963.00
##  [38,] 19 2.091e-01   8167.00
##  [39,] 19 2.210e-01   7442.00
##  [40,] 19 2.330e-01   6781.00
##  [41,] 19 2.451e-01   6178.00
##  [42,] 19 2.572e-01   5629.00
##  [43,] 19 2.692e-01   5129.00
##  [44,] 19 2.812e-01   4674.00
##  [45,] 19 2.929e-01   4258.00
##  [46,] 19 3.045e-01   3880.00
##  [47,] 19 3.157e-01   3535.00
##  [48,] 19 3.266e-01   3221.00
##  [49,] 19 3.371e-01   2935.00
##  [50,] 19 3.471e-01   2674.00
##  [51,] 19 3.568e-01   2437.00
##  [52,] 19 3.659e-01   2220.00
##  [53,] 19 3.746e-01   2023.00
##  [54,] 19 3.827e-01   1843.00
##  [55,] 19 3.904e-01   1680.00
##  [56,] 19 3.976e-01   1530.00
##  [57,] 19 4.043e-01   1394.00
##  [58,] 19 4.106e-01   1271.00
##  [59,] 19 4.164e-01   1158.00
##  [60,] 19 4.218e-01   1055.00
##  [61,] 19 4.269e-01    961.10
##  [62,] 19 4.316e-01    875.70
##  [63,] 19 4.359e-01    797.90
##  [64,] 19 4.400e-01    727.10
##  [65,] 19 4.437e-01    662.50
##  [66,] 19 4.473e-01    603.60
##  [67,] 19 4.506e-01    550.00
##  [68,] 19 4.537e-01    501.10
##  [69,] 19 4.566e-01    456.60
##  [70,] 19 4.593e-01    416.00
##  [71,] 19 4.619e-01    379.10
##  [72,] 19 4.643e-01    345.40
##  [73,] 19 4.667e-01    314.70
##  [74,] 19 4.689e-01    286.80
##  [75,] 19 4.710e-01    261.30
##  [76,] 19 4.731e-01    238.10
##  [77,] 19 4.751e-01    216.90
##  [78,] 19 4.771e-01    197.70
##  [79,] 19 4.789e-01    180.10
##  [80,] 19 4.808e-01    164.10
##  [81,] 19 4.826e-01    149.50
##  [82,] 19 4.845e-01    136.20
##  [83,] 19 4.863e-01    124.10
##  [84,] 19 4.880e-01    113.10
##  [85,] 19 4.898e-01    103.10
##  [86,] 19 4.916e-01     93.90
##  [87,] 19 4.934e-01     85.56
##  [88,] 19 4.952e-01     77.96
##  [89,] 19 4.970e-01     71.03
##  [90,] 19 4.988e-01     64.72
##  [91,] 19 5.006e-01     58.97
##  [92,] 19 5.024e-01     53.73
##  [93,] 19 5.042e-01     48.96
##  [94,] 19 5.060e-01     44.61
##  [95,] 19 5.077e-01     40.65
##  [96,] 19 5.095e-01     37.04
##  [97,] 19 5.113e-01     33.75
##  [98,] 19 5.130e-01     30.75
##  [99,] 19 5.148e-01     28.02
## [100,] 19 5.164e-01     25.53
## 
## $lambda.min
## [1] 28.01718
## 
## $lambda.1se
## [1] 2674.375
## 
## attr(,"class")
## [1] "cv.glmnet"

By default it specifies the minimum lambda value, that is 28.01718, 99th observation. This lamda would give minimum error when model is built.

#print minimum lambda coefficients

coef(cv.ridge.reg, s="lambda.min")
## 20 x 1 sparse Matrix of class "dgCMatrix"
##                         1
## (Intercept)  7.645824e+01
## AtBat       -6.315180e-01
## Hits         2.642160e+00
## HmRun       -1.388233e+00
## Runs         1.045729e+00
## RBI          7.315713e-01
## Walks        3.278001e+00
## Years       -8.723734e+00
## CAtBat       1.256355e-04
## CHits        1.318975e-01
## CHmRun       6.895578e-01
## CRuns        2.830055e-01
## CRBI         2.514905e-01
## CWalks      -2.599851e-01
## LeagueN      5.233720e+01
## DivisionW   -1.224170e+02
## PutOuts      2.623667e-01
## Assists      1.629044e-01
## Errors      -3.644002e+00
## NewLeagueN  -1.702598e+01
#Prediction with minimum lambda values / coefficeints

#x is like training dataset

pred.ridge <- predict(cv.ridge.reg, newx = x, s="lambda.min")

head(pred.ridge)
##                           1
## -Alan Ashby        445.3238
## -Alvin Davis       673.7466
## -Andre Dawson     1053.6486
## -Andres Galarraga  518.8045
## -Alfredo Griffin   543.7695
## -Al Newman         215.5220
#model evaluation
library(DMwR)
## Warning: package 'DMwR' was built under R version 3.5.3
## Loading required package: lattice
## Loading required package: grid
round(regr.eval(y, pred.ridge), 3)
##       mae       mse      rmse      mape 
##   217.535 98376.082   313.650     0.700

