https://www.dropbox.com/s/bfzqgwvuam51mxc/adubacao_dic.csv?dl=0
adubacao_dic <- read.csv("C:/Users/Carol/Dropbox/UFGD/2019.01_Disciplinas/Topicos de Estatistica/10_Aula/adubacao_dic.csv", sep=";")
Adubacao | Peso |
---|---|
Controle | 510 |
Controle | 460 |
Controle | 490 |
Controle | 520 |
Controle | 500 |
Tipo A | 610 |
Tipo A | 630 |
Tipo A | 590 |
Tipo A | 600 |
Tipo A | 610 |
Tipo B | 640 |
Tipo B | 630 |
Tipo B | 620 |
Tipo B | 630 |
Tipo B | 640 |
Tipo C | 710 |
Tipo C | 690 |
Tipo C | 660 |
Tipo C | 690 |
Tipo C | 710 |
aggregate(Peso ~ Adubacao,
data = adubacao_dic,
FUN=mean)
## Adubacao Peso
## 1 Controle 496
## 2 Tipo A 608
## 3 Tipo B 632
## 4 Tipo C 692
aggregate(Peso ~ Adubacao,
data = adubacao_dic,
FUN=sd)
## Adubacao Peso
## 1 Controle 23.02173
## 2 Tipo A 14.83240
## 3 Tipo B 8.36660
## 4 Tipo C 20.49390
require(ggplot2)
## Loading required package: ggplot2
ggplot(adubacao_dic, aes(x = Adubacao, y = Peso)) +
geom_boxplot()
modelo = aov(Peso ~ Adubacao,
data = adubacao_dic)
anova(modelo)
## Analysis of Variance Table
##
## Response: Peso
## Df Sum Sq Mean Sq F value Pr(>F)
## Adubacao 3 100860 33620 108.45 7.614e-11 ***
## Residuals 16 4960 310
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
shapiro.test(modelo$residuals)
##
## Shapiro-Wilk normality test
##
## data: modelo$residuals
## W = 0.94539, p-value = 0.3025
require(car)
## Loading required package: car
## Loading required package: carData
qqPlot(modelo$residuals)
## [1] 2 18
bartlett.test(Peso ~ Adubacao,
data = adubacao_dic)
##
## Bartlett test of homogeneity of variances
##
## data: Peso by Adubacao
## Bartlett's K-squared = 3.5902, df = 3, p-value = 0.3093
require(agricolae)
## Loading required package: agricolae
## Warning: package 'agricolae' was built under R version 3.5.3
out <- HSD.test(modelo,
"Adubacao",
main="",
alpha = 0.05)
out
## $statistics
## MSerror Df Mean CV MSD
## 310 16 607 2.900629 31.85897
##
## $parameters
## test name.t ntr StudentizedRange alpha
## Tukey Adubacao 4 4.046093 0.05
##
## $means
## Peso std r Min Max Q25 Q50 Q75
## Controle 496 23.02173 5 460 520 490 500 510
## Tipo A 608 14.83240 5 590 630 600 610 610
## Tipo B 632 8.36660 5 620 640 630 630 640
## Tipo C 692 20.49390 5 660 710 690 690 710
##
## $comparison
## NULL
##
## $groups
## Peso groups
## Tipo C 692 a
## Tipo B 632 b
## Tipo A 608 b
## Controle 496 c
##
## attr(,"class")
## [1] "group"
bar.group(out$groups,
ylim=c(0,800),
density=10,
las=1,
border="blue")