INITIALIZATION OF DIRECTORY AND LIBRARIES

######################################
# SETTING THE WORKING DIRECTORY
######################################
setwd("C:/Users/John/Desktop/Statistics Masters/Survey Operations/Data Analysis")

library(corrgram)
library(dplyr)
library(tidyverse)
library(caret)
library(mlbench)
library(ROCR)
library(corrplot)
library(psy)
library(Hmisc)
library(DescTools)
library(pROC)
library(car)

DATA PREPARATION AND EXPLORATION

######################################
# LOADING THE DATA
######################################
KA.df <- read.csv('OBJ2RAW_NEW.csv',
                  na.strings=c("NA","NaN"," ",""),
                  stringsAsFactors = F)
dim(KA.df)
## [1] 632  20
colnames(KA.df)
##  [1] "KVAM_CATEG" "KVPD_CATEG" "KLAP_PERCT" "KVCO_CATEG" "APVS_SCORE"
##  [6] "APSI_SCORE" "APVT_SCORE" "PDEX_SCORE" "RESP_SEX"   "RESP_RELGN"
## [11] "RESP_RELAT" "RESP_NKIDS" "RESP_HSTAT" "RESP_AGE"   "RESP_ISTAT"
## [16] "RESP_CSTAT" "RESP_ESTAT" "RESP_EDUC"  "RESP_MINC"  "RESP_HEXP"
summary(KA.df)
##   KVAM_CATEG         KVPD_CATEG          KLAP_PERCT      KVCO_CATEG       
##  Length:632         Length:632         Min.   :  0.00   Length:632        
##  Class :character   Class :character   1st Qu.: 40.00   Class :character  
##  Mode  :character   Mode  :character   Median : 60.00   Mode  :character  
##                                        Mean   : 56.71                     
##                                        3rd Qu.: 80.00                     
##                                        Max.   :100.00                     
##    APVS_SCORE       APSI_SCORE      APVT_SCORE      PDEX_SCORE  
##  Min.   : 3.000   Min.   :12.00   Min.   : 4.00   Min.   :0.00  
##  1st Qu.: 7.000   1st Qu.:21.00   1st Qu.:10.00   1st Qu.:1.00  
##  Median : 8.000   Median :22.00   Median :12.00   Median :2.00  
##  Mean   : 8.454   Mean   :22.41   Mean   :11.48   Mean   :2.35  
##  3rd Qu.:10.000   3rd Qu.:24.00   3rd Qu.:13.00   3rd Qu.:3.00  
##  Max.   :15.000   Max.   :30.00   Max.   :19.00   Max.   :6.00  
##    RESP_SEX          RESP_RELGN         RESP_RELAT          RESP_NKIDS    
##  Length:632         Length:632         Length:632         Min.   : 1.000  
##  Class :character   Class :character   Class :character   1st Qu.: 1.000  
##  Mode  :character   Mode  :character   Mode  :character   Median : 2.000  
##                                                           Mean   : 2.233  
##                                                           3rd Qu.: 3.000  
##                                                           Max.   :13.000  
##    RESP_HSTAT       RESP_AGE      RESP_ISTAT         RESP_CSTAT       
##  Min.   : 1.00   Min.   :18.00   Length:632         Length:632        
##  1st Qu.: 8.00   1st Qu.:28.75   Class :character   Class :character  
##  Median : 9.00   Median :34.00   Mode  :character   Mode  :character  
##  Mean   : 8.53   Mean   :36.46                                        
##  3rd Qu.:10.00   3rd Qu.:42.00                                        
##  Max.   :10.00   Max.   :81.00                                        
##   RESP_ESTAT         RESP_EDUC          RESP_MINC        
##  Length:632         Length:632         Length:632        
##  Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character  
##                                                          
##                                                          
##                                                          
##   RESP_HEXP        
##  Length:632        
##  Class :character  
##  Mode  :character  
##                    
##                    
## 
######################################
# CHECKING DATA QUALITY
######################################
(KA.df.qualitycheck <- data.frame(
  Column.Index=c(1:length(names(KA.df))),
  Column.Name= names(KA.df), 
  Column.Type=sapply(KA.df, function(x) typeof(x)), 
  Row.Count=sapply(KA.df, function(x) nrow(KA.df)),
  NA.Count=sapply(KA.df,function(x)sum(is.na(x))),
  Fill.Rate=sapply(KA.df,function(x)(sum(!is.na(x))/nrow(KA.df))),
  Unique.Count=sapply(KA.df, function(x) length(unique(x))),row.names=NULL))
##    Column.Index Column.Name Column.Type Row.Count NA.Count Fill.Rate
## 1             1  KVAM_CATEG   character       632        0         1
## 2             2  KVPD_CATEG   character       632        0         1
## 3             3  KLAP_PERCT     integer       632        0         1
## 4             4  KVCO_CATEG   character       632        0         1
## 5             5  APVS_SCORE     integer       632        0         1
## 6             6  APSI_SCORE     integer       632        0         1
## 7             7  APVT_SCORE     integer       632        0         1
## 8             8  PDEX_SCORE     integer       632        0         1
## 9             9    RESP_SEX   character       632        0         1
## 10           10  RESP_RELGN   character       632        0         1
## 11           11  RESP_RELAT   character       632        0         1
## 12           12  RESP_NKIDS     integer       632        0         1
## 13           13  RESP_HSTAT     integer       632        0         1
## 14           14    RESP_AGE     integer       632        0         1
## 15           15  RESP_ISTAT   character       632        0         1
## 16           16  RESP_CSTAT   character       632        0         1
## 17           17  RESP_ESTAT   character       632        0         1
## 18           18   RESP_EDUC   character       632        0         1
## 19           19   RESP_MINC   character       632        0         1
## 20           20   RESP_HEXP   character       632        0         1
##    Unique.Count
## 1             2
## 2             2
## 3             6
## 4             3
## 5            13
## 6            19
## 7            16
## 8             7
## 9             2
## 10            4
## 11            3
## 12           11
## 13            8
## 14           55
## 15            4
## 16            3
## 17            2
## 18            3
## 19            4
## 20            3
######################################
# ISOLATING THE NUMERIC COLUMNS
######################################
KA.df.numeric <- KA.df[,which(sapply(KA.df, function(x) typeof(x))=="integer")]

######################################
# TESTING CORRELATION FOR THE NUMERIC COLUMNS
######################################
KA.df.numeric.corr.test <- cor.mtest(KA.df.numeric,
                          method = "spearman",
                          conf.level = .95)

corrplot(cor(KA.df.numeric,method = "spearman"), 
         method = "circle",
         type = "upper", 
         order = "original", 
         tl.col = "black", 
         tl.cex = 0.75,
         tl.srt = 90, 
         sig.level = 0.05, 
         p.mat = KA.df.numeric.corr.test$p,
         insig = "blank")

######################################
# EVALUATING BOTH DEPENDENT VARIABLES
######################################
DV.df <- read.csv('DVBattle.csv',
                  na.strings=c("NA","NaN"," ",""),
                  stringsAsFactors = F)
dim(DV.df)
## [1] 632   4
colnames(DV.df)
## [1] "KVAM_PERCT" "KVPD_PERCT" "KVAM_CATEG" "KVPD_CATEG"
summary(DV.df)
##    KVAM_PERCT      KVPD_PERCT     KVAM_CATEG         KVPD_CATEG       
##  Min.   :21.05   Min.   :24.00   Length:632         Length:632        
##  1st Qu.:57.89   1st Qu.:68.00   Class :character   Class :character  
##  Median :68.42   Median :76.00   Mode  :character   Mode  :character  
##  Mean   :66.93   Mean   :74.61                                        
##  3rd Qu.:73.68   3rd Qu.:84.00                                        
##  Max.   :94.74   Max.   :96.00
######################################
# OBTAINING THE CORRELATION USING THE CONTINUOUS VALUES
######################################

ggplot(DV.df, aes(DV.df$KVAM_PERCT,
  DV.df$KVPD_PERCT, 
  color = DV.df$KVAM_PERCT)) +
  geom_point(shape = 16, 
  size = 5, 
  show.legend = FALSE) +
  theme_minimal() +
  labs(x = "KVAM") +
  labs(y = "KVPD")

cor(DV.df$KVAM_PERCT, 
    DV.df$KVPD_PERCT, 
    method = c("pearson"))
## [1] 0.2053432
cor.test(DV.df$KVAM_PERCT, 
         DV.df$KVPD_PERCT,
         method=c("pearson"))
## 
##  Pearson's product-moment correlation
## 
## data:  DV.df$KVAM_PERCT and DV.df$KVPD_PERCT
## t = 5.2663, df = 630, p-value = 1.913e-07
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.1294257 0.2788674
## sample estimates:
##       cor 
## 0.2053432
######################################
# OBTAINING THE RELATIONSHIP USING THE DICHOTOMIZED VALUES
######################################

DV.df.relationship <- table(DV.df$KVAM_CATEG,
                            DV.df$KVPD_CATEG)
DV.df.relationship
##           
##            KNOW NOT_KNOW
##   KNOW      408       58
##   NOT_KNOW  121       45
prop.table(DV.df.relationship, 1)
##           
##                 KNOW  NOT_KNOW
##   KNOW     0.8755365 0.1244635
##   NOT_KNOW 0.7289157 0.2710843
chisq.test(DV.df.relationship) 
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  DV.df.relationship
## X-squared = 18.229, df = 1, p-value = 1.959e-05
CramerV(DV.df.relationship,
        conf.level=0.95)
##   Cramer V     lwr.ci     upr.ci 
## 0.17470132 0.09674427 0.25266395
######################################
# PREPARING THE DATA FOR MODELING
######################################

######################################
# RECODING THE DEPENDENT VARIABLES
######################################

KA.df$KVAM <- ifelse(KA.df$KVAM_CATEG == "KNOW",1,0)

KA.df$KVPD <- ifelse(KA.df$KVPD_CATEG == "KNOW",1,0)

######################################
# SETTING THE CATEGORICAL VARIABLE LEVELS
######################################

######################################
# TREATING CATEGORICAL VARIABLES AS NOMINAL CATEGORIES
######################################

