JOSE MANUEL CANALES LOPEZ
16/5/2019
## # A tibble: 6 x 10
## price assess bdrms lotsize sqrft colonial lprice lassess llotsize lsqrft
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 300 349. 4 6126 2438 1 5.70 5.86 8.72 7.80
## 2 370 352. 3 9903 2076 1 5.91 5.86 9.20 7.64
## 3 191 218. 3 5200 1374 0 5.25 5.38 8.56 7.23
## 4 195 232. 3 4600 1448 1 5.27 5.45 8.43 7.28
## 5 373 319. 4 6095 2514 1 5.92 5.77 8.72 7.83
## 6 466. 414. 5 8566 2754 1 6.14 6.03 9.06 7.92
Estimando modelo
library(stargazer)
modelo_estimado<-lm(price~assess+bdrms+lotsize+colonial+llotsize,data = hprice1)
stargazer(modelo_estimado,type = "text",title = "modelo estimado")##
## modelo estimado
## ===============================================
## Dependent variable:
## ---------------------------
## price
## -----------------------------------------------
## assess 0.940***
## (0.072)
##
## bdrms 8.620
## (6.791)
##
## lotsize 0.001
## (0.001)
##
## colonial 10.031
## (10.580)
##
## llotsize -13.357
## (17.813)
##
## Constant 68.090
## (146.133)
##
## -----------------------------------------------
## Observations 88
## R2 0.832
## Adjusted R2 0.822
## Residual Std. Error 43.364 (df = 82)
## F Statistic 81.224*** (df = 5; 82)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
Calculo de la matriz |Xt X|
##
## =====================================================
## (Intercept) assess bdrms lotsize colonial llotsize
## -----------------------------------------------------
## 1 1 349.100 4 6,126 1 8.720
## 2 1 351.500 3 9,903 1 9.201
## 3 1 217.700 3 5,200 0 8.556
## 4 1 231.800 3 4,600 1 8.434
## 5 1 319.100 4 6,095 1 8.715
## 6 1 414.500 5 8,566 1 9.056
## -----------------------------------------------------
##
## ============================================================================================
## (Intercept) assess bdrms lotsize colonial llotsize
## --------------------------------------------------------------------------------------------
## (Intercept) 88 27,784.800 314 793,748 61 783.649
## assess 27,784.800 9,563,053.000 102,507.500 278,300,049.000 19,578.900 250,005.600
## bdrms 314 102,507.500 1,182 2,933,767 228 2,802.953
## lotsize 793,748 278,300,049.000 2,933,767 16,165,159,010 555,967 7,457,452.000
## colonial 61 19,578.900 228 555,967 61 544.060
## llotsize 783.649 250,005.600 2,802.953 7,457,452.000 544.060 7,004.230
## --------------------------------------------------------------------------------------------
Normalizando |XtX|
library(stargazer)
options(scipen = 999)
Sn<-solve(diag(sqrt(diag(XX_matrix))))
stargazer(Sn,type = "text")##
## ======================================
## 0.107 0 0 0 0 0
## 0 0.0003 0 0 0 0
## 0 0 0.029 0 0 0
## 0 0 0 0.00001 0 0
## 0 0 0 0 0.128 0
## 0 0 0 0 0 0.012
## --------------------------------------
Normalizada \(|X^{t}X|\)
##
## =========================================
## 1 0.9578 0.9736 0.6655 0.8326 0.9982
## 0.9578 1 0.9642 0.7078 0.8106 0.9660
## 0.9736 0.9642 1 0.6712 0.8491 0.9742
## 0.6655 0.7078 0.6712 1 0.5599 0.7008
## 0.8326 0.8106 0.8491 0.5599 1 0.8323
## 0.9982 0.9660 0.9742 0.7008 0.8323 1
## -----------------------------------------
Cálculo del indice de condición Autovalores de \(|X^{t}X|\) Normalizada:
library(stargazer)
#autovalores
lambdas<-eigen(XX_norm,symmetric = TRUE)
stargazer(lambdas$values,type = "text")##
## ====================================
## 5.193 0.492 0.237 0.049 0.028 0.0005
## ------------------------------------
Cálculo de κ(x)=λmaxλmin−−−−√
## [1] 106.4903
Uso de la libreria “mctest”, para obtener el indice de condición