Lasso Regression

Least Absolute Shrinkage and Selection Operator. Lasso usually results into sparse models that are easier to interpret

#For LASSO regression use library(glmnet)
#lasso regression, alpha=1

library(glmnet)

lasso.reg <- glmnet(x,y, alpha=1)

#print
lasso.reg
## 
## Call:  glmnet(x = x, y = y, alpha = 1) 
## 
##       Df    %Dev   Lambda
##  [1,]  0 0.00000 255.3000
##  [2,]  1 0.05458 232.6000
##  [3,]  2 0.10050 211.9000
##  [4,]  2 0.13910 193.1000
##  [5,]  3 0.17610 176.0000
##  [6,]  4 0.21910 160.3000
##  [7,]  4 0.25680 146.1000
##  [8,]  4 0.28820 133.1000
##  [9,]  4 0.31420 121.3000
## [10,]  4 0.33580 110.5000
## [11,]  5 0.35410 100.7000
## [12,]  5 0.37300  91.7400
## [13,]  5 0.38870  83.5900
## [14,]  5 0.40170  76.1700
## [15,]  6 0.41510  69.4000
## [16,]  6 0.42730  63.2400
## [17,]  6 0.43750  57.6200
## [18,]  6 0.44600  52.5000
## [19,]  6 0.45300  47.8400
## [20,]  6 0.45880  43.5900
## [21,]  6 0.46360  39.7100
## [22,]  6 0.46760  36.1900
## [23,]  6 0.47100  32.9700
## [24,]  6 0.47370  30.0400
## [25,]  6 0.47600  27.3700
## [26,]  6 0.47790  24.9400
## [27,]  6 0.47950  22.7300
## [28,]  6 0.48080  20.7100
## [29,]  6 0.48190  18.8700
## [30,]  7 0.48290  17.1900
## [31,]  7 0.48400  15.6600
## [32,]  7 0.48480  14.2700
## [33,]  9 0.48570  13.0000
## [34,]  9 0.48660  11.8500
## [35,]  9 0.48730  10.8000
## [36,]  9 0.48790   9.8370
## [37,]  9 0.48840   8.9630
## [38,] 11 0.49120   8.1670
## [39,] 11 0.49600   7.4420
## [40,] 12 0.50270   6.7810
## [41,] 12 0.50820   6.1780
## [42,] 13 0.51320   5.6290
## [43,] 13 0.51770   5.1290
## [44,] 13 0.52140   4.6740
## [45,] 13 0.52450   4.2580
## [46,] 13 0.52700   3.8800
## [47,] 13 0.52910   3.5350
## [48,] 13 0.53090   3.2210
## [49,] 13 0.53240   2.9350
## [50,] 13 0.53360   2.6740
## [51,] 13 0.53460   2.4370
## [52,] 14 0.53550   2.2200
## [53,] 15 0.53620   2.0230
## [54,] 15 0.53720   1.8430
## [55,] 17 0.53840   1.6800
## [56,] 17 0.53960   1.5300
## [57,] 17 0.54060   1.3940
## [58,] 17 0.54150   1.2710
## [59,] 17 0.54220   1.1580
## [60,] 17 0.54280   1.0550
## [61,] 17 0.54320   0.9611
## [62,] 17 0.54360   0.8757
## [63,] 17 0.54400   0.7979
## [64,] 17 0.54430   0.7271
## [65,] 18 0.54450   0.6625
## [66,] 18 0.54480   0.6036
## [67,] 18 0.54490   0.5500
## [68,] 17 0.54510   0.5011
## [69,] 18 0.54520   0.4566
## [70,] 18 0.54530   0.4160
## [71,] 18 0.54540   0.3791
## [72,] 18 0.54550   0.3454
## [73,] 18 0.54560   0.3147
## [74,] 18 0.54570   0.2868
## [75,] 18 0.54570   0.2613
## [76,] 18 0.54580   0.2381
## [77,] 18 0.54580   0.2169
## [78,] 18 0.54590   0.1977
## [79,] 18 0.54590   0.1801
## [80,] 19 0.54590   0.1641

Lasso regression model by default builds 80 models.

