The narrative text can go in here and between the code chunks. Then you can knit the paper to PDF (or use make) and you’ve got a (more) easily reproducible paper.

source("temperature-plots.R", print.eval = TRUE, echo = TRUE)
## 
## > require(plyr)
## Loading required package: plyr
## 
## > require(ggplot2)
## Loading required package: ggplot2
## 
## > setwd("C:/Users/marwick/Downloads/OluridaSurvey2014-master/OluridaSurvey2014-master")
## 
## > daby1edit <- read.csv("data/Dabob-temp-2014.csv")
## 
## > daby1edit$Date <- as.Date(daby1edit$Date, "%m/%d/%Y")
## 
## > dabmeantemp <- ddply(daby1edit, .(Date), summarise, 
## +     mean_temp = mean(Temp, na.rm = T), min_temp = min(Temp, na.rm = T), 
## +     max_temp = max .... [TRUNCATED] 
## 
## > many1v3 <- read.csv("./data/Manchester-temp-2014.csv")
## 
## > many1v3$Date <- as.Date(many1v3$Date, "%m/%d/%Y")
## 
## > manmeantemp <- ddply(many1v3, .(Date), summarise, 
## +     mean_temp = mean(Temp, na.rm = T), min_temp = min(Temp, na.rm = T), 
## +     max_temp = max(T .... [TRUNCATED] 
## 
## > fidy1v3 <- read.csv("./data/Fidalgo-temp-2014.csv")
## 
## > fidy1v3$Date <- as.Date(fidy1v3$Date, "%m/%d/%Y")
## 
## > fidmeantemp <- ddply(fidy1v3, .(Date), summarise, 
## +     mean_temp = mean(Temp, na.rm = T), min_temp = min(Temp, na.rm = T), 
## +     max_temp = max(T .... [TRUNCATED] 
## 
## > oysy1edit <- read.csv("./data/OysterBay-temp-2014.csv")
## 
## > oysy1edit$Date <- as.Date(oysy1edit$Date, "%m/%d/%Y")
## 
## > oysmeantemp <- ddply(oysy1edit, .(Date), summarise, 
## +     mean_temp = mean(Temp, na.rm = T), min_temp = min(Temp, na.rm = T), 
## +     max_temp = max .... [TRUNCATED] 
## 
## > ggplot() + geom_line(data = dabmeantemp, aes(x = Date, 
## +     y = mean_temp, group = 1), col = "forestgreen", size = 1, 
## +     guide = T) + geom_lin .... [TRUNCATED]

## 
## > ggplot() + geom_line(data = dabmeantemp, aes(x = Date, 
## +     y = mean_temp, group = 1, colour = "1"), size = 1) + geom_line(data = manmeantemp, 
## +  .... [TRUNCATED]

## 
## > ggplot() + geom_line(data = dabmeantemp, aes(x = Date, 
## +     y = min_temp, group = 1, colour = "1"), size = 1) + geom_line(data = manmeantemp, 
## +   .... [TRUNCATED]

## 
## > ggplot() + geom_line(data = dabmeantemp, aes(x = Date, 
## +     y = max_temp, group = 1, colour = "1"), size = 1) + geom_line(data = manmeantemp, 
## +   .... [TRUNCATED]