KA.df$KVCO_CATEG <- as.factor(KA.df$KVCO_CATEG)
KA.df$KVCO_CATEG <- relevel(KA.df$KVCO_CATEG, "NOT_AWARE")
factor(KA.df$KVCO_CATEG)
##   [1] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE PAR_AWARE
##   [8] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE PAR_AWARE FUL_AWARE FUL_AWARE
##  [15] FUL_AWARE PAR_AWARE FUL_AWARE PAR_AWARE FUL_AWARE PAR_AWARE FUL_AWARE
##  [22] FUL_AWARE FUL_AWARE PAR_AWARE FUL_AWARE FUL_AWARE PAR_AWARE FUL_AWARE
##  [29] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
##  [36] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
##  [43] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE PAR_AWARE FUL_AWARE PAR_AWARE
##  [50] PAR_AWARE FUL_AWARE PAR_AWARE FUL_AWARE FUL_AWARE PAR_AWARE FUL_AWARE
##  [57] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
##  [64] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
##  [71] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE PAR_AWARE FUL_AWARE
##  [78] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE PAR_AWARE PAR_AWARE PAR_AWARE
##  [85] PAR_AWARE PAR_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
##  [92] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE PAR_AWARE FUL_AWARE FUL_AWARE
##  [99] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [106] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [113] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [120] FUL_AWARE FUL_AWARE PAR_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [127] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [134] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [141] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [148] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [155] FUL_AWARE FUL_AWARE PAR_AWARE FUL_AWARE FUL_AWARE PAR_AWARE FUL_AWARE
## [162] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [169] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [176] FUL_AWARE FUL_AWARE FUL_AWARE PAR_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [183] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE PAR_AWARE
## [190] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [197] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE PAR_AWARE
## [204] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [211] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [218] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [225] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [232] PAR_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [239] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [246] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [253] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [260] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [267] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE PAR_AWARE FUL_AWARE
## [274] FUL_AWARE PAR_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [281] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [288] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [295] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [302] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [309] FUL_AWARE FUL_AWARE PAR_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [316] FUL_AWARE FUL_AWARE PAR_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [323] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [330] FUL_AWARE FUL_AWARE FUL_AWARE PAR_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [337] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [344] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [351] PAR_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [358] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [365] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE PAR_AWARE FUL_AWARE FUL_AWARE
## [372] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE PAR_AWARE FUL_AWARE
## [379] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [386] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [393] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [400] FUL_AWARE PAR_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [407] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [414] PAR_AWARE PAR_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [421] FUL_AWARE FUL_AWARE FUL_AWARE PAR_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [428] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [435] FUL_AWARE FUL_AWARE FUL_AWARE PAR_AWARE FUL_AWARE FUL_AWARE NOT_AWARE
## [442] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [449] FUL_AWARE PAR_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [456] FUL_AWARE FUL_AWARE FUL_AWARE PAR_AWARE PAR_AWARE FUL_AWARE FUL_AWARE
## [463] PAR_AWARE FUL_AWARE PAR_AWARE PAR_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [470] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE PAR_AWARE FUL_AWARE FUL_AWARE
## [477] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [484] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [491] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [498] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [505] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE PAR_AWARE FUL_AWARE
## [512] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [519] FUL_AWARE PAR_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [526] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [533] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [540] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [547] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [554] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [561] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [568] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [575] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [582] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [589] PAR_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [596] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [603] FUL_AWARE PAR_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [610] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [617] FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE
## [624] NOT_AWARE PAR_AWARE FUL_AWARE FUL_AWARE FUL_AWARE FUL_AWARE NOT_AWARE
## [631] FUL_AWARE FUL_AWARE
## Levels: NOT_AWARE FUL_AWARE PAR_AWARE
KA.df$RESP_SEX <- as.factor(KA.df$RESP_SEX)
KA.df$RESP_SEX <- relevel(KA.df$RESP_SEX, "MALE")
factor(KA.df$RESP_SEX)
##   [1] FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE MALE   FEMALE FEMALE FEMALE
##  [11] FEMALE MALE   MALE   FEMALE FEMALE MALE   FEMALE FEMALE FEMALE FEMALE
##  [21] FEMALE FEMALE FEMALE FEMALE FEMALE MALE   FEMALE FEMALE FEMALE MALE  
##  [31] FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE
##  [41] FEMALE FEMALE FEMALE MALE   FEMALE FEMALE FEMALE MALE   MALE   FEMALE
##  [51] FEMALE FEMALE FEMALE FEMALE FEMALE MALE   FEMALE FEMALE FEMALE FEMALE
##  [61] FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE
##  [71] MALE   FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE MALE   FEMALE
##  [81] FEMALE MALE   FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE
##  [91] FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE
## [101] FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE
## [111] FEMALE FEMALE FEMALE FEMALE FEMALE MALE   FEMALE MALE   FEMALE FEMALE
## [121] FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE
## [131] FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE
## [141] FEMALE FEMALE FEMALE FEMALE FEMALE MALE   FEMALE FEMALE FEMALE FEMALE
## [151] FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE
## [161] FEMALE FEMALE FEMALE FEMALE FEMALE MALE   FEMALE FEMALE FEMALE FEMALE
## [171] FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE MALE  
## [181] FEMALE FEMALE MALE   MALE   FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE
## [191] FEMALE FEMALE FEMALE FEMALE MALE   FEMALE FEMALE FEMALE FEMALE FEMALE
## [201] FEMALE FEMALE MALE   FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE MALE  
## [211] MALE   MALE   MALE   FEMALE MALE   FEMALE FEMALE FEMALE FEMALE FEMALE
## [221] FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE MALE   FEMALE MALE   FEMALE
## [231] FEMALE MALE   FEMALE FEMALE MALE   FEMALE FEMALE MALE   FEMALE FEMALE
## [241] FEMALE MALE   FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE
## [251] FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE
## [261] FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE
## [271] FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE
## [281] FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE
## [291] FEMALE MALE   MALE   FEMALE FEMALE MALE   FEMALE FEMALE FEMALE FEMALE
## [301] FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE
## [311] FEMALE MALE   FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE
## [321] FEMALE FEMALE FEMALE MALE   FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE
## [331] FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE
## [341] FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE
## [351] MALE   FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE
## [361] FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE
## [371] FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE MALE   FEMALE
## [381] FEMALE MALE   FEMALE FEMALE FEMALE FEMALE MALE   FEMALE FEMALE FEMALE
## [391] FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE
## [401] FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE
## [411] FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE
## [421] FEMALE FEMALE FEMALE FEMALE MALE   FEMALE FEMALE MALE   FEMALE FEMALE
## [431] FEMALE FEMALE FEMALE FEMALE FEMALE MALE   FEMALE FEMALE FEMALE FEMALE
## [441] MALE   FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE
## [451] FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE MALE   FEMALE FEMALE
## [461] FEMALE MALE   FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE MALE  
## [471] MALE   MALE   FEMALE FEMALE MALE   MALE   FEMALE FEMALE MALE   FEMALE
## [481] FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE MALE  
## [491] FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE MALE   FEMALE MALE   MALE  
## [501] FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE
## [511] FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE
## [521] FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE
## [531] FEMALE MALE   FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE
## [541] FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE
## [551] FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE MALE   FEMALE
## [561] FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE MALE  
## [571] FEMALE FEMALE FEMALE FEMALE MALE   FEMALE FEMALE FEMALE FEMALE FEMALE
## [581] FEMALE MALE   FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE
## [591] FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE
## [601] MALE   FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE FEMALE
## [611] FEMALE FEMALE FEMALE MALE   FEMALE FEMALE MALE   MALE   FEMALE FEMALE
## [621] FEMALE FEMALE FEMALE FEMALE FEMALE MALE   FEMALE FEMALE FEMALE FEMALE
## [631] MALE   MALE  
## Levels: MALE FEMALE
KA.df$RESP_RELGN <- as.factor(KA.df$RESP_RELGN)
KA.df$RESP_RELGN <- relevel(KA.df$RESP_RELGN, "OTHERS")
factor(KA.df$RESP_RELGN)
##   [1] CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  BORNAGAIN CATHOLIC 
##   [8] CATHOLIC  INC       CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC 
##  [15] INC       BORNAGAIN CATHOLIC  CATHOLIC  BORNAGAIN CATHOLIC  CATHOLIC 
##  [22] CATHOLIC  INC       INC       CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC 
##  [29] CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  INC       CATHOLIC  CATHOLIC 
##  [36] OTHERS    CATHOLIC  INC       INC       CATHOLIC  CATHOLIC  CATHOLIC 
##  [43] CATHOLIC  BORNAGAIN CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC 
##  [50] CATHOLIC  INC       CATHOLIC  INC       CATHOLIC  CATHOLIC  CATHOLIC 
##  [57] OTHERS    CATHOLIC  CATHOLIC  CATHOLIC  INC       INC       CATHOLIC 
##  [64] CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC 
##  [71] CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC 
##  [78] CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  OTHERS    OTHERS   
##  [85] CATHOLIC  OTHERS    CATHOLIC  INC       BORNAGAIN CATHOLIC  CATHOLIC 
##  [92] CATHOLIC  CATHOLIC  CATHOLIC  OTHERS    CATHOLIC  OTHERS    CATHOLIC 
##  [99] CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC 
## [106] CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC 
## [113] CATHOLIC  CATHOLIC  INC       CATHOLIC  OTHERS    INC       INC      
## [120] CATHOLIC  CATHOLIC  CATHOLIC  INC       BORNAGAIN CATHOLIC  CATHOLIC 
## [127] BORNAGAIN CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC 
## [134] CATHOLIC  OTHERS    CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC 
## [141] CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  BORNAGAIN CATHOLIC  BORNAGAIN
## [148] CATHOLIC  CATHOLIC  INC       CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC 
## [155] CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  INC       CATHOLIC  CATHOLIC 
## [162] INC       CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC 
## [169] BORNAGAIN CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC 
## [176] CATHOLIC  INC       CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC 
## [183] BORNAGAIN BORNAGAIN CATHOLIC  CATHOLIC  CATHOLIC  BORNAGAIN CATHOLIC 
## [190] CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  INC       CATHOLIC  CATHOLIC 
## [197] CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  BORNAGAIN CATHOLIC  CATHOLIC 
## [204] BORNAGAIN INC       INC       CATHOLIC  CATHOLIC  OTHERS    CATHOLIC 
## [211] CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  BORNAGAIN BORNAGAIN
## [218] BORNAGAIN INC       CATHOLIC  BORNAGAIN CATHOLIC  CATHOLIC  CATHOLIC 
## [225] CATHOLIC  INC       OTHERS    CATHOLIC  CATHOLIC  CATHOLIC  BORNAGAIN
## [232] INC       CATHOLIC  INC       CATHOLIC  CATHOLIC  BORNAGAIN CATHOLIC 
## [239] INC       CATHOLIC  OTHERS    CATHOLIC  CATHOLIC  INC       INC      
## [246] OTHERS    BORNAGAIN CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC 
## [253] CATHOLIC  BORNAGAIN CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  OTHERS   
## [260] CATHOLIC  CATHOLIC  CATHOLIC  BORNAGAIN CATHOLIC  INC       CATHOLIC 
## [267] CATHOLIC  CATHOLIC  INC       CATHOLIC  CATHOLIC  BORNAGAIN INC      
## [274] INC       CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC 
## [281] CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  BORNAGAIN CATHOLIC 
## [288] BORNAGAIN OTHERS    INC       CATHOLIC  CATHOLIC  CATHOLIC  INC      
## [295] CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  INC      
## [302] INC       INC       BORNAGAIN CATHOLIC  BORNAGAIN OTHERS    CATHOLIC 
## [309] CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  OTHERS    CATHOLIC 
## [316] CATHOLIC  CATHOLIC  CATHOLIC  OTHERS    CATHOLIC  CATHOLIC  CATHOLIC 
## [323] OTHERS    CATHOLIC  CATHOLIC  CATHOLIC  BORNAGAIN INC       CATHOLIC 
## [330] INC       CATHOLIC  CATHOLIC  CATHOLIC  INC       CATHOLIC  CATHOLIC 
## [337] BORNAGAIN CATHOLIC  CATHOLIC  INC       CATHOLIC  INC       INC      
## [344] INC       INC       INC       CATHOLIC  CATHOLIC  INC       CATHOLIC 
## [351] INC       CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  BORNAGAIN CATHOLIC 
## [358] CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  INC       CATHOLIC  CATHOLIC 
## [365] CATHOLIC  INC       CATHOLIC  CATHOLIC  CATHOLIC  INC       CATHOLIC 
## [372] INC       CATHOLIC  CATHOLIC  INC       CATHOLIC  CATHOLIC  CATHOLIC 
## [379] CATHOLIC  CATHOLIC  OTHERS    CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC 
