Biostat meeting - May 16, 2019

Outline

  • Rationale

  • Platform trial

  • Study design

  • Statistical aspects

  • Simulations

Rationale

Clinical challenges

  • In Sweden, more than 10000 new diagnosed prostate cancer cases every year

  • \(\sim\) 2500 patients develop metastatic castrate resistant prostate cancer (mCRPC)

  • Multiplicity of available treatments for mCRPC and new therapies are expected to soon enrich the landscape of available therapies

  • Very heterogeneous response rates and increasing costs

  • How to optimize the treatment selection and identify the optimal sequencing of available therapies?

Biomarkers

  • A molecule, gene, or characteristics which identify a particular pathological process or disease

  • Selected binary biomarkers (mutated/not mutated) based on retrospective studies:
  1. AR alterations (ARA)
  2. DNA repair deficiencies (DRD)
  3. PTEN pathway activation (TP53)
  4. TMPRSS2-ERG gene fusion (TEfus)


Are biomarkers predictive (not only prognostic) of treatment response?

Statistical challenges

  • Multiplicity of treatments

  • Heterogeneous population

  • Different prevelances (and combinations) of biomarkers

  • No clear definition of control group

  • Multiple research questions

  • Continuous improvements

Platform trial

Why not a traditional clinical trial?

  • Traditional clinical trials are ineffective for addressing multiple questions
  • Conventional 2-group clinical trials are simple but inefficient (separate control population, different protocols, too large or not sufficiently powered)
  • High costs, slow progress, and a high failure rate


  • Platform trial may be an efficient strategy for evaluating multiple treatments

Platform trial

  • Focus is on the disease rather than any particular experimental therapy.
  • One master protocol and consent process, common IT infrastructure, logistics, DSMB.
Characteristic Traditional Trial Platform trial
Aim Efficacy of a single agent Efficacy of multiple agents in heterogeneous population
Duration Finite (to answer one primary question) Potentially long-term
No. treatments Generally limited Multiple treatments; new agents may be introduced, other may leave
Stopping rules Interim analysis Some treatments may be removed (efficacy/futility) but the trial continues
Randomization Fixed Response-adaptive

Study design

ProBio objectives

Primary objective Investigate whether treatment decision based on biomarkers improves progression free survival (PFS) compared with standard of care.
Secondary objectives Investigate whether treatment decision based on biomarkers improves response rate at 2 months, time to PSA progression, time to radiographic progression, overall survival, quality of life, and health economy. In addition, we will compare adverse events.
Design Randomized platform trial.
Study centers Nation wide study (14 centers), interests from other Nordic countries, Belgium, and the UK.

ProBio overview

Trial design

Biomarker subgroup combinations

  • Characteristics specific to the tumor or patient

  • Defined as the combination of the 4 biomarkers (\(2^4 = 16\) possibilities)

ARA DRD TP53 TEfus prev
\(-\) \(-\) \(-\) \(-\) 32.4
\(-\) \(-\) \(-\) \(+\) 6.7
\(-\) \(-\) \(+\) \(-\) 17.1
\(-\) \(-\) \(+\) \(+\) 11.4
\(-\) \(+\) \(-\) \(-\) 6.7
\(-\) \(+\) \(-\) \(+\) 4.8
\(-\) \(+\) \(+\) \(-\) 1.9
\(-\) \(+\) \(+\) \(+\) 1.0
\(+\) \(-\) \(-\) \(-\) 4.8
\(+\) \(-\) \(-\) \(+\) 3.8
\(+\) \(-\) \(+\) \(-\) 1.0
\(+\) \(-\) \(+\) \(+\) 3.8
\(+\) \(+\) \(-\) \(-\) 2.9
\(+\) \(+\) \(-\) \(+\) 1.0
\(+\) \(+\) \(+\) \(-\) 1.0

Biomarker signatures

  • Groupings of biomarker subgroup combination (or biomarker) that are potential indications for treatment decision and/or prognosis

  • Signatures of interest:
  1. All patients (null hypothesis of the trial)
  2. TP53- & AR- (hormonal therapies)
  3. TP53+ (poor prognosis)
  4. DRD+ (Carboplatin)
  5. TEfus+ (chemiotherapy)

signatures —- —+ –+- –++ -+– -+-+ -++- -+++ +— +–+ +-+- +-++ ++– ++-+ +++- prev
all X X X X X X X X X X X X X X X 100.0
TP53- & AR- X X X X 50.5
TP53+ X X X X X X X 37.1
DRD+ X X X X X X X 19.0
TEfus+ X X X X X X X 32.4