source("Kaplan-meier-stats-plot-all.R", print.eval = TRUE, echo = TRUE)
## 
## > require(survival)
## Loading required package: survival
## Loading required package: splines
## 
## > require(RVAideMemoire)
## Loading required package: RVAideMemoire
## Warning: package 'RVAideMemoire' was built under R version 3.1.2
## *** Package RVAideMemoire v 0.9-41 ***
## 
## > require(multcomp)
## Loading required package: multcomp
## Warning: package 'multcomp' was built under R version 3.1.2
## Loading required package: mvtnorm
## Warning: package 'mvtnorm' was built under R version 3.1.2
## Loading required package: TH.data
## Warning: package 'TH.data' was built under R version 3.1.2
## 
## > setwd("C:/Users/marwick/Downloads/OluridaSurvey2014-master/OluridaSurvey2014-master")
## 
## > kmdab = read.csv("./data/KMdataDabob.csv")
## 
## > names(kmdab)
## [1] "Animal"     "Population" "Death"      "Status"    
## 
## > with(kmdab, tapply(Death[Status == 1], Population[Status == 
## +     1], mean))
##        H        N        S 
## 4.384615 4.521614 4.714789 
## 
## > with(kmdab, tapply(Death[Status == 1], Population[Status == 
## +     1], var))
##         H         N         S 
## 0.4523810 0.9785777 1.6038795 
## 
## > fit1 = with(kmdab, survfit(Surv(Death, Status) ~ Population))
## 
## > summary(fit1)
## Call: survfit(formula = Surv(Death, Status) ~ Population)
## 
##                 Population=H 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     4    480     113    0.765  0.0194        0.728        0.803
##     5    307      53    0.633  0.0230        0.589        0.679
##     8    214       3    0.624  0.0232        0.580        0.671
## 
##                 Population=N 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     4    480     229    0.523  0.0228        0.480        0.570
##     5    208      97    0.279  0.0218        0.239        0.325
##     8     88      21    0.212  0.0209        0.175        0.258
## 
##                 Population=S 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     4    480     180    0.625  0.0221        0.583        0.670
##     5    249      71    0.447  0.0239        0.402        0.496
##     8    144      33    0.344  0.0241        0.300        0.395
## 
## 
## > plot(fit1, xlim = c(0, 11), col = c("#3366CC", "#CC66CC", 
## +     "#FF9900"), xlab = "Survival Time from Outplant in Months", 
## +     ylab = "Proporti ..." ... [TRUNCATED]

## 
## > legend("bottomleft", title = "Population", c("Dabob", 
## +     "Fidalgo", "Oyster Bay"), fill = c("#3366CC", "#CC66CC", 
## +     "#FF9900"))
## 
## > kmman = read.csv("./data/KMdataMan.csv")
## 
## > names(kmman)
## [1] "Animal"     "Population" "Death"      "Status"    
## 
## > with(kmman, tapply(Death[Status == 1], Population[Status == 
## +     1], mean))
##         H         N         S 
## 10.540000  9.367816  9.197368 
## 
## > with(kmman, tapply(Death[Status == 1], Population[Status == 
## +     1], var))
##        H        N        S 
## 1.518776 6.467789 6.320526 
## 
## > fit2 = with(kmman, survfit(Surv(Death, Status) ~ Population))
## 
## > summary(fit2)
## Call: survfit(formula = Surv(Death, Status) ~ Population)
## 
##                 Population=H 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     4    480       1    0.998 0.00208        0.994        1.000
##     6    446       1    0.996 0.00305        0.990        1.000
##    10    445      11    0.971 0.00791        0.956        0.987
##    11    434      37    0.888 0.01489        0.860        0.918
## 
##                 Population=N 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     4    480      13    0.973 0.00741        0.959        0.988
##     6    435       5    0.962 0.00885        0.945        0.979
##    10    430      26    0.904 0.01383        0.877        0.931
##    11    404      43    0.807 0.01857        0.772        0.845
## 
##                 Population=S 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     4    480      12    0.975 0.00713        0.961        0.989
##     6    436       4    0.966 0.00835        0.950        0.983
##    10    432      33    0.892 0.01456        0.864        0.921
##    11    399      27    0.832 0.01761        0.798        0.867
## 
## 
## > plot(fit2, col = c("#3366CC", "#CC66CC", "#FF9900"), 
## +     xlab = "Survival Time from Outplant in Months", ylab = "Proportion Surviving", 
## +     lw .... [TRUNCATED]