#lasso regression with cross-validation method
cv.lasso.reg <- cv.glmnet(x,y,alpha=1)

cv.lasso.reg
## $lambda
##  [1] 255.2820965 232.6035387 211.9396814 193.1115442 175.9560469
##  [6] 160.3245967 146.0818014 133.1042968 121.2796779 110.5055256
## [11] 100.6885193  91.7436287  83.5933776  76.1671724  69.4006907
## [16]  63.2353246  57.6176727  52.4990774  47.8352041  43.5856564
## [21]  39.7136268  36.1855777  32.9709507  30.0419023  27.3730625
## [26]  24.9413151  22.7255974  20.7067180  18.8671902  17.1910810
## [31]  15.6638728  14.2723375  13.0044224  11.8491453  10.7964999
## [36]   9.8373686   8.9634439   8.1671562   7.4416086   6.7805166
## [41]   6.1781542   5.6293040   5.1292122   4.6735471   4.2583620
## [46]   3.8800609   3.5353670   3.2212947   2.9351238   2.6743755
## [51]   2.4367913   2.2203135   2.0230670   1.8433433   1.6795857
## [56]   1.5303760   1.3944216   1.2705450   1.1576733   1.0548288
## [61]   0.9611207   0.8757374   0.7979393   0.7270526   0.6624632
## [66]   0.6036118   0.5499886   0.5011291   0.4566102   0.4160462
## [71]   0.3790858   0.3454089   0.3147237   0.2867645
## 
## $cvm
##  [1] 204141.5 198391.4 189258.1 181621.5 174584.1 167236.1 160514.7
##  [8] 154680.5 149857.8 145828.7 142469.6 139537.4 136854.0 134207.8
## [15] 131731.4 129607.7 127743.8 126005.2 124564.1 123377.2 122403.9
## [22] 121610.5 120959.0 120436.2 120008.0 119690.0 119510.6 119398.8
## [29] 119360.9 119365.6 119398.9 119429.5 119633.4 119889.5 120208.7
## [36] 120569.0 120979.1 121312.0 121243.6 120694.6 120115.5 119434.9
## [43] 118800.1 118300.1 117909.7 117631.5 117406.3 117203.8 117068.3
## [50] 117108.7 117409.3 117813.9 118220.8 118592.5 118961.0 119334.0
## [57] 119594.2 119820.8 120068.2 120260.8 120434.0 120572.3 120690.0
## [64] 120798.6 120912.4 121043.6 121140.1 121252.1 121348.8 121440.6
## [71] 121536.6 121613.3 121698.7 121789.3
## 
## $cvsd
##  [1] 26018.21 26007.95 24689.32 23663.50 22970.88 22483.70 22095.20
##  [8] 21980.08 22030.28 22195.52 22458.58 22794.74 23167.27 23477.22
## [15] 23804.11 24119.66 24351.51 24436.09 24514.27 24590.28 24664.09
## [22] 24735.34 24804.35 24870.76 24933.49 24994.25 25057.37 25113.59
## [29] 25156.59 25193.58 25228.53 25258.30 25314.33 25373.93 25420.79
## [36] 25447.27 25457.54 25473.97 25498.59 25462.87 25352.94 25135.18
## [43] 24921.34 24720.94 24538.77 24368.19 24206.42 24039.73 23890.84
## [50] 23763.09 23668.20 23590.63 23507.62 23417.28 23343.95 23283.38
## [57] 23233.19 23170.80 23091.91 23018.23 22955.07 22910.30 22875.33
## [64] 22840.86 22808.12 22778.80 22756.62 22736.00 22716.05 22700.87
## [71] 22687.66 22685.90 22682.26 22675.34
## 
## $cvup
##  [1] 230159.7 224399.3 213947.4 205285.0 197555.0 189719.8 182609.9
##  [8] 176660.6 171888.1 168024.2 164928.1 162332.1 160021.2 157685.0
## [15] 155535.5 153727.3 152095.3 150441.3 149078.4 147967.5 147067.9
## [22] 146345.9 145763.4 145306.9 144941.5 144684.2 144568.0 144512.4
## [29] 144517.5 144559.2 144627.4 144687.8 144947.7 145263.4 145629.5
## [36] 146016.3 146436.6 146785.9 146742.2 146157.4 145468.4 144570.1
## [43] 143721.4 143021.1 142448.4 141999.7 141612.7 141243.5 140959.1
## [50] 140871.8 141077.5 141404.6 141728.4 142009.8 142305.0 142617.4
## [57] 142827.4 142991.6 143160.1 143279.0 143389.1 143482.6 143565.4
## [64] 143639.5 143720.6 143822.4 143896.8 143988.1 144064.9 144141.5
## [71] 144224.3 144299.2 144381.0 144464.6
## 
## $cvlo
##  [1] 178123.26 172383.40 164568.73 157957.96 151613.22 144752.40 138419.53
##  [8] 132700.45 127827.55 123633.14 120010.97 116742.62 113686.68 110730.59
## [15] 107927.33 105488.03 103392.31 101569.11 100049.85  98786.94  97739.76
## [22]  96875.18  96154.65  95565.40  95074.54  94695.71  94453.25  94285.20
## [29]  94204.32  94172.04  94170.32  94171.22  94319.07  94515.58  94787.94
## [36]  95121.71  95521.54  95838.01  95745.03  95231.71  94762.54  94299.74
## [43]  93878.77  93579.18  93370.88  93263.31  93199.89  93164.08  93177.43
## [50]  93345.66  93741.12  94223.32  94713.20  95175.26  95617.08  96050.60
## [57]  96361.01  96649.97  96976.26  