## [386] CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  OTHERS   
## [393] CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  INC       OTHERS   
## [400] CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC 
## [407] CATHOLIC  CATHOLIC  CATHOLIC  INC       CATHOLIC  INC       CATHOLIC 
## [414] CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC 
## [421] CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC 
## [428] CATHOLIC  CATHOLIC  INC       CATHOLIC  CATHOLIC  OTHERS    OTHERS   
## [435] CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  INC       CATHOLIC 
## [442] OTHERS    INC       CATHOLIC  CATHOLIC  BORNAGAIN CATHOLIC  BORNAGAIN
## [449] CATHOLIC  CATHOLIC  INC       CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC 
## [456] CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  INC       CATHOLIC  CATHOLIC 
## [463] CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  BORNAGAIN CATHOLIC 
## [470] CATHOLIC  CATHOLIC  INC       INC       CATHOLIC  CATHOLIC  CATHOLIC 
## [477] CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC 
## [484] OTHERS    CATHOLIC  CATHOLIC  CATHOLIC  INC       INC       OTHERS   
## [491] CATHOLIC  CATHOLIC  CATHOLIC  INC       INC       CATHOLIC  CATHOLIC 
## [498] CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  BORNAGAIN
## [505] CATHOLIC  BORNAGAIN CATHOLIC  BORNAGAIN CATHOLIC  CATHOLIC  BORNAGAIN
## [512] CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  INC       CATHOLIC  OTHERS   
## [519] CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC 
## [526] OTHERS    OTHERS    CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC 
## [533] CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC 
## [540] CATHOLIC  BORNAGAIN CATHOLIC  CATHOLIC  CATHOLIC  BORNAGAIN CATHOLIC 
## [547] OTHERS    CATHOLIC  BORNAGAIN CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC 
## [554] OTHERS    CATHOLIC  OTHERS    BORNAGAIN CATHOLIC  CATHOLIC  CATHOLIC 
## [561] BORNAGAIN CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  BORNAGAIN CATHOLIC 
## [568] BORNAGAIN CATHOLIC  CATHOLIC  OTHERS    CATHOLIC  CATHOLIC  CATHOLIC 
## [575] CATHOLIC  INC       CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC 
## [582] CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  OTHERS    CATHOLIC 
## [589] CATHOLIC  BORNAGAIN INC       INC       CATHOLIC  INC       CATHOLIC 
## [596] CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  BORNAGAIN CATHOLIC 
## [603] OTHERS    CATHOLIC  CATHOLIC  INC       CATHOLIC  CATHOLIC  CATHOLIC 
## [610] CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC 
## [617] CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC 
## [624] CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC  CATHOLIC 
## [631] CATHOLIC  CATHOLIC 
## Levels: OTHERS BORNAGAIN CATHOLIC INC
KA.df$RESP_RELAT <- as.factor(KA.df$RESP_RELAT)
KA.df$RESP_RELAT <- relevel(KA.df$RESP_RELAT, "GUARDIAN")
factor(KA.df$RESP_RELAT)
##   [1] MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   FATHER  
##   [8] MOTHER   MOTHER   MOTHER   MOTHER   FATHER   GUARDIAN GUARDIAN
##  [15] MOTHER   FATHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER  
##  [22] MOTHER   MOTHER   MOTHER   MOTHER   FATHER   MOTHER   MOTHER  
##  [29] MOTHER   FATHER   MOTHER   MOTHER   GUARDIAN GUARDIAN MOTHER  
##  [36] GUARDIAN GUARDIAN MOTHER   MOTHER   MOTHER   MOTHER   GUARDIAN
##  [43] MOTHER   FATHER   MOTHER   MOTHER   GUARDIAN FATHER   FATHER  
##  [50] MOTHER   MOTHER   GUARDIAN MOTHER   MOTHER   MOTHER   FATHER  
##  [57] GUARDIAN GUARDIAN MOTHER   MOTHER   GUARDIAN GUARDIAN GUARDIAN
##  [64] MOTHER   MOTHER   MOTHER   GUARDIAN GUARDIAN MOTHER   MOTHER  
##  [71] FATHER   GUARDIAN GUARDIAN MOTHER   MOTHER   MOTHER   GUARDIAN
##  [78] MOTHER   FATHER   MOTHER   MOTHER   FATHER   MOTHER   GUARDIAN
##  [85] MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER  
##  [92] MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER  
##  [99] GUARDIAN MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER  
## [106] MOTHER   GUARDIAN MOTHER   MOTHER   MOTHER   MOTHER   MOTHER  
## [113] MOTHER   MOTHER   MOTHER   GUARDIAN MOTHER   FATHER   MOTHER  
## [120] MOTHER   MOTHER   GUARDIAN MOTHER   MOTHER   MOTHER   MOTHER  
## [127] MOTHER   MOTHER   GUARDIAN MOTHER   MOTHER   GUARDIAN MOTHER  
## [134] MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER  
## [141] MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   FATHER   GUARDIAN
## [148] MOTHER   GUARDIAN MOTHER   GUARDIAN MOTHER   MOTHER   MOTHER  
## [155] MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   GUARDIAN
## [162] MOTHER   MOTHER   MOTHER   MOTHER   FATHER   MOTHER   MOTHER  
## [169] MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER  
## [176] MOTHER   MOTHER   FATHER   GUARDIAN FATHER   MOTHER   MOTHER  
## [183] FATHER   FATHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER  
## [190] MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   FATHER   MOTHER  
## [197] MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   FATHER  
## [204] GUARDIAN MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   FATHER  
## [211] FATHER   GUARDIAN FATHER   MOTHER   FATHER   MOTHER   MOTHER  
## [218] MOTHER   MOTHER   MOTHER   MOTHER   GUARDIAN MOTHER   MOTHER  
## [225] MOTHER   MOTHER   GUARDIAN MOTHER   FATHER   MOTHER   MOTHER  
## [232] FATHER   MOTHER   MOTHER   FATHER   MOTHER   MOTHER   FATHER  
## [239] MOTHER   MOTHER   MOTHER   FATHER   MOTHER   MOTHER   MOTHER  
## [246] MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER  
## [253] GUARDIAN MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER  
## [260] GUARDIAN MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER  
## [267] MOTHER   GUARDIAN MOTHER   MOTHER   MOTHER   MOTHER   MOTHER  
## [274] MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER  
## [281] GUARDIAN MOTHER   MOTHER   MOTHER   MOTHER   GUARDIAN GUARDIAN
## [288] GUARDIAN GUARDIAN GUARDIAN MOTHER   FATHER   FATHER   MOTHER  
## [295] MOTHER   GUARDIAN GUARDIAN GUARDIAN GUARDIAN GUARDIAN MOTHER  
## [302] GUARDIAN MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER  
## [309] MOTHER   MOTHER   MOTHER   FATHER   MOTHER   MOTHER   MOTHER  
## [316] GUARDIAN MOTHER   MOTHER   MOTHER   MOTHER   GUARDIAN MOTHER  
## [323] MOTHER   FATHER   GUARDIAN MOTHER   MOTHER   MOTHER   MOTHER  
## [330] MOTHER   GUARDIAN MOTHER   MOTHER   MOTHER   GUARDIAN MOTHER  
## [337] GUARDIAN MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER  
## [344] MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   GUARDIAN
## [351] FATHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER  
## [358] MOTHER   GUARDIAN MOTHER   MOTHER   MOTHER   GUARDIAN GUARDIAN
## [365] MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER  
## [372] MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   GUARDIAN GUARDIAN
## [379] FATHER   GUARDIAN MOTHER   MOTHER   MOTHER   MOTHER   MOTHER  
## [386] MOTHER   GUARDIAN MOTHER   MOTHER   MOTHER   MOTHER   MOTHER  
## [393] MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER  
## [400] GUARDIAN MOTHER   GUARDIAN GUARDIAN MOTHER   MOTHER   MOTHER  
## [407] GUARDIAN MOTHER   GUARDIAN MOTHER   MOTHER   MOTHER   GUARDIAN
## [414] GUARDIAN MOTHER   MOTHER   GUARDIAN MOTHER   MOTHER   MOTHER  
## [421] GUARDIAN GUARDIAN MOTHER   MOTHER   FATHER   MOTHER   MOTHER  
## [428] FATHER   MOTHER   MOTHER   GUARDIAN MOTHER   MOTHER   MOTHER  
## [435] MOTHER   FATHER   MOTHER   GUARDIAN MOTHER   MOTHER   FATHER  
## [442] MOTHER   MOTHER   MOTHER   GUARDIAN MOTHER   MOTHER   MOTHER  
## [449] MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER  
## [456] MOTHER   MOTHER   FATHER   MOTHER   MOTHER   MOTHER   FATHER  
## [463] MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   GUARDIAN GUARDIAN
## [470] FATHER   GUARDIAN GUARDIAN GUARDIAN MOTHER   FATHER   FATHER  
## [477] MOTHER   GUARDIAN FATHER   MOTHER   MOTHER   GUARDIAN MOTHER  
## [484] GUARDIAN GUARDIAN GUARDIAN MOTHER   MOTHER   MOTHER   FATHER  
## [491] MOTHER   GUARDIAN MOTHER   GUARDIAN MOTHER   MOTHER   FATHER  
## [498] MOTHER   GUARDIAN FATHER   MOTHER   MOTHER   MOTHER   MOTHER  
## [505] MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER  
## [512] MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER  
## [519] MOTHER   GUARDIAN MOTHER   MOTHER   MOTHER   MOTHER   MOTHER  
## [526] GUARDIAN MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   FATHER  
## [533] MOTHER   MOTHER   GUARDIAN MOTHER   MOTHER   MOTHER   MOTHER  
## [540] MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER  
## [547] MOTHER   GUARDIAN MOTHER   MOTHER   MOTHER   MOTHER   MOTHER  
## [554] MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   FATHER   MOTHER  
## [561] MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER  
## [568] MOTHER   MOTHER   FATHER   MOTHER   MOTHER   MOTHER   GUARDIAN
## [575] FATHER   GUARDIAN MOTHER   MOTHER   MOTHER   MOTHER   MOTHER  
## [582] FATHER   MOTHER   GUARDIAN MOTHER   MOTHER   MOTHER   GUARDIAN
## [589] GUARDIAN MOTHER   GUARDIAN MOTHER   MOTHER   MOTHER   MOTHER  
## [596] MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   FATHER   MOTHER  
## [603] MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER  
## [610] MOTHER   MOTHER   MOTHER   MOTHER   FATHER   MOTHER   MOTHER  
## [617] FATHER   FATHER   MOTHER   MOTHER   MOTHER   MOTHER   MOTHER  
## [624] MOTHER   MOTHER   FATHER   MOTHER   MOTHER   MOTHER   MOTHER  
## [631] FATHER   FATHER  
## Levels: GUARDIAN FATHER MOTHER
KA.df$RESP_CSTAT <- as.factor(KA.df$RESP_CSTAT)
KA.df$RESP_CSTAT <- relevel(KA.df$RESP_CSTAT, "OTHERS")
factor(KA.df$RESP_CSTAT)
##   [1] MARRIED MARRIED MARRIED OTHERS  MARRIED MARRIED SINGLE  SINGLE 
##   [9] MARRIED SINGLE  SINGLE  SINGLE  MARRIED MARRIED MARRIED MARRIED
##  [17] MARRIED SINGLE  MARRIED MARRIED SINGLE  MARRIED MARRIED SINGLE 
##  [25] SINGLE  MARRIED SINGLE  OTHERS  SINGLE  MARRIED SINGLE  SINGLE 
##  [33] MARRIED MARRIED SINGLE  OTHERS  SINGLE  SINGLE  SINGLE  MARRIED
##  [41] SINGLE  MARRIED SINGLE  MARRIED SINGLE  SINGLE  MARRIED SINGLE 
##  [49] SINGLE  SINGLE  MARRIED SINGLE  SINGLE  MARRIED SINGLE  MARRIED
##  [57] MARRIED MARRIED MARRIED SINGLE  MARRIED SINGLE  MARRIED SINGLE 
##  [65] MARRIED SINGLE  MARRIED MARRIED SINGLE  SINGLE  MARRIED MARRIED
##  [73] OTHERS  MARRIED MARRIED SINGLE  OTHERS  MARRIED SINGLE  SINGLE 
##  [81] SINGLE  SINGLE  MARRIED MARRIED MARRIED MARRIED SINGLE  MARRIED
##  [89] SINGLE  MARRIED MARRIED SINGLE  MARRIED SINGLE  MARRIED MARRIED
##  [97] MARRIED MARRIED MARRIED SINGLE  SINGLE  MARRIED SINGLE  SINGLE 
## [105] MARRIED SINGLE  MARRIED SINGLE  MARRIED MARRIED SINGLE  MARRIED
## [113] SINGLE  SINGLE  MARRIED SINGLE  MARRIED MARRIED MARRIED MARRIED
## [121] MARRIED OTHERS  MARRIED MARRIED MARRIED MARRIED SINGLE  SINGLE 
## [129] OTHERS  SINGLE  SINGLE  MARRIED MARRIED MARRIED MARRIED SINGLE 
## [137] SINGLE  SINGLE  MARRIED SINGLE  MARRIED MARRIED SINGLE  SINGLE 
## [145] MARRIED MARRIED MARRIED MARRIED OTHERS  MARRIED MARRIED SINGLE 
## [153] MARRIED SINGLE  SINGLE  SINGLE  SINGLE  MARRIED MARRIED SINGLE 
## [161] SINGLE  MARRIED SINGLE  MARRIED SINGLE  SINGLE  MARRIED MARRIED
## [169] SINGLE  MARRIED MARRIED MARRIED MARRIED MARRIED MARRIED MARRIED
## [177] MARRIED SINGLE  MARRIED MARRIED MARRIED SINGLE  MARRIED MARRIED
## [185] MARRIED MARRIED MARRIED MARRIED SINGLE  MARRIED SINGLE  SINGLE 
## [193] MARRIED MARRIED MARRIED MARRIED SINGLE  SINGLE  MARRIED MARRIED
## [201] MARRIED MARRIED MARRIED MARRIED MARRIED MARRIED SINGLE  SINGLE 
## [209] MARRIED MARRIED MARRIED OTHERS  MARRIED MARRIED MARRIED MARRIED
## [217] MARRIED MARRIED MARRIED SINGLE  SINGLE  MARRIED SINGLE  MARRIED
## [225] MARRIED MARRIED SINGLE  MARRIED MARRIED SINGLE  MARRIED MARRIED
## [233] MARRIED MARRIED SINGLE  MARRIED MARRIED MARRIED MARRIED SINGLE 
## [241] MARRIED MARRIED SINGLE  SINGLE  MARRIED MARRIED MARRIED MARRIED
## [249] MARRIED MARRIED MARRIED MARRIED MARRIED SINGLE  SINGLE  SINGLE 
## [257] MARRIED MARRIED SINGLE  SINGLE  SINGLE  MARRIED MARRIED MARRIED
## [265] MARRIED SINGLE  SINGLE  OTHERS  MARRIED SINGLE  MARRIED SINGLE 
## [273] MARRIED MARRIED SINGLE  MARRIED MARRIED SINGLE  MARRIED MARRIED
## [281] MARRIED MARRIED MARRIED SINGLE  MARRIED MARRIED MARRIED MARRIED
## [289] MARRIED MARRIED SINGLE  MARRIED MARRIED SINGLE  MARRIED SINGLE 
## [297] MARRIED SINGLE  SINGLE  MARRIED MARRIED MARRIED MARRIED SINGLE 
## [305] MARRIED MARRIED MARRIED SINGLE  MARRIED MARRIED MARRIED MARRIED
## [313] SINGLE  MARRIED MARRIED OTHERS  SINGLE  MARRIED SINGLE  SINGLE 
## [321] OTHERS  SINGLE  OTHERS  SINGLE  MARRIED MARRIED MARRIED OTHERS 
## [329] SINGLE  MARRIED SINGLE  SINGLE  SINGLE  MARRIED MARRIED SINGLE 
## [337] OTHERS  MARRIED MARRIED MARRIED MARRIED MARRIED SINGLE  MARRIED
## [345] MARRIED MARRIED MARRIED SINGLE  MARRIED MARRIED MARRIED MARRIED
## [353] SINGLE  SINGLE  SINGLE  SINGLE  MARRIED SINGLE  SINGLE  SINGLE 
## [361] SINGLE  OTHERS  MARRIED MARRIED SINGLE  MARRIED MARRIED SINGLE 
## [369] MARRIED MARRIED MARRIED MARRIED MARRIED MARRIED SINGLE  SINGLE 
## [377] OTHERS  MARRIED MARRIED MARRIED MARRIED MARRIED SINGLE  SINGLE 
## [385] MARRIED SINGLE  SINGLE  MARRIED SINGLE  SINGLE  SINGLE  SINGLE 
## [393] MARRIED SINGLE  SINGLE  SINGLE  SINGLE  SINGLE  MARRIED SINGLE 
## [401] SINGLE  SINGLE  SINGLE  MARRIED MARRIED MARRIED MARRIED MARRIED
## [409] OTHERS  SINGLE  SINGLE  MARRIED OTHERS  OTHERS  SINGLE  SINGLE 
## [417] MARRIED SINGLE  MARRIED SINGLE  SINGLE  MARRIED SINGLE  SINGLE 
## [425] SINGLE  MARRIED SINGLE  MARRIED SINGLE  MARRIED MARRIED SINGLE 
## [433] MARRIED MARRIED SINGLE  MARRIED MARRIED OTHERS  MARRIED SINGLE 
## [441] MARRIED MARRIED SINGLE  SINGLE  MARRIED MARRIED SINGLE  MARRIED
## [449] MARRIED SINGLE  MARRIED MARRIED SINGLE  MARRIED SINGLE  MARRIED
## [457] MARRIED SINGLE  MARRIED MARRIED SINGLE  SINGLE  MARRIED MARRIED
## [465] SINGLE  SINGLE  MARRIED MARRIED OTHERS  MARRIED SINGLE  MARRIED
## [473] MARRIED MARRIED MARRIED MARRIED SINGLE  MARRIED MARRIED MARRIED
## [481] SINGLE  MARRIED MARRIED MARRIED MARRIED MARRIED MARRIED MARRIED
## [489] MARRIED MARRIED SINGLE  SINGLE  SINGLE  MARRIED MARRIED MARRIED
## [497] MARRIED MARRIED MARRIED MARRIED MARRIED MARRIED MARRIED MARRIED
## [505] MARRIED MARRIED OTHERS  MARRIED OTHERS  SINGLE  SINGLE  MARRIED
## [513] SINGLE  MARRIED MARRIED MARRIED MARRIED SINGLE  SINGLE  MARRIED
## [521] SINGLE  MARRIED SINGLE  MARRIED MARRIED OTHERS  MARRIED SINGLE 
## [529] MARRIED MARRIED MARRIED MARRIED SINGLE  MARRIED OTHERS  SINGLE 
## [537] MARRIED MARRIED SINGLE  SINGLE  SINGLE  SINGLE  SINGLE  MARRIED
## [545] SINGLE  SINGLE  SINGLE  MARRIED SINGLE  OTHERS  SINGLE  MARRIED
## [553] OTHERS  MARRIED MARRIED SINGLE  SINGLE  MARRIED MARRIED MARRIED
## [561] MARRIED MARRIED SINGLE  SINGLE  SINGLE  MARRIED SINGLE  SINGLE 
## [569] SINGLE  SINGLE  SINGLE  MARRIED SINGLE  MARRIED MARRIED MARRIED
## [577] MARRIED MARRIED SINGLE  SINGLE  MARRIED MARRIED MARRIED MARRIED
## [585] MARRIED SINGLE  MARRIED MARRIED MARRIED SINGLE  OTHERS  MARRIED
## [593] MARRIED MARRIED MARRIED MARRIED SINGLE  MARRIED MARRIED SINGLE 
## [601] MARRIED MARRIED SINGLE  SINGLE  MARRIED MARRIED SINGLE  SINGLE 
## [609] SINGLE  MARRIED MARRIED MARRIED MARRIED SINGLE  MARRIED SINGLE 
## [617] MARRIED SINGLE  OTHERS  MARRIED SINGLE  MARRIED SINGLE  MARRIED
## [625] SINGLE  MARRIED SINGLE  SINGLE  MARRIED MARRIED MARRIED SINGLE 
## Levels: OTHERS MARRIED SINGLE
KA.df$RESP_ESTAT <- as.factor(KA.df$RESP_ESTAT)
KA.df$RESP_ESTAT <- relevel(KA.df$RESP_ESTAT, "UNEMPLOYED")
factor(KA.df$RESP_ESTAT)