## 
## > legend("bottomleft", title = "Population", c("Dabob", 
## +     "Fidalgo", "Oyster Bay"), fill = c("#3366CC", "#CC66CC", 
## +     "#FF9900"))
## 
## > kmfid = read.csv("./data/KMdataFid.csv")
## 
## > with(kmfid, tapply(Death[Status == 1], Population[Status == 
## +     1], mean))
##        H        N        S 
## 5.921053 5.754098 6.897436 
## 
## > with(kmfid, tapply(Death[Status == 1], Population[Status == 
## +     1], var))
##        H        N        S 
## 2.553684 2.188525 3.989344 
## 
## > fit3 = with(kmfid, survfit(Surv(Death, Status) ~ Population))
## 
## > summary(fit3)
## Call: survfit(formula = Surv(Death, Status) ~ Population)
## 
##                 Population=H 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     4    480      21    0.956 0.00934        0.938        0.975
##     6    426      43    0.860 0.01629        0.828        0.892
##     9    383      12    0.833 0.01753        0.799        0.868
## 
##                 Population=N 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     4    480      18    0.963 0.00867        0.946        0.980
##     6    430      36    0.882 0.01511        0.853        0.912
##     9    394       7    0.866 0.01596        0.836        0.898
## 
##                 Population=S 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     4    480      16    0.967 0.00819        0.951        0.983
##     6    431      28    0.904 0.01380        0.877        0.931
##     9    403      34    0.828 0.01778        0.793        0.863
## 
## 
## > plot(fit3, col = c("#3366CC", "#CC66CC", "#FF9900"), 
## +     xlab = "Survival Time from Outplant in Months", ylab = "Proportion Surviving", 
## +     lw .... [TRUNCATED]

## 
## > legend("bottomleft", title = "Population", c("Dabob", 
## +     "Fidalgo", "Oyster Bay"), fill = c("#3366CC", "#CC66CC", 
## +     "#FF9900"))
## 
## > kmoys = read.csv("./data/KMdataOys.csv")
## 
## > with(kmoys, tapply(Death[Status == 1], Population[Status == 
## +     1], mean))
##        H        N        S 
## 7.550000 8.069124 8.395760 
## 
## > with(kmoys, tapply(Death[Status == 1], Population[Status == 
## +     1], var))
##        H        N        S 
## 7.774460 5.805385 5.814450 
## 
## > fit4 = with(kmoys, survfit(Surv(Death, Status) ~ Population))
## 
## > summary(fit4)
## Call: survfit(formula = Surv(Death, Status) ~ Population)
## 
##                 Population=H 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     4    480      50    0.896  0.0139        0.869        0.924
##     6    397       3    0.889  0.0144        0.861        0.918
##     9    394      52    0.772  0.0196        0.734        0.811
##    10    342      14    0.740  0.0206        0.701        0.782
##    11    328      21    0.693  0.0217        0.652        0.737
## 
##                 Population=N 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     4    480      47    0.902  0.0136        0.876        0.929
##     6    403      16    0.866  0.0157        0.836        0.898
##     9    387      94    0.656  0.0223        0.614        0.701
##    10    293      39    0.569  0.0233        0.525        0.616
##    11    254      21    0.522  0.0235        0.477        0.570
## 
##                 Population=S 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     4    480      52    0.892  0.0142        0.864        0.920
##     6    395      25    0.835  0.0172        0.802        0.870
##     9    370      69    0.679  0.0220        0.638        0.724
##    10    301     110    0.431  0.0234        0.388        0.480
##    11    191      27    0.370  0.0229        0.328        0.418
## 
## 
## > plot(fit4, col = c("#3366CC", "#CC66CC", "#FF9900"), 
## +     xlab = "Survival Time from Outplant in Months", ylab = "Proportion Surviving", 
## +     lw .... [TRUNCATED]