97242.57  97478.95  97662.04  97814.70
## [64]  97957.75  98104.32  98264.82  98383.51  98516.12  98632.77  98739.73
## [71]  98848.97  98927.41  99016.45  99113.94
## 
## $nzero
##  s0  s1  s2  s3  s4  s5  s6  s7  s8  s9 s10 s11 s12 s13 s14 s15 s16 s17 
##   0   1   2   2   3   4   4   4   4   4   5   5   5   5   6   6   6   6 
## s18 s19 s20 s21 s22 s23 s24 s25 s26 s27 s28 s29 s30 s31 s32 s33 s34 s35 
##   6   6   6   6   6   6   6   6   6   6   6   7   7   7   9   9   9   9 
## s36 s37 s38 s39 s40 s41 s42 s43 s44 s45 s46 s47 s48 s49 s50 s51 s52 s53 
##   9  11  11  12  12  13  13  13  13  13  13  13  13  13  13  14  15  15 
## s54 s55 s56 s57 s58 s59 s60 s61 s62 s63 s64 s65 s66 s67 s68 s69 s70 s71 
##  17  17  17  17  17  17  17  17  17  17  18  18  18  17  18  18  18  18 
## s72 s73 
##  18  18 
## 
## $name
##                  mse 
## "Mean-Squared Error" 
## 
## $glmnet.fit
## 
## Call:  glmnet(x = x, y = y, alpha = 1) 
## 
##       Df    %Dev   Lambda
##  [1,]  0 0.00000 255.3000
##  [2,]  1 0.05458 232.6000
##  [3,]  2 0.10050 211.9000
##  [4,]  2 0.13910 193.1000
##  [5,]  3 0.17610 176.0000
##  [6,]  4 0.21910 160.3000
##  [7,]  4 0.25680 146.1000
##  [8,]  4 0.28820 133.1000
##  [9,]  4 0.31420 121.3000
## [10,]  4 0.33580 110.5000
## [11,]  5 0.35410 100.7000
## [12,]  5 0.37300  91.7400
## [13,]  5 0.38870  83.5900
## [14,]  5 0.40170  76.1700
## [15,]  6 0.41510  69.4000
## [16,]  6 0.42730  63.2400
## [17,]  6 0.43750  57.6200
## [18,]  6 0.44600  52.5000
## [19,]  6 0.45300  47.8400
## [20,]  6 0.45880  43.5900
## [21,]  6 0.46360  39.7100
## [22,]  6 0.46760  36.1900
## [23,]  6 0.47100  32.9700
## [24,]  6 0.47370  30.0400
## [25,]  6 0.47600  27.3700
## [26,]  6 0.47790  24.9400
## [27,]  6 0.47950  22.7300
## [28,]  6 0.48080  20.7100
## [29,]  6 0.48190  18.8700
## [30,]  7 0.48290  17.1900
## [31,]  7 0.48400  15.6600
## [32,]  7 0.48480  14.2700
## [33,]  9 0.48570  13.0000
## [34,]  9 0.48660  11.8500
## [35,]  9 0.48730  10.8000
## [36,]  9 0.48790   9.8370
## [37,]  9 0.48840   8.9630
## [38,] 11 0.49120   8.1670
## [39,] 11 0.49600   7.4420
## [40,] 12 0.50270   6.7810
## [41,] 12 0.50820   6.1780
## [42,] 13 0.51320   5.6290
## [43,] 13 0.51770   5.1290
## [44,] 13 0.52140   4.6740
## [45,] 13 0.52450   4.2580
## [46,] 13 0.52700   3.8800
## [47,] 13 0.52910   3.5350
## [48,] 13 0.53090   3.2210
## [49,] 13 0.53240   2.9350
## [50,] 13 0.53360   2.6740
## [51,] 13 0.53460   2.4370
## [52,] 14 0.53550   2.2200
## [53,] 15 0.53620   2.0230
## [54,] 15 0.53720   1.8430
## [55,] 17 0.53840   1.6800
## [56,] 17 0.53960   1.5300
## [57,] 17 0.54060   1.3940
## [58,] 17 0.54150   1.2710
## [59,] 17 0.54220   1.1580
## [60,] 17 0.54280   1.0550
## [61,] 17 0.54320   0.9611
## [62,] 17 0.54360   0.8757
## [63,] 17 0.54400   0.7979
## [64,] 17 0.54430   0.7271
## [65,] 18 0.54450   0.6625
## [66,] 18 0.54480   0.6036
## [67,] 18 0.54490   0.5500
## [68,] 17 0.54510   0.5011
## [69,] 18 0.54520   0.4566
## [70,] 18 0.54530   0.4160
## [71,] 18 0.54540   0.3791
## [72,] 18 0.54550   0.3454
## [73,] 18 0.54560   0.3147
## [74,] 18 0.54570   0.2868
## [75,] 18 0.54570   0.2613
## [76,] 18 0.54580   0.2381
## [77,] 18 0.54580   0.2169
## [78,] 18 0.54590   0.1977
## [79,] 18 0.54590   0.1801
## [80,] 19 0.54590   0.1641
## 
## $lambda.min
## [1] 2.935124
## 
## $lambda.1se
## [1] 91.74363
## 
## attr(,"class")
## [1] "cv.glmnet"
#print coefficient of each variable
coef(cv.lasso.reg, s="lambda.min")
## 20 x 1 sparse Matrix of class "dgCMatrix"
##                        1
## (Intercept)  117.5258436
## AtBat         -1.4742901
## Hits           5.4994256
## HmRun          .        
## Runs           .        
## RBI            .        
## Walks          4.5991651
## Years         -9.1918308
## CAtBat         .        
## CHits          .        
## CHmRun         0.4806743
## CRuns          0.6354799
## CRBI           0.3956153
## CWalks        -0.4993240
## LeagueN       31.6238173
## DivisionW   -119.2516409
## PutOuts        0.2704287
## Assists        0.1594997
## Errors        -1.9426357
## NewLeagueN     .