##
## Call:
## eigprop(x = X_mat[, -1])
##
## Eigenvalues CI Intercept assess bdrms lotsize colonial llotsize
## 1 5.1934 1.0000 0.0000 0.0014 0.0012 0.0037 0.0079 0.0000
## 2 0.4923 3.2479 0.0000 0.0001 0.0015 0.2963 0.0615 0.0000
## 3 0.2365 4.6860 0.0003 0.0113 0.0041 0.0322 0.8545 0.0002
## 4 0.0491 10.2888 0.0048 0.4576 0.0148 0.0101 0.0021 0.0027
## 5 0.0283 13.5505 0.0012 0.2138 0.9074 0.0093 0.0696 0.0017
## 6 0.0005 106.4903 0.9936 0.3158 0.0711 0.6484 0.0044 0.9954
##
## ===============================
## Row 5==> bdrms, proportion 0.907364 >= 0.50
## Row 6==> lotsize, proportion 0.648440 >= 0.50
## Row 3==> colonial, proportion 0.854491 >= 0.50
## Row 6==> llotsize, proportion 0.995427 >= 0.50
Prueba de Farrar-Glaubar Calculo de |R| Normalizado la matriz X (mostrar las primeras 6 filas)
##
## =========================================
## assess bdrms lotsize colonial llotsize
## -----------------------------------------
## 1 0.350 0.513 -0.284 0.662 -0.340
## 2 0.375 -0.675 0.087 0.662 0.543
## 3 -1.029 -0.675 -0.375 -1.495 -0.641
## 4 -0.881 -0.675 -0.434 0.662 -0.866
## 5 0.035 0.513 -0.287 0.662 -0.349
## 6 1.036 1.702 -0.045 0.662 0.277
## -----------------------------------------
Calculando matriz R
library(stargazer)
n<-nrow(Zn)
R<-(t(Zn)%*%Zn)*(1/(n-1))
#calculo de R a través de cor(X_mat[,-1])
stargazer(R,type = "text",digits = 4)##
## ================================================
## assess bdrms lotsize colonial llotsize
## ------------------------------------------------
## assess 1 0.4825 0.3281 0.0829 0.5717
## bdrms 0.4825 1 0.1363 0.3046 0.1695
## lotsize 0.3281 0.1363 1 0.0140 0.8079
## colonial 0.0829 0.3046 0.0140 1 0.0386
## llotsize 0.5717 0.1695 0.8079 0.0386 1
## ------------------------------------------------
Calcular |R|
## [1] 0.1419755
Prueba de Farrer Glaubar (Bartlett) Estadistico χ2FG
## [1] 164.9525
#Valor Critico
## [1] 18.30704
χ2FG≥V.C. por lo tanto se rechaza H0, y hay evidencia de colinealidad en los regresores.
Libreria psych
## $chisq
## [1] 164.9525
##
## $p.value
## [1] 0.000000000000000000000000000003072151
##
## $df
## [1] 10
Factores Inflacionarios de la Varianza (FIV)
los denominados, variance inflation factor (VIF), por sus siglas en inglés, determinan el tamaño relativo de la varianza del j-ésimo parámetro estimado, respecto a la varianza esperada del estimador en ausencia de colinealidad.
Estimador de la varianza para el j-ésimo parámetro:
Var(βj)=σ2ε(n−1).Var(Xj).11−R2j
Estimador mínimo de la varianza para el j-ésimo parámetro (en ausencia de colinealidad R2j=0):
Var(βj)mín=σ2ε(n−1).Var(Xj)
Fórmula para el cálculo de los VIF FIV (VIF): VIFj=Var(βj)Var(βj)mín=11−R2j
Donde R2j, es el coeficiente de determinación de la regresión de Xj contra el resto de regresores.
Matricialmente los VIF, se obtienen de la diagonal principal de la inversa de la matriz de Correlación:
VIFj=1,2,…,k−1=diag(R−1)
Cálculo de los VIF para el modelo estimado
Matriz de Correlación de los regresores del modelo (Como se obtuvo con anterioridad):
## assess bdrms lotsize colonial llotsize
## assess 1.00000000 0.4824739 0.32814633 0.08293582 0.5716654
## bdrms 0.48247394 1.0000000 0.13632563 0.30457549 0.1694902
## lotsize 0.32814633 0.1363256 1.00000000 0.01401865 0.8078552
## colonial 0.08293582 0.3045755 0.01401865 1.00000000 0.0386421
## llotsize 0.57166539 0.1694902 0.80785523 0.03864210 1.0000000
Inversa de la matriz de correlación R−1:
## assess bdrms lotsize colonial llotsize
## assess 2.1535576 -0.9010888 0.8347216 0.1520968 -1.7586001
## bdrms -0.9010888 1.5104833 -0.3640744 -0.4021983 0.5687703
## lotsize 0.8347216 -0.3640744 3.2049651 0.1130042 -3.0089889
## colonial 0.1520968 -0.4021983 0.1130042 1.1142184 -0.1531266
## llotsize -1.7586001 0.5687703 -3.0089889 -0.1531266 4.3456744
VIF’s para el modelo estimado
## assess bdrms lotsize colonial llotsize
## 2.153558 1.510483 3.204965 1.114218 4.345674
Librería “car” y “mctest” Obtención de los VIF’s, con la librería “car”
## assess bdrms lotsize colonial llotsize
## 2.153558 1.510483 3.204965 1.114218 4.345674
VIF’s, via librería “mctest”