## 
## > legend("bottomleft", title = "Population", c("Dabob", 
## +     "Fidalgo", "Oyster Bay"), fill = c("#3366CC", "#CC66CC", 
## +     "#FF9900"))
## 
## > mansurv <- survdiff(Surv(Death, Status) ~ Population, 
## +     data = kmman, rho = 1)
## 
## > print(mansurv)
## Call:
## survdiff(formula = Surv(Death, Status) ~ Population, data = kmman, 
##     rho = 1)
## 
##                N Observed Expected (O-E)^2/E (O-E)^2/V
## Population=H 480     46.8     69.8     7.584     12.95
## Population=N 480     82.9     66.6     4.001      6.66
## Population=S 480     73.0     66.3     0.676      1.12
## 
##  Chisq= 13.7  on 2 degrees of freedom, p= 0.00105 
## 
## > dabsurv <- survdiff(Surv(Death, Status) ~ Population, 
## +     data = kmdab)
## 
## > print(dabsurv)
## Call:
## survdiff(formula = Surv(Death, Status) ~ Population, data = kmdab)
## 
##                N Observed Expected (O-E)^2/E (O-E)^2/V
## Population=H 480      169      290     50.59    118.14
## Population=N 480      347      245     42.05     91.28
## Population=S 480      284      264      1.45      3.21
## 
##  Chisq= 141  on 2 degrees of freedom, p= 0 
## 
## > fidsurv <- survdiff(Surv(Death, Status) ~ Population, 
## +     data = kmfid)
## 
## > print(fidsurv)
## Call:
## survdiff(formula = Surv(Death, Status) ~ Population, data = kmfid)
## 
##                N Observed Expected (O-E)^2/E (O-E)^2/V
## Population=H 480       76     71.0     0.359     0.571
## Population=N 480       61     71.8     1.619     2.590
## Population=S 480       78     72.3     0.455     0.730
## 
##  Chisq= 2.6  on 2 degrees of freedom, p= 0.274 
## 
## > oyssurv <- survdiff(Surv(Death, Status) ~ Population, 
## +     data = kmoys)
## 
## > print(oyssurv)
## Call:
## survdiff(formula = Surv(Death, Status) ~ Population, data = kmoys)
## 
##                N Observed Expected (O-E)^2/E (O-E)^2/V
## Population=H 480      140      227    33.168     60.10
## Population=N 480      217      210     0.201      0.35
## Population=S 480      283      203    31.724     54.35
## 
##  Chisq= 76.3  on 2 degrees of freedom, p= 0
source("sizedist-stats-plot.R", print.eval = TRUE, echo = TRUE)
## 
## > require(ggplot2)
## 
## > require(plyr)
## 
## > require(splitstackshape)
## Loading required package: splitstackshape
## Warning: package 'splitstackshape' was built under R version 3.1.2
## Loading required package: data.table
## 
## > require(nparcomp)
## Loading required package: nparcomp
## Warning: package 'nparcomp' was built under R version 3.1.2
## 
## > require(PMCMR)
## Loading required package: PMCMR
## Warning: package 'PMCMR' was built under R version 3.1.2
## 
## > setwd("C:/Users/marwick/Downloads/OluridaSurvey2014-master/OluridaSurvey2014-master")
## 
## > y1size = read.csv("./data/Size-outplant-end-all-2013-14.csv")
## 
## > y1size$Date <- as.Date(y1size$Date, "%m/%d/%Y")
## 
## > y1meansize <- ddply(y1size, .(Date, Site, Pop), summarise, 
## +     mean_size = mean(Length.mm, na.rm = T))
## 
## > outmany1 <- ddply(y1size, .(Length.mm, Pop, Tray, 
## +     Sample, Area), subset, Date == "2013-08-16" & Site == "Manchester")
## 
## > outfidy1 <- ddply(y1size, .(Length.mm, Pop, Tray, 
## +     Sample, Area), subset, Date == "2013-08-16" & Site == "Fidalgo")
## 
## > outoysy1 <- ddply(y1size, .(Length.mm, Pop, Tray, 
## +     Sample, Area), subset, Date == "2013-08-16" & Site == "Oyster Bay")
## 
## > endmany1 <- ddply(y1size, .(Length.mm, Pop, Tray, 
## +     Sample, Area), subset, Date == "2014-10-24" & Site == "Manchester")
## 
## > endfidy1 <- ddply(y1size, .(Length.mm, Pop, Tray, 
## +     Sample, Area), subset, Date == "2014-10-17" & Site == "Fidalgo")
## 
## > endoysy1 <- ddply(y1size, .(Length.mm, Pop, Tray, 
## +     Sample, Area), subset, Date == "2014-09-19" & Site == "Oyster Bay")
## 
## > ggplot() + geom_boxplot(data = outmany1, aes(x = Pop, 
## +     y = Length.mm, fill = Pop)) + scale_colour_manual(values = c("blue", 
## +     "purple", " ..." ... [TRUNCATED]