##   [1] UNEMPLOYED UNEMPLOYED UNEMPLOYED EMPLOYED   UNEMPLOYED EMPLOYED  
##   [7] UNEMPLOYED UNEMPLOYED UNEMPLOYED UNEMPLOYED UNEMPLOYED UNEMPLOYED
##  [13] EMPLOYED   UNEMPLOYED UNEMPLOYED EMPLOYED   UNEMPLOYED UNEMPLOYED
##  [19] UNEMPLOYED UNEMPLOYED UNEMPLOYED UNEMPLOYED UNEMPLOYED UNEMPLOYED
##  [25] EMPLOYED   EMPLOYED   UNEMPLOYED UNEMPLOYED UNEMPLOYED EMPLOYED  
##  [31] EMPLOYED   EMPLOYED   UNEMPLOYED UNEMPLOYED UNEMPLOYED EMPLOYED  
##  [37] EMPLOYED   EMPLOYED   EMPLOYED   UNEMPLOYED UNEMPLOYED UNEMPLOYED
##  [43] EMPLOYED   EMPLOYED   UNEMPLOYED EMPLOYED   UNEMPLOYED EMPLOYED  
##  [49] EMPLOYED   EMPLOYED   EMPLOYED   UNEMPLOYED UNEMPLOYED UNEMPLOYED
##  [55] UNEMPLOYED EMPLOYED   UNEMPLOYED EMPLOYED   UNEMPLOYED UNEMPLOYED
##  [61] EMPLOYED   EMPLOYED   UNEMPLOYED EMPLOYED   EMPLOYED   UNEMPLOYED
##  [67] EMPLOYED   UNEMPLOYED UNEMPLOYED EMPLOYED   EMPLOYED   EMPLOYED  
##  [73] UNEMPLOYED EMPLOYED   UNEMPLOYED UNEMPLOYED EMPLOYED   UNEMPLOYED
##  [79] EMPLOYED   UNEMPLOYED EMPLOYED   EMPLOYED   UNEMPLOYED UNEMPLOYED
##  [85] UNEMPLOYED UNEMPLOYED EMPLOYED   UNEMPLOYED EMPLOYED   EMPLOYED  
##  [91] EMPLOYED   UNEMPLOYED UNEMPLOYED EMPLOYED   UNEMPLOYED EMPLOYED  
##  [97] EMPLOYED   UNEMPLOYED EMPLOYED   EMPLOYED   EMPLOYED   UNEMPLOYED
## [103] UNEMPLOYED UNEMPLOYED UNEMPLOYED UNEMPLOYED UNEMPLOYED UNEMPLOYED
## [109] UNEMPLOYED EMPLOYED   EMPLOYED   EMPLOYED   UNEMPLOYED UNEMPLOYED
## [115] EMPLOYED   UNEMPLOYED EMPLOYED   EMPLOYED   EMPLOYED   UNEMPLOYED
## [121] UNEMPLOYED UNEMPLOYED EMPLOYED   EMPLOYED   EMPLOYED   UNEMPLOYED
## [127] UNEMPLOYED UNEMPLOYED EMPLOYED   EMPLOYED   EMPLOYED   EMPLOYED  
## [133] UNEMPLOYED EMPLOYED   UNEMPLOYED EMPLOYED   EMPLOYED   UNEMPLOYED
## [139] EMPLOYED   EMPLOYED   UNEMPLOYED EMPLOYED   UNEMPLOYED EMPLOYED  
## [145] UNEMPLOYED EMPLOYED   UNEMPLOYED UNEMPLOYED UNEMPLOYED UNEMPLOYED
## [151] UNEMPLOYED UNEMPLOYED UNEMPLOYED EMPLOYED   EMPLOYED   EMPLOYED  
## [157] UNEMPLOYED UNEMPLOYED EMPLOYED   UNEMPLOYED UNEMPLOYED UNEMPLOYED
## [163] EMPLOYED   EMPLOYED   EMPLOYED   UNEMPLOYED UNEMPLOYED UNEMPLOYED
## [169] UNEMPLOYED UNEMPLOYED UNEMPLOYED UNEMPLOYED UNEMPLOYED EMPLOYED  
## [175] EMPLOYED   UNEMPLOYED EMPLOYED   EMPLOYED   UNEMPLOYED EMPLOYED  
## [181] UNEMPLOYED UNEMPLOYED EMPLOYED   EMPLOYED   UNEMPLOYED EMPLOYED  
## [187] EMPLOYED   UNEMPLOYED UNEMPLOYED UNEMPLOYED EMPLOYED   UNEMPLOYED
## [193] UNEMPLOYED EMPLOYED   EMPLOYED   UNEMPLOYED UNEMPLOYED UNEMPLOYED
## [199] EMPLOYED   UNEMPLOYED EMPLOYED   EMPLOYED   EMPLOYED   UNEMPLOYED
## [205] UNEMPLOYED UNEMPLOYED UNEMPLOYED UNEMPLOYED EMPLOYED   EMPLOYED  
## [211] EMPLOYED   UNEMPLOYED EMPLOYED   UNEMPLOYED EMPLOYED   UNEMPLOYED
## [217] UNEMPLOYED UNEMPLOYED UNEMPLOYED EMPLOYED   UNEMPLOYED EMPLOYED  
## [223] UNEMPLOYED UNEMPLOYED UNEMPLOYED EMPLOYED   UNEMPLOYED EMPLOYED  
## [229] EMPLOYED   EMPLOYED   UNEMPLOYED EMPLOYED   UNEMPLOYED EMPLOYED  
## [235] EMPLOYED   EMPLOYED   EMPLOYED   EMPLOYED   EMPLOYED   EMPLOYED  
## [241] UNEMPLOYED EMPLOYED   UNEMPLOYED UNEMPLOYED EMPLOYED   UNEMPLOYED
## [247] UNEMPLOYED EMPLOYED   UNEMPLOYED EMPLOYED   UNEMPLOYED EMPLOYED  
## [253] UNEMPLOYED UNEMPLOYED UNEMPLOYED UNEMPLOYED UNEMPLOYED UNEMPLOYED
## [259] UNEMPLOYED EMPLOYED   UNEMPLOYED UNEMPLOYED UNEMPLOYED UNEMPLOYED
## [265] UNEMPLOYED EMPLOYED   UNEMPLOYED UNEMPLOYED UNEMPLOYED EMPLOYED  
## [271] UNEMPLOYED UNEMPLOYED UNEMPLOYED UNEMPLOYED UNEMPLOYED EMPLOYED  
## [277] UNEMPLOYED UNEMPLOYED EMPLOYED   EMPLOYED   EMPLOYED   EMPLOYED  
## [283] UNEMPLOYED EMPLOYED   UNEMPLOYED EMPLOYED   UNEMPLOYED UNEMPLOYED
## [289] UNEMPLOYED UNEMPLOYED EMPLOYED   EMPLOYED   EMPLOYED   UNEMPLOYED
## [295] EMPLOYED   EMPLOYED   EMPLOYED   EMPLOYED   EMPLOYED   EMPLOYED  
## [301] EMPLOYED   EMPLOYED   EMPLOYED   UNEMPLOYED UNEMPLOYED UNEMPLOYED
## [307] UNEMPLOYED UNEMPLOYED UNEMPLOYED EMPLOYED   UNEMPLOYED EMPLOYED  
## [313] UNEMPLOYED EMPLOYED   EMPLOYED   UNEMPLOYED UNEMPLOYED UNEMPLOYED
## [319] UNEMPLOYED UNEMPLOYED UNEMPLOYED UNEMPLOYED UNEMPLOYED EMPLOYED  
## [325] UNEMPLOYED EMPLOYED   EMPLOYED   EMPLOYED   EMPLOYED   EMPLOYED  
## [331] UNEMPLOYED UNEMPLOYED UNEMPLOYED EMPLOYED   UNEMPLOYED UNEMPLOYED
## [337] EMPLOYED   EMPLOYED   UNEMPLOYED EMPLOYED   EMPLOYED   EMPLOYED  
## [343] UNEMPLOYED UNEMPLOYED UNEMPLOYED EMPLOYED   UNEMPLOYED UNEMPLOYED
## [349] UNEMPLOYED UNEMPLOYED EMPLOYED   EMPLOYED   UNEMPLOYED EMPLOYED  
## [355] UNEMPLOYED EMPLOYED   EMPLOYED   UNEMPLOYED UNEMPLOYED EMPLOYED  
## [361] EMPLOYED   UNEMPLOYED UNEMPLOYED UNEMPLOYED UNEMPLOYED EMPLOYED  
## [367] UNEMPLOYED UNEMPLOYED EMPLOYED   UNEMPLOYED UNEMPLOYED EMPLOYED  
## [373] UNEMPLOYED EMPLOYED   EMPLOYED   EMPLOYED   UNEMPLOYED UNEMPLOYED
## [379] EMPLOYED   EMPLOYED   EMPLOYED   EMPLOYED   UNEMPLOYED UNEMPLOYED
## [385] UNEMPLOYED UNEMPLOYED EMPLOYED   EMPLOYED   UNEMPLOYED UNEMPLOYED
## [391] EMPLOYED   EMPLOYED   UNEMPLOYED EMPLOYED   EMPLOYED   UNEMPLOYED
## [397] UNEMPLOYED EMPLOYED   UNEMPLOYED EMPLOYED   UNEMPLOYED EMPLOYED  
## [403] EMPLOYED   UNEMPLOYED UNEMPLOYED EMPLOYED   UNEMPLOYED EMPLOYED  
## [409] UNEMPLOYED UNEMPLOYED UNEMPLOYED UNEMPLOYED UNEMPLOYED UNEMPLOYED
## [415] UNEMPLOYED UNEMPLOYED EMPLOYED   UNEMPLOYED UNEMPLOYED UNEMPLOYED
## [421] EMPLOYED   UNEMPLOYED EMPLOYED   EMPLOYED   EMPLOYED   EMPLOYED  
## [427] UNEMPLOYED EMPLOYED   EMPLOYED   UNEMPLOYED EMPLOYED   EMPLOYED  
## [433] UNEMPLOYED EMPLOYED   EMPLOYED   EMPLOYED   UNEMPLOYED UNEMPLOYED
## [439] EMPLOYED   UNEMPLOYED EMPLOYED   EMPLOYED   UNEMPLOYED EMPLOYED  
## [445] UNEMPLOYED UNEMPLOYED EMPLOYED   UNEMPLOYED UNEMPLOYED UNEMPLOYED
## [451] UNEMPLOYED UNEMPLOYED UNEMPLOYED EMPLOYED   UNEMPLOYED EMPLOYED  
## [457] UNEMPLOYED EMPLOYED   UNEMPLOYED UNEMPLOYED UNEMPLOYED EMPLOYED  
## [463] UNEMPLOYED UNEMPLOYED UNEMPLOYED UNEMPLOYED UNEMPLOYED UNEMPLOYED
## [469] UNEMPLOYED EMPLOYED   EMPLOYED   UNEMPLOYED UNEMPLOYED UNEMPLOYED
## [475] EMPLOYED   EMPLOYED   UNEMPLOYED UNEMPLOYED EMPLOYED   UNEMPLOYED
## [481] UNEMPLOYED UNEMPLOYED UNEMPLOYED EMPLOYED   UNEMPLOYED UNEMPLOYED
## [487] UNEMPLOYED EMPLOYED   UNEMPLOYED EMPLOYED   EMPLOYED   EMPLOYED  
## [493] EMPLOYED   EMPLOYED   EMPLOYED   UNEMPLOYED EMPLOYED   EMPLOYED  
## [499] UNEMPLOYED EMPLOYED   UNEMPLOYED UNEMPLOYED UNEMPLOYED UNEMPLOYED
## [505] EMPLOYED   UNEMPLOYED EMPLOYED   UNEMPLOYED EMPLOYED   UNEMPLOYED
## [511] EMPLOYED   EMPLOYED   EMPLOYED   UNEMPLOYED UNEMPLOYED UNEMPLOYED
## [517] UNEMPLOYED UNEMPLOYED UNEMPLOYED UNEMPLOYED UNEMPLOYED UNEMPLOYED
## [523] EMPLOYED   UNEMPLOYED UNEMPLOYED UNEMPLOYED EMPLOYED   UNEMPLOYED
## [529] UNEMPLOYED UNEMPLOYED EMPLOYED   UNEMPLOYED EMPLOYED   EMPLOYED  
## [535] EMPLOYED   EMPLOYED   UNEMPLOYED UNEMPLOYED UNEMPLOYED UNEMPLOYED
## [541] EMPLOYED   EMPLOYED   UNEMPLOYED EMPLOYED   UNEMPLOYED EMPLOYED  
## [547] EMPLOYED   UNEMPLOYED UNEMPLOYED EMPLOYED   UNEMPLOYED EMPLOYED  
## [553] EMPLOYED   EMPLOYED   EMPLOYED   UNEMPLOYED EMPLOYED   UNEMPLOYED
## [559] EMPLOYED   UNEMPLOYED EMPLOYED   UNEMPLOYED EMPLOYED   EMPLOYED  
## [565] UNEMPLOYED UNEMPLOYED UNEMPLOYED UNEMPLOYED UNEMPLOYED EMPLOYED  
## [571] UNEMPLOYED EMPLOYED   UNEMPLOYED EMPLOYED   EMPLOYED   UNEMPLOYED
## [577] EMPLOYED   EMPLOYED   EMPLOYED   EMPLOYED   UNEMPLOYED EMPLOYED  
## [583] UNEMPLOYED EMPLOYED   UNEMPLOYED UNEMPLOYED EMPLOYED   UNEMPLOYED
## [589] EMPLOYED   EMPLOYED   UNEMPLOYED EMPLOYED   UNEMPLOYED UNEMPLOYED
## [595] EMPLOYED   EMPLOYED   UNEMPLOYED UNEMPLOYED EMPLOYED   UNEMPLOYED
## [601] EMPLOYED   UNEMPLOYED EMPLOYED   UNEMPLOYED UNEMPLOYED EMPLOYED  
## [607] EMPLOYED   UNEMPLOYED UNEMPLOYED EMPLOYED   UNEMPLOYED EMPLOYED  
## [613] EMPLOYED   EMPLOYED   UNEMPLOYED UNEMPLOYED EMPLOYED   EMPLOYED  
## [619] UNEMPLOYED UNEMPLOYED EMPLOYED   UNEMPLOYED UNEMPLOYED EMPLOYED  
## [625] UNEMPLOYED EMPLOYED   UNEMPLOYED UNEMPLOYED UNEMPLOYED UNEMPLOYED
## [631] UNEMPLOYED EMPLOYED  
## Levels: UNEMPLOYED EMPLOYED
KA.df$RESP_ISTAT <- as.factor(KA.df$RESP_ISTAT)
KA.df$RESP_ISTAT <- relevel(KA.df$RESP_ISTAT, "UNVACCINATED")
factor(KA.df$RESP_ISTAT)
##   [1] FULLIMMUNIZED_SURE   FULLIMMUNIZED_UNSURE PARTIMMUNIZED       
##   [4] FULLIMMUNIZED_UNSURE PARTIMMUNIZED        PARTIMMUNIZED       
##   [7] PARTIMMUNIZED        PARTIMMUNIZED        PARTIMMUNIZED       
##  [10] PARTIMMUNIZED        FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
##  [13] FULLIMMUNIZED_SURE   FULLIMMUNIZED_SURE   FULLIMMUNIZED_SURE  
##  [16] PARTIMMUNIZED        PARTIMMUNIZED        PARTIMMUNIZED       
##  [19] FULLIMMUNIZED_SURE   PARTIMMUNIZED        FULLIMMUNIZED_SURE  
##  [22] FULLIMMUNIZED_SURE   FULLIMMUNIZED_SURE   PARTIMMUNIZED       
##  [25] FULLIMMUNIZED_SURE   FULLIMMUNIZED_SURE   PARTIMMUNIZED       
##  [28] PARTIMMUNIZED        FULLIMMUNIZED_SURE   FULLIMMUNIZED_SURE  
##  [31] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_SURE   FULLIMMUNIZED_UNSURE
##  [34] PARTIMMUNIZED        FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
##  [37] UNVACCINATED         PARTIMMUNIZED        PARTIMMUNIZED       
##  [40] PARTIMMUNIZED        PARTIMMUNIZED        FULLIMMUNIZED_UNSURE
##  [43] FULLIMMUNIZED_UNSURE PARTIMMUNIZED        FULLIMMUNIZED_SURE  
##  [46] FULLIMMUNIZED_SURE   PARTIMMUNIZED        FULLIMMUNIZED_UNSURE
##  [49] PARTIMMUNIZED        FULLIMMUNIZED_SURE   FULLIMMUNIZED_UNSURE
##  [52] FULLIMMUNIZED_UNSURE PARTIMMUNIZED        FULLIMMUNIZED_UNSURE
##  [55] PARTIMMUNIZED        FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
##  [58] FULLIMMUNIZED_SURE   FULLIMMUNIZED_UNSURE FULLIMMUNIZED_SURE  
##  [61] PARTIMMUNIZED        FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
##  [64] PARTIMMUNIZED        PARTIMMUNIZED        FULLIMMUNIZED_UNSURE
##  [67] PARTIMMUNIZED        FULLIMMUNIZED_SURE   FULLIMMUNIZED_SURE  
##  [70] PARTIMMUNIZED        FULLIMMUNIZED_UNSURE FULLIMMUNIZED_SURE  
##  [73] PARTIMMUNIZED        FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
##  [76] PARTIMMUNIZED        PARTIMMUNIZED        FULLIMMUNIZED_UNSURE
##  [79] FULLIMMUNIZED_UNSURE PARTIMMUNIZED        FULLIMMUNIZED_UNSURE
##  [82] PARTIMMUNIZED        FULLIMMUNIZED_UNSURE PARTIMMUNIZED       
##  [85] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE PARTIMMUNIZED       
##  [88] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE PARTIMMUNIZED       
##  [91] PARTIMMUNIZED        PARTIMMUNIZED        PARTIMMUNIZED       
##  [94] PARTIMMUNIZED        PARTIMMUNIZED        PARTIMMUNIZED       
##  [97] FULLIMMUNIZED_SURE   PARTIMMUNIZED        FULLIMMUNIZED_SURE  
## [100] PARTIMMUNIZED        FULLIMMUNIZED_SURE   FULLIMMUNIZED_UNSURE
## [103] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
## [106] FULLIMMUNIZED_SURE   PARTIMMUNIZED        PARTIMMUNIZED       
## [109] PARTIMMUNIZED        FULLIMMUNIZED_SURE   FULLIMMUNIZED_UNSURE
## [112] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
## [115] FULLIMMUNIZED_SURE   PARTIMMUNIZED        FULLIMMUNIZED_UNSURE
## [118] PARTIMMUNIZED        PARTIMMUNIZED        PARTIMMUNIZED       
## [121] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE PARTIMMUNIZED       
## [124] PARTIMMUNIZED        PARTIMMUNIZED        PARTIMMUNIZED       
## [127] PARTIMMUNIZED        FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
## [130] FULLIMMUNIZED_SURE   PARTIMMUNIZED        FULLIMMUNIZED_UNSURE
## [133] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
## [136] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE PARTIMMUNIZED       
## [139] FULLIMMUNIZED_SURE   FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
## [142] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
## [145] FULLIMMUNIZED_SURE   FULLIMMUNIZED_UNSURE FULLIMMUNIZED_SURE  
## [148] FULLIMMUNIZED_SURE   FULLIMMUNIZED_UNSURE PARTIMMUNIZED       
## [151] PARTIMMUNIZED        PARTIMMUNIZED        FULLIMMUNIZED_UNSURE
## [154] FULLIMMUNIZED_SURE   FULLIMMUNIZED_UNSURE PARTIMMUNIZED       
## [157] FULLIMMUNIZED_SURE   FULLIMMUNIZED_SURE   FULLIMMUNIZED_SURE  
## [160] FULLIMMUNIZED_SURE   FULLIMMUNIZED_SURE   PARTIMMUNIZED       
## [163] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE PARTIMMUNIZED       
## [166] FULLIMMUNIZED_SURE   FULLIMMUNIZED_SURE   FULLIMMUNIZED_SURE  
## [169] FULLIMMUNIZED_SURE   FULLIMMUNIZED_SURE   FULLIMMUNIZED_UNSURE
## [172] PARTIMMUNIZED        PARTIMMUNIZED        PARTIMMUNIZED       
## [175] FULLIMMUNIZED_UNSURE PARTIMMUNIZED        PARTIMMUNIZED       
## [178] UNVACCINATED         PARTIMMUNIZED        FULLIMMUNIZED_UNSURE
## [181] FULLIMMUNIZED_SURE   FULLIMMUNIZED_UNSURE FULLIMMUNIZED_SURE  
## [184] PARTIMMUNIZED        FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
## [187] FULLIMMUNIZED_UNSURE PARTIMMUNIZED        FULLIMMUNIZED_SURE  
## [190] FULLIMMUNIZED_UNSURE PARTIMMUNIZED        PARTIMMUNIZED       
## [193] PARTIMMUNIZED        PARTIMMUNIZED        FULLIMMUNIZED_UNSURE
## [196] PARTIMMUNIZED        FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
## [199] PARTIMMUNIZED        PARTIMMUNIZED        FULLIMMUNIZED_SURE  
## [202] PARTIMMUNIZED        FULLIMMUNIZED_UNSURE PARTIMMUNIZED       
## [205] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_SURE   FULLIMMUNIZED_SURE  
## [208] PARTIMMUNIZED        FULLIMMUNIZED_UNSURE PARTIMMUNIZED       
## [211] FULLIMMUNIZED_SURE   FULLIMMUNIZED_SURE   FULLIMMUNIZED_UNSURE
## [214] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_SURE   FULLIMMUNIZED_UNSURE
## [217] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
## [220] FULLIMMUNIZED_UNSURE PARTIMMUNIZED        PARTIMMUNIZED       
## [223] PARTIMMUNIZED        PARTIMMUNIZED        FULLIMMUNIZED_UNSURE
## [226] PARTIMMUNIZED        PARTIMMUNIZED        FULLIMMUNIZED_UNSURE
## [229] PARTIMMUNIZED        FULLIMMUNIZED_UNSURE FULLIMMUNIZED_SURE  
## [232] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
## [235] FULLIMMUNIZED_SURE   FULLIMMUNIZED_SURE   FULLIMMUNIZED_UNSURE
## [238] PARTIMMUNIZED        FULLIMMUNIZED_UNSURE FULLIMMUNIZED_SURE  
## [241] PARTIMMUNIZED        PARTIMMUNIZED        PARTIMMUNIZED       
## [244] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE FULLIMMUNIZED_SURE  
## [247] FULLIMMUNIZED_SURE   PARTIMMUNIZED        FULLIMMUNIZED_UNSURE
## [250] FULLIMMUNIZED_UNSURE PARTIMMUNIZED        PARTIMMUNIZED       
## [253] PARTIMMUNIZED        PARTIMMUNIZED        PARTIMMUNIZED       
## [256] PARTIMMUNIZED        PARTIMMUNIZED        FULLIMMUNIZED_UNSURE
## [259] PARTIMMUNIZED        PARTIMMUNIZED        FULLIMMUNIZED_UNSURE
## [262] PARTIMMUNIZED        PARTIMMUNIZED        FULLIMMUNIZED_UNSURE
## [265] FULLIMMUNIZED_SURE   FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
## [268] PARTIMMUNIZED        FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
## [271] PARTIMMUNIZED        PARTIMMUNIZED        FULLIMMUNIZED_UNSURE
## [274] PARTIMMUNIZED        FULLIMMUNIZED_UNSURE PARTIMMUNIZED       
## [277] PARTIMMUNIZED        FULLIMMUNIZED_SURE   FULLIMMUNIZED_UNSURE
## [280] FULLIMMUNIZED_SURE   PARTIMMUNIZED        PARTIMMUNIZED       
## [283] FULLIMMUNIZED_UNSURE PARTIMMUNIZED        PARTIMMUNIZED       
## [286] FULLIMMUNIZED_SURE   PARTIMMUNIZED        FULLIMMUNIZED_SURE  
## [289] FULLIMMUNIZED_SURE   FULLIMMUNIZED_SURE   FULLIMMUNIZED_SURE  
## [292] PARTIMMUNIZED        PARTIMMUNIZED        FULLIMMUNIZED_UNSURE
## [295] PARTIMMUNIZED        FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
## [298] FULLIMMUNIZED_UNSURE PARTIMMUNIZED        PARTIMMUNIZED       
## [301] FULLIMMUNIZED_UNSURE PARTIMMUNIZED        FULLIMMUNIZED_UNSURE
## [304] PARTIMMUNIZED        PARTIMMUNIZED        FULLIMMUNIZED_UNSURE
## [307] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
## [310] PARTIMMUNIZED        FULLIMMUNIZED_UNSURE PARTIMMUNIZED       
## [313] PARTIMMUNIZED        PARTIMMUNIZED        PARTIMMUNIZED       
## [316] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