In the above output, the dotted ones are dropped variables which are exactly to zero. So Lasso regression penalizes coefficients to shrink towards exactly zero. By this, the model is performing variable selection as well. So it drops variable which are not important to the model.

#prediction

lasso.pred <- predict(cv.lasso.reg, newx=x, s="lambda.min")

#print top 5 predicted values 
head(lasso.pred)
##                           1
## -Alan Ashby        433.6688
## -Alvin Davis       699.3764
## -Andre Dawson     1101.4861
## -Andres Galarraga  528.2402
## -Alfredo Griffin   570.2200
## -Al Newman         196.4160
#model evaluation
library(DMwR)
round(regr.eval(y,lasso.pred), 3)
##       mae       mse      rmse      mape 
##   215.307 94801.378   307.898     0.695

Elastic Net Regression

It generalizes both Ridge and LASSO regressions.

#Elasticnet regression use alpha=0.5

Elastic.reg <- glmnet(x,y,alpha=0.5)

Elastic.reg
## 
## Call:  glmnet(x = x, y = y, alpha = 0.5) 
## 
##       Df    %Dev   Lambda
##  [1,]  0 0.00000 510.6000
##  [2,]  2 0.04280 465.2000
##  [3,]  3 0.08286 423.9000
##  [4,]  3 0.11870 386.2000
##  [5,]  5 0.15570 351.9000
##  [6,]  7 0.19950 320.6000
##  [7,]  7 0.23670 292.2000
##  [8,]  7 0.26850 266.2000
##  [9,]  8 0.29550 242.6000
## [10,]  8 0.31850 221.0000
## [11,]  9 0.33970 201.4000
## [12,]  9 0.35940 183.5000
## [13,]  9 0.37600 167.2000
## [14,]  9 0.39010 152.3000
## [15,] 10 0.40430 138.8000
## [16,] 10 0.41730 126.5000
## [17,] 10 0.42830 115.2000
## [18,] 10 0.43760 105.0000
## [19,] 10 0.44550  95.6700
## [20,] 10 0.45210  87.1700
## [21,] 10 0.45770  79.4300
## [22,] 10 0.46250  72.3700
## [23,] 10 0.46650  65.9400
## [24,] 10 0.46990  60.0800
## [25,] 10 0.47280  54.7500
## [26,]  8 0.47510  49.8800
## [27,]  8 0.47710  45.4500
## [28,]  8 0.47870  41.4100
## [29,]  8 0.48010  37.7300
## [30,]  9 0.48140  34.3800
## [31,]  9 0.48260  31.3300
## [32,]  9 0.48370  28.5400
## [33,] 10 0.48460  26.0100
## [34,] 10 0.48560  23.7000
## [35,] 10 0.48640  21.5900
## [36,] 10 0.48710  19.6700
## [37,] 10 0.48770  17.9300
## [38,] 10 0.48820  16.3300
## [39,] 12 0.49060  14.8800
## [40,] 13 0.49490  13.5600
## [41,] 13 0.50020  12.3600
## [42,] 14 0.50470  11.2600
## [43,] 14 0.50930  10.2600
## [44,] 14 0.51330   9.3470
## [45,] 14 0.51680   8.5170
## [46,] 14 0.52000   7.7600
## [47,] 14 0.52270   7.0710
## [48,] 14 0.52510   6.4430
## [49,] 14 0.52720   5.8700
## [50,] 14 0.52900   5.3490
## [51,] 14 0.53050   4.8740
## [52,] 14 0.53190   4.4410
## [53,] 15 0.53310   4.0460
## [54,] 16 0.53410   3.6870
## [55,] 18 0.53510   3.3590
## [56,] 18 0.53620   3.0610
## [57,] 18 0.53720   2.7890
## [58,] 18 0.53830   2.5410
## [59,] 18 0.53930   2.3150
## [60,] 18 0.54020   2.1100
## [61,] 18 0.54090   1.9220
## [62,] 18 0.54160   1.7510
## [63,] 18 0.54220   1.5960
## [64,] 18 0.54270   1.4540
## [65,] 18 0.54310   1.3250
## [66,] 18 0.54350   1.2070
## [67,] 19 0.54380   1.1000
## [68,] 19 0.54420   1.0020
## [69,] 19 0.54440   0.9132
## [70,] 19 0.54470   0.8321
## [71,] 19 0.54490   0.7582
## [72,] 19 0.54510   0.6908
## [73,] 19 0.54520   0.6294
## [74,] 19 0.54530   0.5735
## [75,] 19 0.54540   0.5226
## [76,] 19 0.54560   0.4762
## [77,] 19 0.54560   0.4339
## [78,] 19 0.54570   0.3953
## [79,] 19 0.54570   0.3602
summary(Elastic.reg)
##           Length Class     Mode   
## a0          79   -none-    numeric
## beta      1501   dgCMatrix S4     
## df          79   -none-    numeric
## dim          2   -none-    numeric
## lambda      79   -none-    numeric
## dev.ratio   79   -none-    numeric
## nulldev      1   -none-    numeric
## npasses      1   -none-    numeric
## jerr         1   -none-    numeric
## offset       1   -none-    logical
## call         4   -none-    call   
## nobs         1   -none-    numeric
#print coefficeints of 3rd model
coef(Elastic.reg, 3)
## 20 x 1 sparse Matrix of class "dgCMatrix"
##                         1
## (Intercept)  1.378568e+02
## AtBat       -1.668179e+00
## Hits         5.844264e+00
## HmRun        1.708095e-01
## Runs         .           
## RBI          2.970095e-02
## Walks        5.008051e+00
## Years       -1.037298e+01
## CAtBat      -6.221306e-03
## CHits        4.304375e-03
## CHmRun       5.520112e-01
## CRuns        7.357503e-01
## CRBI         4.056508e-01
## CWalks      -6.007500e-01
## LeagueN      3.910736e+01
## DivisionW   -1.201353e+02
## PutOuts      2.783122e-01
## Assists      2.255262e-01
## Errors      -2.710374e+00
## NewLeagueN  -4.759615e+00
#elasticnet regression using cross-validation method

cv.elastic.reg <- cv.glmnet(x,y,alpha=0.5)