## 
## > ggplot() + geom_boxplot(data = endmany1, aes(x = Pop, 
## +     y = Length.mm, fill = Pop)) + scale_colour_manual(values = c("blue", 
## +     "purple", " ..." ... [TRUNCATED]

## 
## > ggplot() + geom_boxplot(data = outfidy1, aes(x = Pop, 
## +     y = Length.mm, fill = Pop)) + scale_colour_manual(values = c("blue", 
## +     "purple", " ..." ... [TRUNCATED]

## 
## > ggplot() + geom_boxplot(data = endfidy1, aes(x = Pop, 
## +     y = Length.mm, fill = Pop)) + scale_colour_manual(values = c("blue", 
## +     "purple", " ..." ... [TRUNCATED]
## Warning: Removed 1 rows containing non-finite values (stat_boxplot).

## 
## > ggplot() + geom_boxplot(data = outoysy1, aes(x = Pop, 
## +     y = Length.mm, fill = Pop)) + scale_colour_manual(values = c("blue", 
## +     "purple", " ..." ... [TRUNCATED]

## 
## > ggplot() + geom_boxplot(data = endoysy1, aes(x = Pop, 
## +     y = Length.mm, fill = Pop)) + scale_colour_manual(values = c("blue", 
## +     "purple", " ..." ... [TRUNCATED]
## Warning: Removed 1 rows containing non-finite values (stat_boxplot).
## 
## > normality <- ddply(y1size, .(Date, Site, Pop), summarize, 
## +     n = length(Length.mm), sw = shapiro.test(as.numeric(Length.mm))[2])
## 
## > y1size$Pop2 <- y1size$Pop
## 
## > y1size$Pop2 <- revalue(y1size$Pop2, c(`1H` = "H", 
## +     `2H` = "H", `4H` = "H", `1N` = "N", `2N` = "N", `4N` = "N", 
## +     `1S` = "S", `2S` = "S",  .... [TRUNCATED] 
## 
## > endy1 <- ddply(y1size, .(Length.mm, Site, Pop, Tray, 
## +     Sample, Area, Pop2), subset, Date >= "2014-09-19")
## 
## > normality <- ddply(endy1, .(Date, Site, Pop), summarize, 
## +     n = length(Length.mm), sw = shapiro.test(as.numeric(Length.mm))[2])
## 
## > sizekw <- kruskal.test(endy1$Length.mm ~ endy1$Site, 
## +     endy1)
## 
## > print(sizekw)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  endy1$Length.mm by endy1$Site
## Kruskal-Wallis chi-squared = 383.4411, df = 2, p-value < 2.2e-16
## 
## 
## > sizekwpop <- kruskal.test(endy1$Length.mm ~ endy1$Pop2, 
## +     endy1)
## 
## > print(sizekwpop)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  endy1$Length.mm by endy1$Pop2
## Kruskal-Wallis chi-squared = 196.062, df = 2, p-value < 2.2e-16
## 
## 
## > sizenemenyi1 <- posthoc.kruskal.nemenyi.test(x = endy1$Length.mm, 
## +     g = endy1$Site, method = "Tukey")
## Warning in posthoc.kruskal.nemenyi.test(x = endy1$Length.mm, g =
## endy1$Site, : Ties are present, p-values are not corrected.
## 
## > sizenemenyi1
## 
##  Pairwise comparisons using Tukey and Kramer (Nemenyi) test  
##                    with Tukey-Dist approximation for independent samples 
## 
## data:  endy1$Length.mm and endy1$Site 
## 
##            Fidalgo Manchester
## Manchester < 2e-16 -         
## Oyster Bay 1.8e-08 < 2e-16   
## 
## P value adjustment method: none 
## 
## > sizenemenyi2 <- posthoc.kruskal.nemenyi.test(x = endy1$Length.mm, 
## +     g = endy1$Pop2, method = "Tukey")
## Warning in posthoc.kruskal.nemenyi.test(x = endy1$Length.mm, g =
## endy1$Pop2, : Ties are present, p-values are not corrected.
## 
## > sizenemenyi2
## 
##  Pairwise comparisons using Tukey and Kramer (Nemenyi) test  
##                    with Tukey-Dist approximation for independent samples 
## 
## data:  endy1$Length.mm and endy1$Pop2 
## 
##   H       N      
## N < 2e-16 -      
## S 3.1e-14 2.7e-05
## 
## P value adjustment method: none 
## 
## > sizenemenyi3 <- posthoc.kruskal.nemenyi.test(x = endy1$Length.mm, 
## +     g = endy1$Site:endy1$Pop2, method = "Tukey")
## Warning in posthoc.kruskal.nemenyi.test(x = endy1$Length.mm, g =
## endy1$Site:endy1$Pop2, : Ties are present, p-values are not corrected.