## [319] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE FULLIMMUNIZED_SURE  
## [322] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE FULLIMMUNIZED_SURE  
## [325] PARTIMMUNIZED        PARTIMMUNIZED        FULLIMMUNIZED_SURE  
## [328] FULLIMMUNIZED_SURE   PARTIMMUNIZED        FULLIMMUNIZED_UNSURE
## [331] FULLIMMUNIZED_SURE   PARTIMMUNIZED        FULLIMMUNIZED_UNSURE
## [334] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE PARTIMMUNIZED       
## [337] PARTIMMUNIZED        FULLIMMUNIZED_UNSURE FULLIMMUNIZED_SURE  
## [340] PARTIMMUNIZED        FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
## [343] PARTIMMUNIZED        FULLIMMUNIZED_SURE   FULLIMMUNIZED_UNSURE
## [346] PARTIMMUNIZED        FULLIMMUNIZED_UNSURE PARTIMMUNIZED       
## [349] PARTIMMUNIZED        PARTIMMUNIZED        PARTIMMUNIZED       
## [352] PARTIMMUNIZED        PARTIMMUNIZED        PARTIMMUNIZED       
## [355] PARTIMMUNIZED        PARTIMMUNIZED        PARTIMMUNIZED       
## [358] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
## [361] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_SURE   FULLIMMUNIZED_UNSURE
## [364] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_SURE   PARTIMMUNIZED       
## [367] FULLIMMUNIZED_UNSURE PARTIMMUNIZED        FULLIMMUNIZED_SURE  
## [370] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE PARTIMMUNIZED       
## [373] PARTIMMUNIZED        PARTIMMUNIZED        FULLIMMUNIZED_SURE  
## [376] FULLIMMUNIZED_SURE   FULLIMMUNIZED_SURE   FULLIMMUNIZED_UNSURE
## [379] PARTIMMUNIZED        FULLIMMUNIZED_UNSURE FULLIMMUNIZED_SURE  
## [382] PARTIMMUNIZED        FULLIMMUNIZED_UNSURE PARTIMMUNIZED       
## [385] PARTIMMUNIZED        PARTIMMUNIZED        FULLIMMUNIZED_UNSURE
## [388] PARTIMMUNIZED        FULLIMMUNIZED_SURE   PARTIMMUNIZED       
## [391] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_SURE   FULLIMMUNIZED_SURE  
## [394] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
## [397] PARTIMMUNIZED        FULLIMMUNIZED_UNSURE FULLIMMUNIZED_SURE  
## [400] FULLIMMUNIZED_UNSURE PARTIMMUNIZED        PARTIMMUNIZED       
## [403] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE PARTIMMUNIZED       
## [406] FULLIMMUNIZED_SURE   FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
## [409] FULLIMMUNIZED_UNSURE PARTIMMUNIZED        PARTIMMUNIZED       
## [412] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE PARTIMMUNIZED       
## [415] PARTIMMUNIZED        FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
## [418] PARTIMMUNIZED        PARTIMMUNIZED        FULLIMMUNIZED_UNSURE
## [421] PARTIMMUNIZED        FULLIMMUNIZED_SURE   PARTIMMUNIZED       
## [424] PARTIMMUNIZED        PARTIMMUNIZED        FULLIMMUNIZED_SURE  
## [427] FULLIMMUNIZED_SURE   PARTIMMUNIZED        FULLIMMUNIZED_UNSURE
## [430] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE PARTIMMUNIZED       
## [433] PARTIMMUNIZED        PARTIMMUNIZED        PARTIMMUNIZED       
## [436] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_SURE   PARTIMMUNIZED       
## [439] PARTIMMUNIZED        PARTIMMUNIZED        FULLIMMUNIZED_UNSURE
## [442] PARTIMMUNIZED        FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
## [445] PARTIMMUNIZED        FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
## [448] FULLIMMUNIZED_SURE   PARTIMMUNIZED        PARTIMMUNIZED       
## [451] FULLIMMUNIZED_SURE   FULLIMMUNIZED_UNSURE PARTIMMUNIZED       
## [454] FULLIMMUNIZED_SURE   FULLIMMUNIZED_SURE   FULLIMMUNIZED_SURE  
## [457] PARTIMMUNIZED        FULLIMMUNIZED_SURE   UNVACCINATED        
## [460] FULLIMMUNIZED_UNSURE PARTIMMUNIZED        FULLIMMUNIZED_UNSURE
## [463] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE PARTIMMUNIZED       
## [466] UNVACCINATED         FULLIMMUNIZED_SURE   FULLIMMUNIZED_UNSURE
## [469] PARTIMMUNIZED        PARTIMMUNIZED        PARTIMMUNIZED       
## [472] UNVACCINATED         FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
## [475] FULLIMMUNIZED_SURE   PARTIMMUNIZED        PARTIMMUNIZED       
## [478] PARTIMMUNIZED        UNVACCINATED         FULLIMMUNIZED_SURE  
## [481] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_SURE   FULLIMMUNIZED_SURE  
## [484] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE PARTIMMUNIZED       
## [487] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
## [490] FULLIMMUNIZED_SURE   FULLIMMUNIZED_SURE   FULLIMMUNIZED_UNSURE
## [493] FULLIMMUNIZED_UNSURE PARTIMMUNIZED        FULLIMMUNIZED_UNSURE
## [496] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE PARTIMMUNIZED       
## [499] FULLIMMUNIZED_UNSURE PARTIMMUNIZED        FULLIMMUNIZED_SURE  
## [502] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE PARTIMMUNIZED       
## [505] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
## [508] FULLIMMUNIZED_SURE   FULLIMMUNIZED_SURE   FULLIMMUNIZED_SURE  
## [511] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_SURE   FULLIMMUNIZED_SURE  
## [514] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE PARTIMMUNIZED       
## [517] FULLIMMUNIZED_SURE   FULLIMMUNIZED_SURE   FULLIMMUNIZED_UNSURE
## [520] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_SURE   FULLIMMUNIZED_UNSURE
## [523] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE FULLIMMUNIZED_SURE  
## [526] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_SURE   FULLIMMUNIZED_SURE  
## [529] PARTIMMUNIZED        FULLIMMUNIZED_UNSURE FULLIMMUNIZED_SURE  
## [532] PARTIMMUNIZED        FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
## [535] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_SURE   FULLIMMUNIZED_UNSURE
## [538] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
## [541] PARTIMMUNIZED        FULLIMMUNIZED_UNSURE FULLIMMUNIZED_SURE  
## [544] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
## [547] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
## [550] PARTIMMUNIZED        PARTIMMUNIZED        FULLIMMUNIZED_SURE  
## [553] FULLIMMUNIZED_SURE   FULLIMMUNIZED_SURE   FULLIMMUNIZED_UNSURE
## [556] FULLIMMUNIZED_SURE   FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
## [559] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
## [562] FULLIMMUNIZED_SURE   PARTIMMUNIZED        FULLIMMUNIZED_SURE  
## [565] UNVACCINATED         FULLIMMUNIZED_SURE   PARTIMMUNIZED       
## [568] PARTIMMUNIZED        PARTIMMUNIZED        PARTIMMUNIZED       
## [571] PARTIMMUNIZED        PARTIMMUNIZED        PARTIMMUNIZED       
## [574] PARTIMMUNIZED        PARTIMMUNIZED        FULLIMMUNIZED_UNSURE
## [577] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
## [580] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
## [583] FULLIMMUNIZED_SURE   FULLIMMUNIZED_SURE   PARTIMMUNIZED       
## [586] FULLIMMUNIZED_UNSURE PARTIMMUNIZED        FULLIMMUNIZED_UNSURE
## [589] PARTIMMUNIZED        PARTIMMUNIZED        PARTIMMUNIZED       
## [592] PARTIMMUNIZED        FULLIMMUNIZED_SURE   FULLIMMUNIZED_SURE  
## [595] FULLIMMUNIZED_SURE   FULLIMMUNIZED_SURE   FULLIMMUNIZED_UNSURE
## [598] FULLIMMUNIZED_SURE   FULLIMMUNIZED_UNSURE FULLIMMUNIZED_SURE  
## [601] PARTIMMUNIZED        PARTIMMUNIZED        PARTIMMUNIZED       
## [604] PARTIMMUNIZED        FULLIMMUNIZED_SURE   FULLIMMUNIZED_UNSURE
## [607] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
## [610] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE PARTIMMUNIZED       
## [613] FULLIMMUNIZED_UNSURE PARTIMMUNIZED        PARTIMMUNIZED       
## [616] PARTIMMUNIZED        PARTIMMUNIZED        PARTIMMUNIZED       
## [619] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_SURE   FULLIMMUNIZED_SURE  
## [622] FULLIMMUNIZED_SURE   FULLIMMUNIZED_SURE   PARTIMMUNIZED       
## [625] FULLIMMUNIZED_SURE   FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
## [628] FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE FULLIMMUNIZED_UNSURE
## [631] FULLIMMUNIZED_SURE   FULLIMMUNIZED_SURE  
## 4 Levels: UNVACCINATED FULLIMMUNIZED_SURE ... PARTIMMUNIZED
KA.df$RESP_EDUC <- as.factor(KA.df$RESP_EDUC)
KA.df$RESP_EDUC <- relevel(KA.df$RESP_EDUC, "EGRAD_BELOW")
factor(KA.df$RESP_EDUC)
##   [1] HGRAD       EGRAD_BELOW HGRAD       CGRAD_ABOVE HGRAD      
##   [6] CGRAD_ABOVE HGRAD       HGRAD       HGRAD       HGRAD      
##  [11] HGRAD       HGRAD       HGRAD       HGRAD       CGRAD_ABOVE
##  [16] HGRAD       CGRAD_ABOVE CGRAD_ABOVE CGRAD_ABOVE HGRAD      
##  [21] HGRAD       EGRAD_BELOW HGRAD       CGRAD_ABOVE CGRAD_ABOVE
##  [26] CGRAD_ABOVE EGRAD_BELOW HGRAD       HGRAD       CGRAD_ABOVE
##  [31] EGRAD_BELOW CGRAD_ABOVE HGRAD       HGRAD       EGRAD_BELOW
##  [36] HGRAD       CGRAD_ABOVE HGRAD       HGRAD       HGRAD      
##  [41] HGRAD       CGRAD_ABOVE HGRAD       HGRAD       HGRAD      
##  [46] HGRAD       CGRAD_ABOVE CGRAD_ABOVE EGRAD_BELOW HGRAD      
##  [51] CGRAD_ABOVE HGRAD       EGRAD_BELOW EGRAD_BELOW HGRAD      
##  [56] CGRAD_ABOVE HGRAD       HGRAD       HGRAD       HGRAD      
##  [61] CGRAD_ABOVE CGRAD_ABOVE HGRAD       CGRAD_ABOVE HGRAD      
##  [66] HGRAD       HGRAD       EGRAD_BELOW CGRAD_ABOVE EGRAD_BELOW
##  [71] HGRAD       CGRAD_ABOVE EGRAD_BELOW CGRAD_ABOVE EGRAD_BELOW
##  [76] HGRAD       EGRAD_BELOW HGRAD       CGRAD_ABOVE HGRAD      
##  [81] HGRAD       EGRAD_BELOW EGRAD_BELOW HGRAD       HGRAD      
##  [86] EGRAD_BELOW CGRAD_ABOVE HGRAD       CGRAD_ABOVE HGRAD      
##  [91] CGRAD_ABOVE CGRAD_ABOVE HGRAD       HGRAD       CGRAD_ABOVE
##  [96] EGRAD_BELOW CGRAD_ABOVE EGRAD_BELOW HGRAD       CGRAD_ABOVE
## [101] CGRAD_ABOVE HGRAD       HGRAD       HGRAD       HGRAD      
## [106] EGRAD_BELOW CGRAD_ABOVE HGRAD       HGRAD       HGRAD      
## [111] HGRAD       CGRAD_ABOVE HGRAD       HGRAD       CGRAD_ABOVE
## [116] HGRAD       CGRAD_ABOVE HGRAD       HGRAD       HGRAD      
## [121] EGRAD_BELOW HGRAD       CGRAD_ABOVE CGRAD_ABOVE HGRAD      
## [126] HGRAD       HGRAD       HGRAD       CGRAD_ABOVE HGRAD      
## [131] EGRAD_BELOW HGRAD       HGRAD       HGRAD       EGRAD_BELOW
## [136] HGRAD       HGRAD       CGRAD_ABOVE HGRAD       HGRAD      
## [141] CGRAD_ABOVE CGRAD_ABOVE HGRAD       CGRAD_ABOVE CGRAD_ABOVE
## [146] CGRAD_ABOVE CGRAD_ABOVE HGRAD       EGRAD_BELOW CGRAD_ABOVE
## [151] CGRAD_ABOVE HGRAD       CGRAD_ABOVE HGRAD       HGRAD      
## [156] CGRAD_ABOVE HGRAD       CGRAD_ABOVE HGRAD       HGRAD      
## [161] HGRAD       HGRAD       CGRAD_ABOVE HGRAD       CGRAD_ABOVE
## [166] HGRAD       HGRAD       HGRAD       HGRAD       HGRAD      
## [171] HGRAD       CGRAD_ABOVE HGRAD       HGRAD       CGRAD_ABOVE
## [176] HGRAD       CGRAD_ABOVE HGRAD       HGRAD       HGRAD      
## [181] HGRAD       HGRAD       HGRAD       CGRAD_ABOVE HGRAD      
## [186] CGRAD_ABOVE HGRAD       HGRAD       EGRAD_BELOW EGRAD_BELOW
## [191] HGRAD       HGRAD       CGRAD_ABOVE HGRAD       HGRAD      
## [196] HGRAD       HGRAD       HGRAD       HGRAD       CGRAD_ABOVE
## [201] CGRAD_ABOVE CGRAD_ABOVE HGRAD       EGRAD_BELOW CGRAD_ABOVE
## [206] HGRAD       HGRAD       CGRAD_ABOVE HGRAD       CGRAD_ABOVE
## [211] CGRAD_ABOVE HGRAD       HGRAD       CGRAD_ABOVE CGRAD_ABOVE
## [216] HGRAD       CGRAD_ABOVE CGRAD_ABOVE EGRAD_BELOW HGRAD      
## [221] CGRAD_ABOVE HGRAD       HGRAD       HGRAD       CGRAD_ABOVE
## [226] CGRAD_ABOVE HGRAD       HGRAD       CGRAD_ABOVE CGRAD_ABOVE
## [231] CGRAD_ABOVE HGRAD       CGRAD_ABOVE CGRAD_ABOVE HGRAD      
## [236] CGRAD_ABOVE CGRAD_ABOVE CGRAD_ABOVE CGRAD_ABOVE EGRAD_BELOW
## [241] EGRAD_BELOW CGRAD_ABOVE HGRAD       HGRAD       HGRAD      
## [246] CGRAD_ABOVE HGRAD       EGRAD_BELOW EGRAD_BELOW CGRAD_ABOVE
## [251] HGRAD       HGRAD       HGRAD       HGRAD       HGRAD      
## [256] HGRAD       HGRAD       CGRAD_ABOVE HGRAD       CGRAD_ABOVE
## [261] HGRAD       HGRAD       HGRAD       CGRAD_ABOVE HGRAD      
## [266] HGRAD       HGRAD       CGRAD_ABOVE HGRAD       HGRAD      
## [271] HGRAD       HGRAD       HGRAD       CGRAD_ABOVE EGRAD_BELOW
## [276] HGRAD       CGRAD_ABOVE HGRAD       CGRAD_ABOVE HGRAD      
## [281] HGRAD       CGRAD_ABOVE HGRAD       HGRAD       HGRAD      
## [286] CGRAD_ABOVE HGRAD       EGRAD_BELOW EGRAD_BELOW HGRAD      
## [291] HGRAD       HGRAD       HGRAD       EGRAD_BELOW CGRAD_ABOVE
## [296] HGRAD       HGRAD       HGRAD       EGRAD_BELOW EGRAD_BELOW
## [301] CGRAD_ABOVE HGRAD       CGRAD_ABOVE HGRAD       HGRAD      
## [306] HGRAD       CGRAD_ABOVE HGRAD       HGRAD       CGRAD_ABOVE
## [311] HGRAD       CGRAD_ABOVE EGRAD_BELOW HGRAD       CGRAD_ABOVE
## [316] HGRAD       HGRAD       HGRAD       HGRAD       CGRAD_ABOVE
## [321] HGRAD       CGRAD_ABOVE HGRAD       HGRAD       HGRAD      
## [326] EGRAD_BELOW HGRAD       HGRAD       HGRAD       HGRAD      
## [331] EGRAD_BELOW HGRAD       EGRAD_BELOW CGRAD_ABOVE EGRAD_BELOW
## [336] CGRAD_ABOVE HGRAD       HGRAD       HGRAD       EGRAD_BELOW
## [341] CGRAD_ABOVE HGRAD       CGRAD_ABOVE CGRAD_ABOVE HGRAD      
## [346] HGRAD       CGRAD_ABOVE HGRAD       HGRAD       EGRAD_BELOW
## [351] HGRAD       CGRAD_ABOVE HGRAD       CGRAD_ABOVE HGRAD      
## [356] CGRAD_ABOVE CGRAD_ABOVE EGRAD_BELOW CGRAD_ABOVE HGRAD      
## [361] CGRAD_ABOVE CGRAD_ABOVE HGRAD       HGRAD       CGRAD_ABOVE
## [366] HGRAD       HGRAD       HGRAD       HGRAD       CGRAD_ABOVE
## [371] HGRAD       CGRAD_ABOVE HGRAD       EGRAD_BELOW HGRAD      
## [376] HGRAD       CGRAD_ABOVE CGRAD_ABOVE HGRAD       HGRAD      
## [381] CGRAD_ABOVE HGRAD       HGRAD       CGRAD_ABOVE CGRAD_ABOVE
## [386] HGRAD       CGRAD_ABOVE CGRAD_ABOVE EGRAD_BELOW HGRAD      
## [391] EGRAD_BELOW HGRAD       HGRAD       HGRAD       HGRAD      
## [396] HGRAD       HGRAD       HGRAD       HGRAD       EGRAD_BELOW
## [401] HGRAD       CGRAD_ABOVE CGRAD_ABOVE HGRAD       HGRAD      
## [406] HGRAD       HGRAD       CGRAD_ABOVE EGRAD_BELOW HGRAD      
## [411] HGRAD       CGRAD_ABOVE HGRAD       HGRAD       HGRAD      
## [416] EGRAD_BELOW HGRAD       HGRAD       HGRAD       HGRAD      
## [421] HGRAD       CGRAD_ABOVE CGRAD_ABOVE HGRAD       HGRAD      
## [426] CGRAD_ABOVE HGRAD       CGRAD_ABOVE CGRAD_ABOVE HGRAD      
## [431] CGRAD_ABOVE CGRAD_ABOVE HGRAD       HGRAD       HGRAD      
## [436] CGRAD_ABOVE CGRAD_ABOVE HGRAD       CGRAD_ABOVE HGRAD      
## [441] CGRAD_ABOVE HGRAD       HGRAD       HGRAD       HGRAD      
## [446] CGRAD_ABOVE CGRAD_ABOVE CGRAD_ABOVE HGRAD       HGRAD      
## [451] HGRAD       HGRAD       CGRAD_ABOVE HGRAD       EGRAD_BELOW
## [456] CGRAD_ABOVE CGRAD_ABOVE HGRAD       EGRAD_BELOW HGRAD      
## [461] HGRAD       HGRAD       HGRAD       HGRAD       HGRAD      
## [466] EGRAD_BELOW CGRAD_ABOVE CGRAD_ABOVE CGRAD_ABOVE CGRAD_ABOVE
## [471] HGRAD       HGRAD       HGRAD       HGRAD       CGRAD_ABOVE
## [476] CGRAD_ABOVE HGRAD       HGRAD       CGRAD_ABOVE CGRAD_ABOVE
## [481] HGRAD       HGRAD       HGRAD       CGRAD_ABOVE EGRAD_BELOW
## [486] HGRAD       HGRAD       HGRAD       CGRAD_ABOVE CGRAD_ABOVE
## [491] HGRAD       CGRAD_ABOVE CGRAD_ABOVE HGRAD       HGRAD      
## [496] HGRAD       CGRAD_ABOVE CGRAD_ABOVE HGRAD       HGRAD      
## [501] CGRAD_ABOVE HGRAD       HGRAD       HGRAD       CGRAD_ABOVE
## [506] HGRAD       HGRAD       HGRAD       CGRAD_ABOVE EGRAD_BELOW
## [511] CGRAD_ABOVE HGRAD       CGRAD_ABOVE HGRAD       HGRAD      
## [516] HGRAD       CGRAD_ABOVE HGRAD       HGRAD       EGRAD_BELOW
## [521] CGRAD_ABOVE HGRAD       HGRAD       HGRAD       HGRAD      
## [526] HGRAD       HGRAD       HGRAD       HGRAD       HGRAD      
## [531] HGRAD       HGRAD       EGRAD_BELOW EGRAD_BELOW EGRAD_BELOW
## [536] HGRAD       HGRAD       HGRAD       HGRAD       HGRAD      
## [541] CGRAD_ABOVE HGRAD       CGRAD_ABOVE EGRAD_BELOW EGRAD_BELOW
## [546] HGRAD       HGRAD       EGRAD_BELOW HGRAD       CGRAD_ABOVE
## [551] HGRAD       EGRAD_BELOW EGRAD_BELOW HGRAD       HGRAD      
## [556] HGRAD       CGRAD_ABOVE HGRAD       CGRAD_ABOVE HGRAD      
## [561] HGRAD       HGRAD       HGRAD       HGRAD       CGRAD_ABOVE
## [566] EGRAD_BELOW EGRAD_BELOW CGRAD_ABOVE HGRAD       HGRAD      
## [571] HGRAD       EGRAD_BELOW HGRAD       CGRAD_ABOVE CGRAD_ABOVE
## [576] HGRAD       CGRAD_ABOVE CGRAD_ABOVE HGRAD       HGRAD      
## [581] HGRAD       HGRAD       HGRAD       EGRAD_BELOW HGRAD      
## [586] CGRAD_ABOVE HGRAD       EGRAD_BELOW EGRAD_BELOW CGRAD_ABOVE
## [591] CGRAD_ABOVE HGRAD       HGRAD       HGRAD       CGRAD_ABOVE
## [596] HGRAD       HGRAD       HGRAD       HGRAD       HGRAD      
## [601] CGRAD_ABOVE HGRAD       HGRAD       EGRAD_BELOW HGRAD      
## [606] CGRAD_ABOVE EGRAD_BELOW HGRAD       HGRAD       CGRAD_ABOVE
## [611] HGRAD       CGRAD_ABOVE CGRAD_ABOVE HGRAD       HGRAD      
## [616] EGRAD_BELOW HGRAD       HGRAD       HGRAD       CGRAD_ABOVE
## [621] CGRAD_ABOVE HGRAD       CGRAD_ABOVE EGRAD_BELOW HGRAD      
## [626] CGRAD_ABOVE HGRAD       HGRAD       EGRAD_BELOW EGRAD_BELOW
## [631] HGRAD       HGRAD      
## Levels: EGRAD_BELOW CGRAD_ABOVE HGRAD
KA.df$RESP_MINC <- as.factor(KA.df$RESP_MINC)