cv.elastic.reg
## $lambda
##  [1] 510.5641930 465.2070773 423.8793628 386.2230885 351.9120938
##  [6] 320.6491933 292.1636028 266.2085936 242.5593558 221.0110512
## [11] 201.3770386 183.4872575 167.1867553 152.3343447 138.8013814
## [16] 126.4706492 115.2353453 104.9981549  95.6704082  87.1713128
## [21]  79.4272536  72.3711553  65.9419014  60.0838046  54.7461250
## [26]  49.8826301  45.4511948  41.4134359  37.7343804  34.3821620
## [31]  31.3277455  28.5446750  26.0088447  23.6982906  21.5929998
## [36]  19.6747372  17.9268878  16.3343125  14.8832172  13.5610332
## [41]  12.3563084  11.2586080  10.2584243   9.3470942   8.5167241
## [46]   7.7601218   7.0707340   6.4425894   5.8702475   5.3487509
## [51]   4.8735826   4.4406270   4.0461339   3.6866865   3.3591715
## [56]   3.0607519   2.7888432   2.5410900   2.3153466   2.1096576
## [61]   1.9222414   1.7514748   1.5958786   1.4541051   1.3249264
## [66]   1.2072236   1.0999772   1.0022583   0.9132204   0.8320924
## [71]   0.7581716   0.6908177   0.6294474   0.5735290
## 
## $cvm
##  [1] 203130.0 196802.9 188834.2 181751.7 175135.2 168654.2 162151.4
##  [8] 156195.1 151192.4 147096.1 143498.6 140105.5 137163.0 134683.3
## [15] 132483.2 130500.4 128629.5 126843.5 125295.2 123994.5 122903.8
## [22] 121991.0 121230.6 120598.8 120079.7 119661.3 119355.5 119127.8
## [29] 118977.7 118884.3 118829.2 118791.0 118780.5 118792.7 118820.0
## [36] 118867.3 119036.5 119271.0 119500.2 119594.2 119476.6 119027.2
## [43] 118547.8 118136.7 117782.1 117400.8 116865.1 116454.6 116143.5
## [50] 115878.4 115658.5 115485.9 115388.4 115363.5 115405.7 115424.3
## [57] 115413.9 115438.3 115417.8 115423.7 115427.0 115436.5 115449.0
## [64] 115452.9 115462.2 115477.0 115517.3 115556.7 115633.9 115708.5
## [71] 115802.6 115852.5 115935.1 115987.5
## 
## $cvsd
##  [1] 33846.65 34002.93 33124.40 32317.41 31612.03 30963.89 30182.79
##  [8] 29453.77 28841.61 28349.62 27940.52 27619.21 27361.94 27166.76
## [15] 27049.40 26939.66 26732.04 26420.42 26121.01 25860.10 25632.92
## [22] 25434.50 25260.34 25106.86 24972.59 24854.82 24743.71 24642.26
## [29] 24554.57 24483.88 24421.00 24367.34 24318.53 24274.80 24239.63
## [36] 24214.54 24189.22 24149.36 24095.52 24048.28 23991.90 23906.83
## [43] 23803.53 23711.50 23631.26 23528.82 23385.02 23288.92 23232.61
## [50] 23191.77 23169.50 23156.42 23149.45 23154.39 23167.56 23182.94
## [57] 23205.79 23224.87 23238.41 23255.89 23275.71 23297.72 23318.72
## [64] 23338.58 23355.87 23372.88 23387.71 23404.56 23423.67 23445.78
## [71] 23469.20 23483.88 23505.38 23519.64
## 
## $cvup
##  [1] 236976.6 230805.8 221958.6 214069.2 206747.3 199618.1 192334.2
##  [8] 185648.9 180034.0 175445.7 171439.1 167724.8 164524.9 161850.0
## [15] 159532.6 157440.0 155361.5 153264.0 151416.2 