Subgroup combinations vs. signatures

  • Each patient belongs to one and only one biomarker subgroup combination, while he may belong to multiple biomarker signatures

  • Prevalences of some subgroup combinations may be low, while prevalences of biomarker signatures are generally moderate

Key points

  • Patients are stratified based on their biomarker subgroup combination, and then randomized to either the control (standard of care) or one of the active arms

  • Outcome-adaptive randomization is implemented to assign more patients to more promising (effective) treatments within the biomarker subgroup combinations

  • Treatments are constantly (monthly) evaluated within the biomarker signatures

  • Highly effective treatments will graduate from the platform trial and enter into a validation trial (fixed randomization 1:1)

  • Patients who progress, will be re-genotyped and re-randomized (max 2 randomizations)

Statistical aspects

(Outcome-Adaptive) Randomization

  • Fixed before enrolling 50 patients in the active arms

  • After, randomization probabilities will be updated monthly based on the accumulated data (PFS)

  • Proportional to \(\pi_{ij}\), the (Bayesian) probability of superiority for a treatment \(i\) in the biomarker subgroup combination \(j\):

\[P_{ij}(t) \propto P_{ij}^2(t-1) + \pi_{ij}^2\]

Probability of superiority (within biomarker subgroup combination)

Evaluation of therapies

  • Treatments are compared within the biomarker signatures of interest using the control group as comparator

  • the main outcome is a survival time. We will use Bayesian parametric model to contrast the distributions of PFS

  • Monthly, we will decide if continuing enrollment of new patients to a treatment signature combination, or to early stop (graduation, futility, max patients)

Decision rules for treatment \(i\) in the biomarker signature \(s\)

  • graduation:
    • \(n_{is} \ge 20\)
    • \(\pi_{is} \ge .85\)
    • \(\pi_{ij} \ge .65\), with \(j \in s\)
  • stop futility:
    • \(n_{is} \ge 20\)
    • \(\pi_{is} \le .15\)
    • \(\pi_{ij} \le .3\), with \(j \in s\)
  • stop max patients:
    • \(n_{is} \ge 150\)

Fictitious data

Control Treatment
0.93, 1.15, 1.42, 2.55, 2.63, 2.87, 3.08, 3.97, 5.49, 5.81, 6.34, 6.43, 6.68, 6.95, 7.43, 7.43, 7.99, 8.69, 10.29, 10.88, 11.91, 16.88, 19.93, 20.00+, 20.00+ 0.31, 0.48, 1.19, 2.66, 3.18, 3.89, 4.81, 5.23, 5.26, 5.62, 6.09, 6.78, 8.12, 8.46, 8.49, 10.51, 15.35, 17.06, 19.61, 20.00+, 20.00+, 20.00+, 20.00+, 20.00+, 20.00+

Probability of superiority over time

Additional details

  • \(T_{is} \sim \text{Weibull}(\lambda_{is}, k)\)
  • \(f(t_{is};\lambda_{is},k) = \lambda_{is} kt_{is}^{k-1}\exp(-\lambda_{is} t_{is}^k)\)
  • \(k = 1.05\) based on the ProBio pilot data

  • \(\lambda_{is} \sim \text{Gamma}(a, b)\), with \(a = 10\), and \(b = 80\)
  • \(\lambda_{is} | \underline{t_{is}} \sim \text{Gamma}(a^*, b^*)\), with \(a^* = a + \sum_{j = 1}^{n_{is}} \delta_{jis}\) and \(b^* = b + \sum_{j = 1}^{n_{is}} t_{jis}^k\)
  • \(P(\mu_{is} > \mu_{os})\) is computed through MCMC

Simulations

Operating characteristics

  • Complicated design – complicated assessment of operating characteristics
  • Statistical simulations
  • Different types of errors
    • Graduation when there is no effect
    • Fail to graduate when there is an effect
    • Graduate drug-signature combination where the biomarker subgroup is too large
    • Fail to graduate drug-signature combination where the biomarker subgroup is too small
  • Discovery trial, relatively liberal graduation criteria
  • Graduated combinations will be validated in a side trial nested within the ProBio platform

http://alessiocrippa.com/shiny/probio_dsmb/

  • Simulation Scenarios:
    1. no treatment works better in any signature
    2. one treatment (Carboplatin) works better (HR \(\approx\) 2)
    3. one treatment (Carboplatin) works better (HR \(\approx\) 2.4) only in the biomarker subgroup combination belonging to the signature DRD+
    4. hormonal therapies work better in the signature TP53- & AR-, Carboplatin in the signature DRD+, while chemotherapies work better in the signature TEfus+ with HR ranging from 2 to 3.
  • Results:
    1. Assumed PFS times (median)
    2. Error rate and power
    3. Average number of enrolled participants
    4. Probabilities of superiority
    5. Graduation times