KA.df$RESP_MINC <- relevel(KA.df$RESP_MINC, "10K_BELOW")
factor(KA.df$RESP_MINC)
##   [1] 10K_BELOW 10KTO19K  10K_BELOW 20KTO49K  10KTO19K  10K_BELOW 10K_BELOW
##   [8] 10K_BELOW 10K_BELOW 10KTO19K  10KTO19K  50K_ABOVE 10KTO19K  20KTO49K 
##  [15] 10KTO19K  50K_ABOVE 50K_ABOVE 50K_ABOVE 50K_ABOVE 50K_ABOVE 10K_BELOW
##  [22] 10KTO19K  20KTO49K  20KTO49K  10KTO19K  50K_ABOVE 10KTO19K  10K_BELOW
##  [29] 10K_BELOW 10KTO19K  10K_BELOW 50K_ABOVE 10K_BELOW 10KTO19K  10K_BELOW
##  [36] 10K_BELOW 20KTO49K  10KTO19K  10K_BELOW 10K_BELOW 20KTO49K  50K_ABOVE
##  [43] 10KTO19K  20KTO49K  20KTO49K  20KTO49K  10K_BELOW 10K_BELOW 10KTO19K 
##  [50] 10KTO19K  10KTO19K  20KTO49K  10K_BELOW 10K_BELOW 10K_BELOW 20KTO49K 
##  [57] 10KTO19K  50K_ABOVE 10KTO19K  10K_BELOW 10KTO19K  20KTO49K  10KTO19K 
##  [64] 50K_ABOVE 10K_BELOW 20KTO49K  10KTO19K  10K_BELOW 10K_BELOW 10K_BELOW
##  [71] 10K_BELOW 10K_BELOW 10K_BELOW 20KTO49K  20KTO49K  10K_BELOW 10K_BELOW
##  [78] 10KTO19K  10KTO19K  10KTO19K  50K_ABOVE 10K_BELOW 10K_BELOW 10K_BELOW
##  [85] 20KTO49K  10K_BELOW 50K_ABOVE 10K_BELOW 10KTO19K  10KTO19K  20KTO49K 
##  [92] 50K_ABOVE 50K_ABOVE 10K_BELOW 10KTO19K  10KTO19K  20KTO49K  10KTO19K 
##  [99] 10KTO19K  20KTO49K  20KTO49K  10KTO19K  10KTO19K  10K_BELOW 10KTO19K 
## [106] 10K_BELOW 10K_BELOW 10K_BELOW 10KTO19K  10K_BELOW 10K_BELOW 10KTO19K 
## [113] 10KTO19K  10KTO19K  50K_ABOVE 50K_ABOVE 50K_ABOVE 50K_ABOVE 10KTO19K 
## [120] 20KTO49K  10KTO19K  50K_ABOVE 50K_ABOVE 20KTO49K  20KTO49K  10K_BELOW
## [127] 10K_BELOW 10KTO19K  10K_BELOW 10K_BELOW 10K_BELOW 10KTO19K  10KTO19K 
## [134] 20KTO49K  10K_BELOW 10K_BELOW 10KTO19K  10K_BELOW 10KTO19K  10K_BELOW
## [141] 10K_BELOW 50K_ABOVE 10KTO19K  20KTO49K  10KTO19K  10KTO19K  20KTO49K 
## [148] 10K_BELOW 10KTO19K  20KTO49K  10KTO19K  10KTO19K  10KTO19K  20KTO49K 
## [155] 20KTO49K  50K_ABOVE 10KTO19K  20KTO49K  20KTO49K  10K_BELOW 50K_ABOVE
## [162] 10K_BELOW 20KTO49K  20KTO49K  20KTO49K  10KTO19K  10K_BELOW 10KTO19K 
## [169] 10K_BELOW 10K_BELOW 10KTO19K  20KTO49K  10KTO19K  20KTO49K  50K_ABOVE
## [176] 10KTO19K  10K_BELOW 50K_ABOVE 10K_BELOW 10KTO19K  10KTO19K  10KTO19K 
## [183] 10K_BELOW 10K_BELOW 10K_BELOW 10KTO19K  20KTO49K  10KTO19K  10KTO19K 
## [190] 10KTO19K  10KTO19K  10KTO19K  20KTO49K  20KTO49K  10KTO19K  10K_BELOW
## [197] 10KTO19K  10K_BELOW 10K_BELOW 10KTO19K  20KTO49K  20KTO49K  20KTO49K 
## [204] 10KTO19K  10KTO19K  10KTO19K  20KTO49K  10KTO19K  50K_ABOVE 10KTO19K 
## [211] 50K_ABOVE 50K_ABOVE 10KTO19K  10KTO19K  50K_ABOVE 10K_BELOW 10K_BELOW
## [218] 10KTO19K  10KTO19K  10K_BELOW 20KTO49K  20KTO49K  10K_BELOW 10KTO19K 
## [225] 50K_ABOVE 20KTO49K  20KTO49K  20KTO49K  10KTO19K  20KTO49K  10KTO19K 
## [232] 20KTO49K  50K_ABOVE 20KTO49K  10KTO19K  20KTO49K  10K_BELOW 20KTO49K 
## [239] 10KTO19K  20KTO49K  10KTO19K  10KTO19K  10K_BELOW 20KTO49K  20KTO49K 
## [246] 50K_ABOVE 10KTO19K  10KTO19K  20KTO49K  50K_ABOVE 20KTO49K  20KTO49K 
## [253] 20KTO49K  10K_BELOW 10KTO19K  10K_BELOW 10KTO19K  10KTO19K  10KTO19K 
## [260] 50K_ABOVE 20KTO49K  10KTO19K  50K_ABOVE 10K_BELOW 10KTO19K  10KTO19K 
## [267] 10KTO19K  10KTO19K  50K_ABOVE 50K_ABOVE 10K_BELOW 10KTO19K  10KTO19K 
## [274] 10KTO19K  10K_BELOW 10KTO19K  10K_BELOW 10KTO19K  20KTO49K  10KTO19K 
## [281] 10KTO19K  20KTO49K  10KTO19K  10KTO19K  10KTO19K  50K_ABOVE 10K_BELOW
## [288] 50K_ABOVE 50K_ABOVE 10KTO19K  10K_BELOW 10KTO19K  10K_BELOW 10K_BELOW
## [295] 50K_ABOVE 10K_BELOW 10KTO19K  10K_BELOW 10KTO19K  10K_BELOW 50K_ABOVE
## [302] 20KTO49K  20KTO49K  10K_BELOW 10KTO19K  10KTO19K  10K_BELOW 10KTO19K 
## [309] 50K_ABOVE 20KTO49K  20KTO49K  50K_ABOVE 20KTO49K  20KTO49K  20KTO49K 
## [316] 10K_BELOW 10K_BELOW 10K_BELOW 10KTO19K  10KTO19K  20KTO49K  20KTO49K 
## [323] 20KTO49K  10K_BELOW 20KTO49K  10K_BELOW 10K_BELOW 10KTO19K  50K_ABOVE
## [330] 20KTO49K  10K_BELOW 10KTO19K  10K_BELOW 10KTO19K  10KTO19K  10KTO19K 
## [337] 50K_ABOVE 10KTO19K  10K_BELOW 10KTO19K  20KTO49K  10K_BELOW 20KTO49K 
## [344] 50K_ABOVE 10K_BELOW 20KTO49K  10K_BELOW 10K_BELOW 10K_BELOW 50K_ABOVE
## [351] 10KTO19K  20KTO49K  10KTO19K  20KTO49K  10KTO19K  20KTO49K  20KTO49K 
## [358] 10K_BELOW 10KTO19K  10KTO19K  20KTO49K  20KTO49K  10KTO19K  10KTO19K 
## [365] 20KTO49K  10KTO19K  10K_BELOW 10K_BELOW 10KTO19K  10K_BELOW 20KTO49K 
## [372] 20KTO49K  10K_BELOW 10K_BELOW 20KTO49K  20KTO49K  20KTO49K  10K_BELOW
## [379] 10KTO19K  10KTO19K  20KTO49K  10KTO19K  10KTO19K  10KTO19K  10KTO19K 
## [386] 10K_BELOW 20KTO49K  10KTO19K  10K_BELOW 10KTO19K  10K_BELOW 10K_BELOW
## [393] 10KTO19K  10KTO19K  10K_BELOW 10K_BELOW 10K_BELOW 20KTO49K  10K_BELOW
## [400] 10K_BELOW 10K_BELOW 10KTO19K  10KTO19K  10KTO19K  10K_BELOW 10KTO19K 
## [407] 10K_BELOW 10K_BELOW 50K_ABOVE 10KTO19K  20KTO49K  20KTO49K  50K_ABOVE
## [414] 10KTO19K  10K_BELOW 10KTO19K  10KTO19K  10KTO19K  10KTO19K  10K_BELOW
## [421] 10K_BELOW 50K_ABOVE 20KTO49K  10K_BELOW 10K_BELOW 50K_ABOVE 10K_BELOW
## [428] 20KTO49K  50K_ABOVE 10KTO19K  50K_ABOVE 10K_BELOW 10KTO19K  20KTO49K 
## [435] 10KTO19K  50K_ABOVE 50K_ABOVE 10KTO19K  10KTO19K  10K_BELOW 20KTO49K 
## [442] 10K_BELOW 10K_BELOW 20KTO49K  10KTO19K  10KTO19K  20KTO49K  10KTO19K 
## [449] 10K_BELOW 10KTO19K  20KTO49K  10KTO19K  10KTO19K  10K_BELOW 10KTO19K 
## [456] 20KTO49K  20KTO49K  10K_BELOW 10K_BELOW 10KTO19K  10KTO19K  10K_BELOW
## [463] 10K_BELOW 10K_BELOW 10K_BELOW 10K_BELOW 20KTO49K  10KTO19K  20KTO49K 
## [470] 20KTO49K  20KTO49K  10K_BELOW 10KTO19K  20KTO49K  50K_ABOVE 20KTO49K 
## [477] 10KTO19K  20KTO49K  50K_ABOVE 50K_ABOVE 10K_BELOW 10KTO19K  10K_BELOW
## [484] 20KTO49K  20KTO49K  50K_ABOVE 10KTO19K  10KTO19K  10KTO19K  20KTO49K 
## [491] 20KTO49K  50K_ABOVE 10K_BELOW 10K_BELOW 20KTO49K  10KTO19K  20KTO49K 
## [498] 10KTO19K  10KTO19K  10KTO19K  20KTO49K  50K_ABOVE 10KTO19K  20KTO49K 
## [505] 20KTO49K  10KTO19K  10KTO19K  20KTO49K  10K_BELOW 10K_BELOW 10KTO19K 
## [512] 20KTO49K  20KTO49K  10K_BELOW 10KTO19K  20KTO49K  10KTO19K  10K_BELOW
## [519] 10K_BELOW 20KTO49K  10KTO19K  20KTO49K  20KTO49K  10K_BELOW 10KTO19K 
## [526] 10K_BELOW 20KTO49K  10KTO19K  10K_BELOW 20KTO49K  20KTO49K  10KTO19K 
## [533] 10K_BELOW 10K_BELOW 10KTO19K  10KTO19K  10K_BELOW 10K_BELOW 10K_BELOW
## [540] 10K_BELOW 50K_ABOVE 10KTO19K  20KTO49K  10KTO19K  10K_BELOW 10K_BELOW
## [547] 10KTO19K  10K_BELOW 10K_BELOW 10KTO19K  10K_BELOW 10K_BELOW 10KTO19K 
## [554] 10K_BELOW 10K_BELOW 10KTO19K  10KTO19K  10KTO19K  20KTO49K  10KTO19K 
## [561] 10KTO19K  10KTO19K  20KTO49K  10KTO19K  10K_BELOW 10KTO19K  10K_BELOW
## [568] 10KTO19K  10K_BELOW 10KTO19K  10K_BELOW 10K_BELOW 10K_BELOW 20KTO49K 
## [575] 50K_ABOVE 10K_BELOW 50K_ABOVE 20KTO49K  10K_BELOW 10K_BELOW 20KTO49K 
## [582] 10K_BELOW 10K_BELOW 10KTO19K  10K_BELOW 10KTO19K  20KTO49K  10KTO19K 
## [589] 10K_BELOW 10KTO19K  50K_ABOVE 10K_BELOW 10K_BELOW 10KTO19K  20KTO49K 
## [596] 10KTO19K  10K_BELOW 10K_BELOW 10KTO19K  50K_ABOVE 10KTO19K  10K_BELOW
## [603] 10KTO19K  50K_ABOVE 20KTO49K  10KTO19K  10KTO19K  10K_BELOW 10KTO19K 
## [610] 20KTO49K  20KTO49K  20KTO49K  50K_ABOVE 10K_BELOW 10K_BELOW 10KTO19K 
## [617] 10K_BELOW 10K_BELOW 50K_ABOVE 10KTO19K  20KTO49K  10KTO19K  10K_BELOW
## [624] 10K_BELOW 10KTO19K  50K_ABOVE 10K_BELOW 10KTO19K  10KTO19K  10K_BELOW
## [631] 50K_ABOVE 20KTO49K 
## Levels: 10K_BELOW 10KTO19K 20KTO49K 50K_ABOVE
KA.df$RESP_HEXP <- as.factor(KA.df$RESP_HEXP)
KA.df$RESP_HEXP <- relevel(KA.df$RESP_HEXP, "5K_BELOW")
factor(KA.df$RESP_HEXP)
##   [1] 5K_BELOW  5K_BELOW  5KTO19K   5K_BELOW  5K_BELOW  5KTO19K   5KTO19K  
##   [8] 5K_BELOW  5K_BELOW  5K_BELOW  5KTO19K   5K_BELOW  5KTO19K   5KTO19K  
##  [15] 5K_BELOW  5KTO19K   20K_ABOVE 5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW 
##  [22] 5K_BELOW  5K_BELOW  5KTO19K   5K_BELOW  5KTO19K   5K_BELOW  5K_BELOW 
##  [29] 5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW 
##  [36] 5KTO19K   5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5KTO19K  
##  [43] 5K_BELOW  5K_BELOW  5K_BELOW  5KTO19K   5KTO19K   5K_BELOW  5K_BELOW 
##  [50] 5K_BELOW  5KTO19K   5K_BELOW  5K_BELOW  5K_BELOW  5KTO19K   5K_BELOW 
##  [57] 5K_BELOW  5KTO19K   5K_BELOW  5KTO19K   5K_BELOW  5K_BELOW  5K_BELOW 
##  [64] 20K_ABOVE 5K_BELOW  5K_BELOW  5K_BELOW  5KTO19K   5K_BELOW  5KTO19K  
##  [71] 5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW 
##  [78] 5K_BELOW  5K_BELOW  5KTO19K   5K_BELOW  5KTO19K   5K_BELOW  5K_BELOW 
##  [85] 5KTO19K   5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5KTO19K   5K_BELOW 
##  [92] 5K_BELOW  5KTO19K   5KTO19K   5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW 
##  [99] 5K_BELOW  5K_BELOW  5K_BELOW  5KTO19K   5K_BELOW  5K_BELOW  5K_BELOW 
## [106] 5KTO19K   5K_BELOW  5K_BELOW  5K_BELOW  5KTO19K   5K_BELOW  5K_BELOW 
## [113] 5K_BELOW  5K_BELOW  5KTO19K   5KTO19K   5KTO19K   5KTO19K   5KTO19K  
## [120] 5K_BELOW  5K_BELOW  5KTO19K   5KTO19K   5K_BELOW  5KTO19K   5K_BELOW 
## [127] 5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW 
## [134] 5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW 
## [141] 5K_BELOW  5KTO19K   5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW 
## [148] 5K_BELOW  5K_BELOW  5K_BELOW  5KTO19K   5K_BELOW  5K_BELOW  5K_BELOW 
## [155] 5K_BELOW  5K_BELOW  5KTO19K   5K_BELOW  5KTO19K   5K_BELOW  5K_BELOW 
## [162] 5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW 
## [169] 5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5KTO19K  
## [176] 5KTO19K   5KTO19K   5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5KTO19K  
## [183] 5K_BELOW  5K_BELOW  5KTO19K   5K_BELOW  5KTO19K   5K_BELOW  5K_BELOW 
## [190] 5KTO19K   5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW 
## [197] 5K_BELOW  5KTO19K   5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW 
## [204] 5K_BELOW  20K_ABOVE 5K_BELOW  20K_ABOVE 5K_BELOW  5K_BELOW  5K_BELOW 
## [211] 5KTO19K   5K_BELOW  5K_BELOW  5KTO19K   5KTO19K   5K_BELOW  5K_BELOW 
## [218] 5K_BELOW  5KTO19K   5KTO19K   5K_BELOW  5KTO19K   5K_BELOW  5K_BELOW 
## [225] 5K_BELOW  20K_ABOVE 5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW 
## [232] 5K_BELOW  5K_BELOW  5K_BELOW  5KTO19K   5K_BELOW  5K_BELOW  5K_BELOW 
## [239] 5K_BELOW  5K_BELOW  5KTO19K   5K_BELOW  5K_BELOW  5K_BELOW  5KTO19K  
## [246] 5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5KTO19K  
## [253] 5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW 
## [260] 5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5KTO19K   5K_BELOW 
## [267] 5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW 
## [274] 5K_BELOW  5K_BELOW  5KTO19K   5K_BELOW  5K_BELOW  5KTO19K   5KTO19K  
## [281] 5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5KTO19K   5KTO19K  
## [288] 5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW 
## [295] 5KTO19K   5KTO19K   5KTO19K   5K_BELOW  5KTO19K   5K_BELOW  5KTO19K  
## [302] 5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW 
## [309] 5KTO19K   5KTO19K   5K_BELOW  5KTO19K   5K_BELOW  5K_BELOW  20K_ABOVE
## [316] 5K_BELOW  5K_BELOW  5KTO19K   5K_BELOW  5K_BELOW  5K_BELOW  5KTO19K  
## [323] 5KTO19K   5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5KTO19K  
## [330] 5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5KTO19K  
## [337] 5K_BELOW  5K_BELOW  5K_BELOW  20K_ABOVE 5KTO19K   20K_ABOVE 5K_BELOW 
## [344] 5KTO19K   5K_BELOW  5K_BELOW  5KTO19K   5K_BELOW  5K_BELOW  5K_BELOW 
## [351] 5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5KTO19K   5KTO19K  
## [358] 5K_BELOW  20K_ABOVE 5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  20K_ABOVE
## [365] 5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5KTO19K  
## [372] 5KTO19K   5KTO19K   5K_BELOW  5K_BELOW  5K_BELOW  20K_ABOVE 5K_BELOW 
## [379] 5KTO19K   5K_BELOW  5K_BELOW  5K_BELOW  5KTO19K   5K_BELOW  5KTO19K  
## [386] 5K_BELOW  5KTO19K   5K_BELOW  5K_BELOW  5KTO19K   5KTO19K   5KTO19K  
## [393] 5KTO19K   5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW 
## [400] 5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW 
## [407] 5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5KTO19K   5KTO19K  
## [414] 5K_BELOW  5K_BELOW  5K_BELOW  5KTO19K   5K_BELOW  5K_BELOW  5K_BELOW 
## [421] 5KTO19K   5KTO19K   5K_BELOW  5K_BELOW  5K_BELOW  20K_ABOVE 5K_BELOW 
## [428] 5K_BELOW  20K_ABOVE 5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW 
## [435] 5K_BELOW  5KTO19K   5KTO19K   5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW 
## [442] 5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW 
## [449] 5K_BELOW  5K_BELOW  5KTO19K   5KTO19K   5K_BELOW  5K_BELOW  5K_BELOW 
## [456] 5K_BELOW  5KTO19K   5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW 
## [463] 5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5KTO19K   5KTO19K   5KTO19K  
## [470] 5KTO19K   5KTO19K   5K_BELOW  5KTO19K   5K_BELOW  5K_BELOW  5K_BELOW 
## [477] 5K_BELOW  20K_ABOVE 5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW 
## [484] 5K_BELOW  5K_BELOW  5KTO19K   5K_BELOW  5K_BELOW  5KTO19K   5KTO19K  
## [491] 5KTO19K   5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5KTO19K  
## [498] 5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW 
## [505] 5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW 
## [512] 5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5KTO19K   5K_BELOW 
## [519] 5K_BELOW  5K_BELOW  5KTO19K   5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW 
## [526] 5K_BELOW  5KTO19K   5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW 
## [533] 5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW 
## [540] 5K_BELOW  5K_BELOW  5KTO19K   20K_ABOVE 5KTO19K   5K_BELOW  5K_BELOW 
## [547] 5K_BELOW  5K_BELOW  5K_BELOW  5KTO19K   5K_BELOW  5K_BELOW  5K_BELOW 
## [554] 5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW 
## [561] 5K_BELOW  5K_BELOW  5KTO19K   5KTO19K   5K_BELOW  5K_BELOW  5K_BELOW 
## [568] 5K_BELOW  5KTO19K   5KTO19K   20K_ABOVE 5K_BELOW  5KTO19K   5KTO19K  
## [575] 5KTO19K   5K_BELOW  5KTO19K   5KTO19K   5K_BELOW  5K_BELOW  5K_BELOW 
## [582] 5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW 
## [589] 5K_BELOW  5K_BELOW  5KTO19K   5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW 
## [596] 5K_BELOW  5K_BELOW  5K_BELOW  5KTO19K   5K_BELOW  5KTO19K   5KTO19K  
## [603] 20K_ABOVE 5KTO19K   5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW 
## [610] 5K_BELOW  5KTO19K   5K_BELOW  20K_ABOVE 5K_BELOW  5K_BELOW  5K_BELOW 
## [617] 5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5KTO19K   5K_BELOW 
## [624] 5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW  5K_BELOW 
## [631] 5K_BELOW  5K_BELOW 
## Levels: 5K_BELOW 20K_ABOVE 5KTO19K
######################################
# TREATING CATEGORICAL VARIABLES AS ORDINAL CATEGORIES
######################################