## 
## > sizenemenyi3
## 
##  Pairwise comparisons using Tukey and Kramer (Nemenyi) test  
##                    with Tukey-Dist approximation for independent samples 
## 
## data:  endy1$Length.mm and endy1$Site:endy1$Pop2 
## 
##              Fidalgo:H Fidalgo:N Fidalgo:S Manchester:H Manchester:N
## Fidalgo:N    < 2e-16   -         -         -            -           
## Fidalgo:S    8.9e-14   0.99949   -         -            -           
## Manchester:H 1.4e-07   < 2e-16   < 2e-16   -            -           
## Manchester:N 1.00000   8.2e-14   1.0e-13   5.0e-06      -           
## Manchester:S 0.97486   < 2e-16   8.7e-14   0.00028      0.98814     
## Oyster Bay:H 2.4e-10   0.27292   0.62532   < 2e-16      1.6e-08     
## Oyster Bay:N < 2e-16   5.5e-11   4.0e-12   < 2e-16      < 2e-16     
## Oyster Bay:S 1.4e-09   0.68068   0.92391   7.9e-14      3.9e-08     
##              Manchester:S Oyster Bay:H Oyster Bay:N
## Fidalgo:N    -            -            -           
## Fidalgo:S    -            -            -           
## Manchester:H -            -            -           
## Manchester:N -            -            -           
## Manchester:S -            -            -           
## Oyster Bay:H 6.2e-12      -            -           
## Oyster Bay:N < 2e-16      1.2e-13      -           
## Oyster Bay:S 3.8e-11      1.00000      6.0e-12     
## 
## P value adjustment method: none
source("percbrood-temp-plot-OysterBay.R", print.eval = TRUE, echo = TRUE)
## 
## > require(plyr)
## 
## > require(ggplot2)
## 
## > require(scales)
## Loading required package: scales
## 
## > require(grid)
## Loading required package: grid
## 
## > require(gtable)
## Loading required package: gtable
## Warning: package 'gtable' was built under R version 3.1.2
## 
## > setwd("C:/Users/marwick/Downloads/OluridaSurvey2014-master/OluridaSurvey2014-master")
## 
## > brood <- read.csv("./data/Brood-numbers-all-2014.csv")
## 
## > brood$Date <- as.Date(brood$Date, "%m/%d/%Y")
## 
## > oysbay <- subset(brood, Site == "Oyster Bay")
## 
## > grid.newpage()

