Initial Visualization

ggplot(diamonds, aes(cut,price)) + geom_boxplot()

ggplot(diamonds, aes(color,price)) + geom_boxplot()

ggplot(diamonds, aes(clarity,price)) + geom_boxplot()

ggplot(diamonds, aes(carat, price)) +
  geom_hex(bins=50)

Subset Data and replot

diamonds2 <- diamonds %>%
  filter(carat <= 2.5)  %>%
  mutate(lprice = log2(price), lcarat = log2(carat))

ggplot(diamonds2, aes(lcarat, lprice)) +
  geom_hex(bins=50)

Simple model and visualization

mod_diamond <- lm(lprice ~ lcarat, data = diamonds2)

grid <- diamonds2 %>%
  data_grid(carat = seq_range(carat, 20)) %>%
  mutate(lcarat = log2(carat)) %>%
  add_predictions(mod_diamond, "lprice") %>%
  mutate(price = 2 ^ lprice)

ggplot(diamonds2, aes(carat, price)) +
  geom_hex(bins = 50) +
  geom_line(data = grid, color = "green", size = 1)

Add residuals and plot

diamonds2 <- diamonds2 %>%
  add_residuals(mod_diamond, "lresid")

ggplot(diamonds2, aes(lcarat, lresid)) +
  geom_hex(bins = 50)

ggplot(diamonds2, aes(cut,lresid)) + geom_boxplot()

ggplot(diamonds2, aes(color,lresid)) + geom_boxplot()

ggplot(diamonds2, aes(clarity,lresid)) + geom_boxplot()

Four parameter model and visualization

mod_diamond2 <- lm(
  lprice ~ lcarat + color + cut + clarity, diamonds2
)

grid <- diamonds2 %>%
  data_grid(cut, .model = mod_diamond2) %>%
  add_predictions(mod_diamond2)
grid
## # A tibble: 5 x 5
##   cut       lcarat color clarity  pred
##   <ord>      <dbl> <chr> <chr>   <dbl>
## 1 Fair      -0.515 G     VS2      11.2
## 2 Good      -0.515 G     VS2      11.3
## 3 Very Good -0.515 G     VS2      11.4
## 4 Premium   -0.515 G     VS2      11.4
## 5 Ideal     -0.515 G     VS2      11.4
ggplot(grid, aes(cut, pred)) +
  geom_point()

Plot residuals of four parameter model

diamonds2 <- diamonds2 %>%
  add_residuals(mod_diamond2, "lresid2")

ggplot(diamonds2, aes(lcarat, lresid2)) +
  geom_hex(bins = 50)

diamonds2 %>%
  filter(abs(lresid2) > 1) %>%
  add_predictions(mod_diamond2) %>%
  mutate(pred = round(2^pred)) %>%
  select(price, pred, carat:table, x:z) %>%
  arrange(price)
## # A tibble: 16 x 11
##    price  pred carat cut       color clarity depth table     x     y     z
##    <int> <dbl> <dbl> <ord>     <ord> <ord>   <dbl> <dbl> <dbl> <dbl> <dbl>
##  1  1013   264 0.25  Fair      F     SI2      54.4    64  4.3   4.23  2.32
##  2  1186   284 0.25  Premium   G     SI2      59      60  5.33  5.28  3.12
##  3  1186   284 0.25  Premium   G     SI2      58.8    60  5.33  5.28  3.12
##  4  1262  2644 1.03  Fair      E     I1       78.2    54  5.72  5.59  4.42
##  5  1415   639 0.35  Fair      G     VS2      65.9    54  5.57  5.53  3.66
##  6  1415   639 0.35  Fair      G     VS2      65.9    54  5.57  5.53  3.66
##  7  1715   576 0.32  Fair      F     VS2      59.6    60  4.42  4.34  2.61
##  8  1776   412 0.290 Fair      F     SI1      55.8    60  4.48  4.41  2.48
##  9  2160   314 0.34  Fair      F     I1       55.8    62  4.72  4.6   2.6 
## 10  2366   774 0.3   Very Good D     VVS2     60.6    58  4.33  4.35  2.63
## 11  3360  1373 0.51  Premium   F     SI1      62.7    62  5.09  4.96  3.15
## 12  3807  1540 0.61  Good      F     SI2      62.5    65  5.36  5.29  3.33
## 13  3920  1705 0.51  Fair      F     VVS2     65.4    60  4.98  4.9   3.23
## 14  4368  1705 0.51  Fair      F     VVS2     60.7    66  5.21  5.11  3.13
## 15 10011  4048 1.01  Fair      D     SI2      64.6    58  6.25  6.2   4.02
## 16 10470 23622 2.46  Premium   E     SI2      59.7    59  8.82  8.76  5.25

Question #1

In the plot of lcarat vs. lprice, there are some bright vertical strips. What do they represent?

Answer: The distrubution of diamonds Cutting or Weight has more tend to customer friendly numbers. Majority of diamons are sold at those price ranges (bright vertical strips).

Question #2

If log(price) = a_0 + a_1 * log(carat), what does that say about the relationship between price and carat?

Answer: It means there’s linear correlation between diamond price and carat. The price of diamond depends on the size of diamonds. 1% difference with diamond size will associated with 1% difference in price.

Question #3

Extract the diamonds that have very high and very low residuals. Is there anything unusual about these diamonds? Are they particularly bad or good, or do you think these are pricing errors?

# Use this chunk to place your code for extracting the high and low residuals
mod_diamond2 <- lm(
  lprice ~ lcarat + color + cut + clarity, diamonds2
)

bottom <-
  diamonds2 %>% 
  add_residuals(mod_diamond2) %>% 
  arrange(resid) %>% 
  slice(1:10)

top <-
  diamonds2 %>% 
  add_residuals(mod_diamond2) %>% 
  arrange(-resid) %>% 
  slice(1:10)

bind_rows(bottom, top) %>% 
  select(price, carat, resid)
## # A tibble: 20 x 3
##    price carat  resid
##    <int> <dbl>  <dbl>
##  1 10470 2.46  -1.17 
##  2  1262 1.03  -1.07 
##  3  2845 1.27  -0.971
##  4  3105 1.52  -0.942
##  5  3105 1.52  -0.942
##  6  7862 1.8   -0.847
##  7  6010 1.59  -0.787
##  8  3780 1.5   -0.787
##  9  7226 2.3   -0.783
## 10 12071 2.5   -0.729
## 11  2160 0.34   2.78 
## 12  1776 0.290  2.11 
## 13  1186 0.25   2.06 
## 14  1186 0.25   2.06 
## 15  1013 0.25   1.94 
## 16  2366 0.3    1.61 
## 17  1715 0.32   1.57 
## 18  4368 0.51   1.36 
## 19 10011 1.01   1.31 
## 20  3807 0.61   1.31

Due to the numbers I got, I don’t see any abnormal objective laws with the diamond pricings.

Question #4

Does the final model, mod_diamonds2, do a good job of predicting diamond prices? Would you trust it to tell you how much to spend if you were buying a diamond and why?

# Use this chunk to place your code for assessing how well the model predicts diamond prices
diamonds2 <- diamonds2 %>% 
    add_predictions(mod_diamond) %>% 
    mutate(pred = round(2 ^ pred),
           err = pred - price)


diamonds2 %>% 
  add_residuals(mod_diamond) %>% 
  mutate(resid = 2 ^ abs(resid)) %>% 
  ggplot(aes(resid)) +
  geom_histogram(color="darkblue",fill="lightblue")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

If we just focused on the model and the graph of predicted price then it seems like it did a great job. For most customers, this model is a reliable tool to use. For me, I would partially consider using this model.