149854.6 148536.7
## [22] 147425.5 146490.9 145705.7 145052.3 144516.1 144099.3 143770.1
## [29] 143532.2 143368.1 143250.2 143158.3 143099.0 143067.5 143059.6
## [36] 143081.8 143225.7 143420.4 143595.7 143642.4 143468.5 142934.0
## [43] 142351.3 141848.2 141413.4 140929.6 140250.1 139743.5 139376.1
## [50] 139070.2 138828.0 138642.4 138537.8 138517.9 138573.3 138607.2
## [57] 138619.7 138663.2 138656.2 138679.6 138702.8 138734.2 138767.7
## [64] 138791.5 138818.1 138849.9 138905.1 138961.2 139057.6 139154.3
## [71] 139271.9 139336.4 139440.5 139507.1
## 
## $cvlo
##  [1] 169283.34 162799.98 155709.77 149434.34 143523.21 137690.33 131968.64
##  [8] 126741.35 122350.81 118746.49 115558.09 112486.33 109801.06 107516.50
## [15] 105433.75 103560.69 101897.41 100423.13  99174.16  98134.43  97270.85
## [22]  96556.52  95970.24  95491.96  95107.11  94806.48  94611.83  94485.56
## [29]  94423.08  94400.38  94408.22  94423.61  94461.99  94517.86  94580.35
## [36]  94652.76  94847.30  95121.65  95404.64  95545.89  95484.67  95120.33
## [43]  94744.26  94425.15  94150.85  93871.99  93480.04  93165.68  92910.90
## [50]  92686.67  92488.97  92329.52  92238.92  92209.13  92238.15  92241.35
## [57]  92208.08  92213.44  92179.40  92167.85  92151.33  92138.75  92130.28
## [64]  92114.31  92106.35  92104.10  92129.64  92152.11  92210.24  92262.71
## [71]  92333.45  92368.65  92429.69  92467.82
## 
## $nzero
##  s0  s1  s2  s3  s4  s5  s6  s7  s8  s9 s10 s11 s12 s13 s14 s15 s16 s17 
##   0   2   3   3   5   7   7   7   8   8   9   9   9   9  10  10  10  10 
## s18 s19 s20 s21 s22 s23 s24 s25 s26 s27 s28 s29 s30 s31 s32 s33 s34 s35 
##  10  10  10  10  10  10  10   8   8   8   8   9   9   9  10  10  10  10 
## s36 s37 s38 s39 s40 s41 s42 s43 s44 s45 s46 s47 s48 s49 s50 s51 s52 s53 
##  10  10  12  13  13  14  14  14  14  14  14  14  14  14  14  14  15  16 
## s54 s55 s56 s57 s58 s59 s60 s61 s62 s63 s64 s65 s66 s67 s68 s69 s70 s71 
##  18  18  18  18  18  18  18  18  18  18  18  18  19  19  19  19  19  19 
## s72 s73 
##  19  19 
## 
## $name
##                  mse 
## "Mean-Squared Error" 
## 
## $glmnet.fit
## 
## Call:  glmnet(x = x, y = y, alpha = 0.5) 
## 
##       Df    %Dev   Lambda
##  [1,]  0 0.00000 510.6000
##  [2,]  2 0.04280 465.2000
##  [3,]  3 0.08286 423.9000
##  [4,]  3 0.11870 386.2000
##  [5,]  5 0.15570 351.9000
##  [6,]  7 0.19950 320.6000
##  [7,]  7 0.23670 292.2000
##  [8,]  7 0.26850 266.2000
##  [9,]  8 0.29550 242.6000
## [10,]  8 0.31850 221.0000
## [11,]  9 0.33970 201.4000
## [12,]  9 0.35940 183.5000
## [13,]  9 0.37600 167.2000
## [14,]  9 0.39010 152.3000
## [15,] 10 0.40430 138.8000
## [16,] 10 0.41730 126.5000
## [17,] 10 0.42830 115.2000
## [18,] 10 0.43760 105.0000
## [19,] 10 0.44550  95.6700
## [20,] 