## 
## > p1 <- ggplot(data = oysbay, aes(x = Date, weight = Percent, 
## +     colour = Pop, fill = Pop)) + geom_bar(binwidth = 3, position = position_dodge())  .... [TRUNCATED] 
## 
## > oystemp <- read.csv("./data/OysterBay-temp-2014.csv")
## 
## > oystemp$Date <- as.Date(oystemp$Date, "%m/%d/%Y")
## 
## > oysmintemp <- ddply(oystemp, .(Date), summarise, min_temp = min(Temp, 
## +     na.rm = T))
## 
## > oysmintemprep <- subset(oysmintemp, Date >= "2014-05-01" & 
## +     Date <= "2014-08-07")
## 
## > p2 <- ggplot() + geom_line(data = oysmintemprep, aes(x = Date, 
## +     y = min_temp), color = "red") + ylim(c(8, 18)) + theme_bw() %+replace% 
## +      .... [TRUNCATED] 
## 
## > g1 <- ggplot_gtable(ggplot_build(p1))
## 
## > g2 <- ggplot_gtable(ggplot_build(p2))
## 
## > pp <- c(subset(g1$layout, name == "panel", se = t:r))
## 
## > g <- gtable_add_grob(g1, g2$grobs[[which(g2$layout$name == 
## +     "panel")]], pp$t, pp$l, pp$b, pp$l)
## 
## > ia <- which(g2$layout$name == "axis-l")
## 
## > ga <- g2$grobs[[ia]]
## 
## > ax <- ga$children[[2]]
## 
## > ax$widths <- rev(ax$widths)
## 
## > ax$grobs <- rev(ax$grobs)
## 
## > ax$grobs[[1]]$x <- ax$grobs[[1]]$x - unit(1, "npc") + 
## +     unit(0.15, "cm")
## 
## > g <- gtable_add_cols(g, g2$widths[g2$layout[ia, ]$l], 
## +     length(g$widths) - 1)
## 
## > g <- gtable_add_grob(g, ax, pp$t, length(g$widths) - 
## +     1, pp$b)
## 
## > grid.draw(g)
source("percbrood-temp-plot-Fidalgo.R", print.eval = TRUE,echo = TRUE)
## 
## > require(plyr)
## 
## > require(ggplot2)
## 
## > require(scales)
## 
## > require(grid)
## 
## > require(gtable)
## 
## > setwd("C:/Users/marwick/Downloads/OluridaSurvey2014-master/OluridaSurvey2014-master")
## 
## > brood <- read.csv("./data/Brood-numbers-all-2014.csv")
## 
## > brood$Date <- as.Date(brood$Date, "%m/%d/%Y")
## 
## > fidrep <- subset(brood, Site == "Fidalgo")
## 
## > grid.newpage()

## 
## > p1 <- ggplot(data = fidrep, aes(x = Date, weight = Percent, 
## +     colour = Pop, fill = Pop)) + geom_bar(binwidth = 3, position = position_dodge())  .... [TRUNCATED] 
## 
## > fidtemp <- read.csv("./data/Fidalgo-temp-2014.csv")
## 
## > fidtemp$Date <- as.Date(fidtemp$Date, "%m/%d/%Y")
## 
## > fidmintemp <- ddply(fidtemp, .(Date), summarise, min_temp = min(Temp, 
## +     na.rm = T))
## 
## > fidmintemprep <- subset(fidmintemp, Date >= "2014-05-02" & 
## +     Date <= "2014-08-08")
## 
## > p2 <- ggplot() + geom_line(data = fidmintemprep, aes(x = Date, 
## +     y = min_temp), color = "red") + labs(y = "Daily Minimum Water Temperature (C)" .... [TRUNCATED] 
## 
## > g1 <- ggplot_gtable(ggplot_build(p1))
## 
## > g2 <- ggplot_gtable(ggplot_build(p2))
## 
## > pp <- c(subset(g1$layout, name == "panel", se = t:r))
## 
## > g <- gtable_add_grob(g1, g2$grobs[[which(g2$layout$name == 
## +     "panel")]], pp$t, pp$l, pp$b, pp$l)
## 
## > ia <- which(g2$layout$name == "axis-l")
## 
## > ga <- g2$grobs[[ia]]
## 
## > ax <- ga$children[[2]]
## 
## > ax$widths <- rev(ax$widths)
## 
## > ax$grobs <- rev(ax$grobs)
## 
## > ax$grobs[[1]]$x <- ax$grobs[[1]]$x - unit(1, "npc") + 
## +     unit(0.15, "cm")
## 
## > g <- gtable_add_cols(g, g2$widths[g2$layout[ia, ]$l], 
## +     length(g$widths) - 1)
## 
## > g <- gtable_add_grob(g, ax, pp$t, length(g$widths) - 
## +     1, pp$b)
## 
## > grid.draw(g)
source("percbrood-temp-plot-Manchester.R", print.eval = TRUE, echo = TRUE)
## 
## > require(plyr)
## 
## > require(ggplot2)
## 
## > require(scales)
## 
## > require(grid)
## 
## > require(gtable)
## 
## > setwd("C:/Users/marwick/Downloads/OluridaSurvey2014-master/OluridaSurvey2014-master")
## 
## > brood <- read.csv("./data/Brood-numbers-all-2014.csv")
## 
## > brood$Date <- as.Date(brood$Date, "%m/%d/%Y")
## 
## > manrep <- subset(brood, Site == "Manchester")
## 
## > grid.newpage()