#KA.df$KVCO_CATEG <- as.factor(KA.df$KVCO_CATEG)
#KA.df$KVCO_CATEG <- factor(KA.df$KVCO_CATEG, order=TRUE,
#                           levels = c("NOT_AWARE", "PAR_AWARE", "FUL_AWARE"))
#factor(KA.df$KVCO_CATEG)

#KA.df$RESP_ISTAT <- as.factor(KA.df$RESP_ISTAT)
#KA.df$RESP_ISTAT <- factor(KA.df$RESP_ISTAT, order=TRUE,
#                           levels = c("UNVACCINATED", "PARTIMMUNIZED", "FULLIMMUNIZED_UNSURE", "FULLIMMUNIZED_SURE"))
#factor(KA.df$RESP_ISTAT)

#KA.df$RESP_EDUC <- as.factor(KA.df$RESP_EDUC)
#KA.df$RESP_EDUC <- factor(KA.df$RESP_EDUC, order=TRUE,
#                           levels = c("EGRAD_BELOW", "HGRAD", "CGRAD_ABOVE"))
#factor(KA.df$RESP_EDUC)

#KA.df$RESP_MINC <- as.factor(KA.df$RESP_MINC)
#KA.df$RESP_MINC <- factor(KA.df$RESP_MINC, order=TRUE,
#                           levels = c("10K_BELOW", "10KTO19K", "20KTO49K", "50K_ABOVE"))
#factor(KA.df$RESP_MINC)