Scenario 1

True PFS times

     Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel
----         6.32        6.32        6.32        6.32      6.32
---+         6.32        6.32        6.32        6.32      6.32
--+-         6.32        6.32        6.32        6.32      6.32
--++         6.32        6.32        6.32        6.32      6.32
-+--         6.32        6.32        6.32        6.32      6.32
-+-+         6.32        6.32        6.32        6.32      6.32
-++-         6.32        6.32        6.32        6.32      6.32
-+++         6.32        6.32        6.32        6.32      6.32
+---         6.32        6.32        6.32        6.32      6.32
+--+         6.32        6.32        6.32        6.32      6.32
+-+-         6.32        6.32        6.32        6.32      6.32
+-++         6.32        6.32        6.32        6.32      6.32
++--         6.32        6.32        6.32        6.32      6.32
++-+         6.32        6.32        6.32        6.32      6.32
+++-         6.32        6.32        6.32        6.32      6.32

Error rate

[1] 0.978
Enzalutamide  Abiraterone  Carboplatin  Cabazitaxel    Docetaxel 
       0.116        0.086        0.104        0.084        0.114 

Average number of participants

            Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel
all                153.1       156.2       146.1       144.1     149.3
TP53- & AR-         80.9        82.9        70.7        65.5      68.6
TP53+               54.6        55.5        55.4        58.5      60.5
DRD+                23.5        24.8        44.1        24.9      23.6
TEfus+              46.8        47.5        47.4        52.0      53.4

Probabilities of superiority

            Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel
all                 0.39        0.40        0.40        0.38      0.40
TP53- & AR-         0.41        0.42        0.42        0.41      0.41
TP53+               0.44        0.44        0.44        0.43      0.45
DRD+                0.44        0.45        0.47        0.44      0.44
TEfus+              0.43        0.43        0.44        0.42      0.43

Time to graduation

            Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel
all                35.88       35.93       35.71       35.91     35.88
TP53- & AR-        34.22       34.64       34.85       35.05     34.73
TP53+              35.73       35.70       35.57       35.81     35.54
DRD+               35.93       35.94       35.67       35.95     35.96
TEfus+             35.81       35.77       35.80       35.68     35.86

Scenario 2

True PFS times

     Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel
----         6.32        6.32       12.81        6.32      6.32
---+         6.32        6.32       12.81        6.32      6.32
--+-         6.32        6.32       12.81        6.32      6.32
--++         6.32        6.32       12.81        6.32      6.32
-+--         6.32        6.32       12.81        6.32      6.32
-+-+         6.32        6.32       12.81        6.32      6.32
-++-         6.32        6.32       12.81        6.32      6.32
-+++         6.32        6.32       12.81        6.32      6.32
+---         6.32        6.32       12.81        6.32      6.32
+--+         6.32        6.32       12.81        6.32      6.32
+-+-         6.32        6.32       12.81        6.32      6.32
+-++         6.32        6.32       12.81        6.32      6.32
++--         6.32        6.32       12.81        6.32      6.32
++-+         6.32        6.32       12.81        6.32      6.32
+++-         6.32        6.32       12.81        6.32      6.32

Error rate

[1] 0.424
Enzalutamide  Abiraterone  Carboplatin  Cabazitaxel    Docetaxel 
       0.116        0.114        0.172        0.094        0.102 

Power

[1] 0.806

Average number of participants

            Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel
all                160.6       156.9        96.2       149.2     149.4
TP53- & AR-         85.6        82.4        45.2        67.7      66.1
TP53+               56.1        55.3        38.2        60.2      61.6
DRD+                25.6        26.2        30.4        25.3      25.1
TEfus+              49.8        49.9        26.9        55.2      56.3

Probabilities of superiority

            Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel
all                 0.40        0.38        0.98        0.38      0.38
TP53- & AR-         0.41        0.41        0.96        0.40      0.39
TP53+               0.44        0.42        0.88        0.42      0.44
DRD+                0.44        0.44        0.90        0.43      0.42
TEfus+              0.44        0.43        0.86        0.42      0.43

Time to graduation

            Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel
all                35.83       35.78       20.38       35.71     35.83
TP53- & AR-        34.55       34.40       21.95       34.96     35.02
TP53+              35.76       35.81       27.94       35.67     35.85
DRD+               35.92       35.79       25.22       35.95     35.95
TEfus+             35.72       35.84       31.20       35.68     35.54