## 
## > p1 <- ggplot(data = manrep, aes(x = Date, weight = Percent, 
## +     colour = Pop, fill = Pop)) + geom_bar(binwidth = 3, position = position_dodge())  .... [TRUNCATED] 
## 
## > manch <- read.csv("./data/Manchester-temp-2014.csv")
## 
## > manch$Date <- as.Date(manch$Date, "%m/%d/%Y")
## 
## > manmintemp <- ddply(manch, .(Date), summarise, min_temp = min(Temp, 
## +     na.rm = T))
## 
## > manmintemprep <- subset(manmintemp, Date >= "2014-04-30" & 
## +     Date <= "2014-08-06")
## 
## > p2 <- ggplot() + geom_line(data = manmintemprep, aes(x = Date, 
## +     y = min_temp), color = "red") + ylim(c(8, 18)) + theme_bw() %+replace% 
## +      .... [TRUNCATED] 
## 
## > g1 <- ggplot_gtable(ggplot_build(p1))
## 
## > g2 <- ggplot_gtable(ggplot_build(p2))
## 
## > pp <- c(subset(g1$layout, name == "panel", se = t:r))
## 
## > g <- gtable_add_grob(g1, g2$grobs[[which(g2$layout$name == 
## +     "panel")]], pp$t, pp$l, pp$b, pp$l)
## 
## > ia <- which(g2$layout$name == "axis-l")
## 
## > ga <- g2$grobs[[ia]]
## 
## > ax <- ga$children[[2]]
## 
## > ax$widths <- rev(ax$widths)
## 
## > ax$grobs <- rev(ax$grobs)
## 
## > ax$grobs[[1]]$x <- ax$grobs[[1]]$x - unit(1, "npc") + 
## +     unit(0.15, "cm")
## 
## > g <- gtable_add_cols(g, g2$widths[g2$layout[ia, ]$l], 
## +     length(g$widths) - 1)
## 
## > g <- gtable_add_grob(g, ax, pp$t, length(g$widths) - 
## +     1, pp$b)
## 
## > grid.draw(g)

Dependencies within R:

# show package names and version numbers (not give in the paper)
sessionInfo()
## R version 3.1.1 (2014-07-10)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## 
## locale:
## [1] LC_COLLATE=English_United States.1252 
## [2] LC_CTYPE=English_United States.1252   
## [3] LC_MONETARY=English_United States.1252
## [4] LC_NUMERIC=C                          
## [5] LC_TIME=English_United States.1252    
## 
## attached base packages:
## [1] grid      splines   stats     graphics  grDevices utils     datasets 
## [8] methods   base     
## 
## other attached packages:
##  [1] gtable_0.1.2          scales_0.2.4          PMCMR_1.0            
##  [4] nparcomp_2.5          splitstackshape_1.4.2 data.table_1.9.4     
##  [7] multcomp_1.3-8        TH.data_1.0-4         mvtnorm_1.0-1        
## [10] RVAideMemoire_0.9-41  survival_2.37-7       ggplot2_1.0.0        
## [13] plyr_1.8.1           
## 
## loaded via a namespace (and not attached):
##  [1] car_2.0-22        chron_2.3-45      colorspace_1.2-4 
##  [4] digest_0.6.4      evaluate_0.5.5    formatR_1.0      
##  [7] htmltools_0.2.6   knitr_1.8         labeling_0.3     
## [10] lattice_0.20-29   MASS_7.3-33       munsell_0.4.2    
## [13] nnet_7.3-8        proto_0.3-10      Rcpp_0.11.3      
## [16] reshape2_1.4.0.99 rmarkdown_0.3.12  sandwich_2.3-2   
## [19] stringr_0.6.2     tools_3.1.1       yaml_2.1.13      
## [22] zoo_1.7-11