10 0.45210  87.1700
## [21,] 10 0.45770  79.4300
## [22,] 10 0.46250  72.3700
## [23,] 10 0.46650  65.9400
## [24,] 10 0.46990  60.0800
## [25,] 10 0.47280  54.7500
## [26,]  8 0.47510  49.8800
## [27,]  8 0.47710  45.4500
## [28,]  8 0.47870  41.4100
## [29,]  8 0.48010  37.7300
## [30,]  9 0.48140  34.3800
## [31,]  9 0.48260  31.3300
## [32,]  9 0.48370  28.5400
## [33,] 10 0.48460  26.0100
## [34,] 10 0.48560  23.7000
## [35,] 10 0.48640  21.5900
## [36,] 10 0.48710  19.6700
## [37,] 10 0.48770  17.9300
## [38,] 10 0.48820  16.3300
## [39,] 12 0.49060  14.8800
## [40,] 13 0.49490  13.5600
## [41,] 13 0.50020  12.3600
## [42,] 14 0.50470  11.2600
## [43,] 14 0.50930  10.2600
## [44,] 14 0.51330   9.3470
## [45,] 14 0.51680   8.5170
## [46,] 14 0.52000   7.7600
## [47,] 14 0.52270   7.0710
## [48,] 14 0.52510   6.4430
## [49,] 14 0.52720   5.8700
## [50,] 14 0.52900   5.3490
## [51,] 14 0.53050   4.8740
## [52,] 14 0.53190   4.4410
## [53,] 15 0.53310   4.0460
## [54,] 16 0.53410   3.6870
## [55,] 18 0.53510   3.3590
## [56,] 18 0.53620   3.0610
## [57,] 18 0.53720   2.7890
## [58,] 18 0.53830   2.5410
## [59,] 18 0.53930   2.3150
## [60,] 18 0.54020   2.1100
## [61,] 18 0.54090   1.9220
## [62,] 18 0.54160   1.7510
## [63,] 18 0.54220   1.5960
## [64,] 18 0.54270   1.4540
## [65,] 18 0.54310   1.3250
## [66,] 18 0.54350   1.2070
## [67,] 19 0.54380   1.1000
## [68,] 19 0.54420   1.0020
## [69,] 19 0.54440   0.9132
## [70,] 19 0.54470   0.8321
## [71,] 19 0.54490   0.7582
## [72,] 19 0.54510   0.6908
## [73,] 19 0.54520   0.6294
## [74,] 19 0.54530   0.5735
## [75,] 19 0.54540   0.5226
## [76,] 19 0.54560   0.4762
## [77,] 19 0.54560   0.4339
## [78,] 19 0.54570   0.3953
## [79,] 19 0.54570   0.3602
## 
## $lambda.min
## [1] 3.686687
## 
## $lambda.1se
## [1] 167.1868
## 
## attr(,"class")
## [1] "cv.glmnet"

So minimum lambda is 4.046134, which 53rd model

#coefficeints of 53rd model

coef(cv.elastic.reg, 53)
## 20 x 1 sparse Matrix of class "dgCMatrix"
##                        1
## (Intercept)  50.11488143
## AtBat         .         
## Hits          1.68428289
## HmRun         .         
## Runs          0.02153104
## RBI           0.01071734
## Walks         2.13116793
## Years         .         
## CAtBat        .         
## CHits         0.05545304
## CHmRun        0.34027355
## CRuns         0.17186673
## CRBI          0.22799415
## CWalks        .         
## LeagueN       .         
## DivisionW   -81.65977827
## PutOuts       0.19066430
## Assists       .         
## Errors        .         
## NewLeagueN    .
#prediction

elastic.pred <- predict(cv.elastic.reg, newx = x, s="lambda.min")

round(regr.eval(y,elastic.pred), 3)
##       mae       mse      rmse      mape 
##   215.380 94443.976   307.317     0.697