Scenario 3

True PFS times

     Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel
----         6.32        6.32        5.11        6.32      6.32
---+         6.32        6.32        5.11        6.32      6.32
--+-         6.32        6.32        5.11        6.32      6.32
--++         6.32        6.32        5.11        6.32      6.32
-+--         6.32        6.32       15.13        6.32      6.32
-+-+         6.32        6.32       15.13        6.32      6.32
-++-         6.32        6.32       15.13        6.32      6.32
-+++         6.32        6.32       15.13        6.32      6.32
+---         6.32        6.32        5.11        6.32      6.32
+--+         6.32        6.32        5.11        6.32      6.32
+-+-         6.32        6.32        5.11        6.32      6.32
+-++         6.32        6.32        5.11        6.32      6.32
++--         6.32        6.32       15.13        6.32      6.32
++-+         6.32        6.32       15.13        6.32      6.32
+++-         6.32        6.32       15.13        6.32      6.32

Error rate

[1] 0.334
Enzalutamide  Abiraterone  Carboplatin  Cabazitaxel    Docetaxel 
       0.106        0.112        0.054        0.092        0.096 

Power

[1] 0.802

Average number of participants

            Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel
all                163.0       162.7       101.1       151.6     150.3
TP53- & AR-         87.5        84.5        47.3        68.3      67.5
TP53+               56.5        59.6        38.0        62.6      62.4
DRD+                23.3        23.3        37.7        23.7      24.1
TEfus+              49.0        49.0        35.9        53.4      54.1

Probabilities of superiority

            Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel
all                 0.39        0.40        0.82        0.38      0.39
TP53- & AR-         0.40        0.43        0.89        0.40      0.40
TP53+               0.43        0.43        0.54        0.43      0.44
DRD+                0.43        0.43        0.97        0.43      0.43
TEfus+              0.42        0.43        0.65        0.42      0.43

Time to graduation

            Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel
all                35.91       35.88       33.61       35.78     35.62
TP53- & AR-        34.40       34.46       32.05       35.16     34.99
TP53+              35.66       35.80       35.85       35.90     35.63
DRD+               35.93       35.86       21.30       35.90     35.96
TEfus+             35.88       35.81       35.09       35.63     35.62

Scenario 4

True PFS times

     Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel
----        11.06       12.23        5.11        5.11      5.11
---+        11.06       12.23        5.11       15.70     15.70
--+-         5.11        5.11        5.11        5.11      5.11
--++         5.11        5.11        5.11       15.70     15.70
-+--        11.06       12.23       13.97        5.11      5.11
-+-+        11.06       12.23       13.97       15.70     15.70
-++-         5.11        5.11       13.97        5.11      5.11
-+++         5.11        5.11       13.97       15.70     15.70
+---         5.11        5.11        5.11        5.11      5.11
+--+         5.11        5.11        5.11       15.70     15.70
+-+-         5.11        5.11        5.11        5.11      5.11
+-++         5.11        5.11        5.11       15.70     15.70
++--         5.11        5.11       13.97        5.11      5.11
++-+         5.11        5.11       13.97       15.70     15.70
+++-         5.11        5.11       13.97        5.11      5.11

Error rate

[1] 0.078
Enzalutamide  Abiraterone  Carboplatin  Cabazitaxel    Docetaxel 
       0.012        0.012        0.048        0.074        0.074 

Power

Enzalutamide  Abiraterone  Carboplatin  Cabazitaxel    Docetaxel 
       0.268        0.384        0.532        0.356        0.360 

Average number of participants

            Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel
all                162.5       167.8       115.3       119.6     120.6
TP53- & AR-        103.6       105.6        49.0        34.2      35.5
TP53+               43.6        46.3        47.1        64.7      64.7
DRD+                19.8        19.3        50.5        19.2      19.0
TEfus+              34.8        34.0        36.5        62.5      61.4

Probabilities of superiority

            Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel
all                 0.17        0.24        0.44        0.55      0.55
TP53- & AR-         0.63        0.74        0.57        0.37      0.37
TP53+               0.15        0.15        0.37        0.69      0.68
DRD+                0.30        0.32        0.90        0.33      0.33
TEfus+              0.19        0.22        0.31        0.88      0.88

Time to graduation

            Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel
all                35.90       35.81       35.95       35.92     35.95
TP53- & AR-        31.27       29.25       35.16       35.93     35.89
TP53+              35.97       35.96       35.91       34.92     34.93
DRD+               35.94       35.99       26.52       35.96     35.98
TEfus+             35.97       36.00       35.86       30.01     29.96