#KA.df$RESP_HEXP <- as.factor(KA.df$RESP_HEXP)
#KA.df$RESP_HEXP <- factor(KA.df$RESP_HEXP, order=TRUE,
#                           levels = c("5K_BELOW", "5KTO19K", "20K_ABOVE"))
#factor(KA.df$RESP_HEXP)

LOGIT MODELING FOR KVAM

######################################
# CREATING THE LOGIT MODEL FOR KVAM
######################################

######################################
# FULL MODEL
######################################

KA.df.KVAM.logitfullmodel <- glm(KVAM ~ KLAP_PERCT +
                                   KVCO_CATEG +
                                   APVS_SCORE +
                                   APSI_SCORE   +
                                   APVT_SCORE +
                                   PDEX_SCORE   +
                                   RESP_SEX +
                                   RESP_RELGN   +
                                   RESP_RELAT   +
                                   RESP_NKIDS   +
                                   RESP_HSTAT   +
                                   RESP_AGE +
                                   RESP_ISTAT   +
                                   RESP_CSTAT   +
                                   RESP_ESTAT   +
                                   RESP_EDUC    +
                                   RESP_MINC    +
                                   RESP_HEXP, 
                           family = binomial(link = 'logit'), 
                           data=KA.df)

summary(KA.df.KVAM.logitfullmodel)
## 
## Call:
## glm(formula = KVAM ~ KLAP_PERCT + KVCO_CATEG + APVS_SCORE + APSI_SCORE + 
##     APVT_SCORE + PDEX_SCORE + RESP_SEX + RESP_RELGN + RESP_RELAT + 
##     RESP_NKIDS + RESP_HSTAT + RESP_AGE + RESP_ISTAT + RESP_CSTAT + 
##     RESP_ESTAT + RESP_EDUC + RESP_MINC + RESP_HEXP, family = binomial(link = "logit"), 
##     data = KA.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4534  -0.9913   0.6070   0.7816   1.7763  
## 
## Coefficients:
##                                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                    -1.364182   2.256141  -0.605 0.545410    
## KLAP_PERCT                      0.003380   0.004910   0.688 0.491245    
## KVCO_CATEGFUL_AWARE             0.170874   1.285799   0.133 0.894278    
## KVCO_CATEGPAR_AWARE            -0.651525   1.313092  -0.496 0.619770    
## APVS_SCORE                      0.008669   0.049522   0.175 0.861038    
## APSI_SCORE                      0.082832   0.034767   2.382 0.017196 *  
## APVT_SCORE                      0.031440   0.039126   0.804 0.421652    
## PDEX_SCORE                      0.036103   0.076074   0.475 0.635086    
## RESP_SEXFEMALE                  0.774174   0.786207   0.985 0.324774    
## RESP_RELGNBORNAGAIN            -0.603200   0.533030  -1.132 0.257784    
## RESP_RELGNCATHOLIC             -0.030724   0.430542  -0.071 0.943110    
## RESP_RELGNINC                  -0.278928   0.497597  -0.561 0.575105    
## RESP_RELATFATHER               -0.032647   0.816953  -0.040 0.968124    
## RESP_RELATMOTHER               -0.472008   0.359709  -1.312 0.189455    
## RESP_NKIDS                     -0.022555   0.065445  -0.345 0.730362    
## RESP_HSTAT                      0.035555   0.063724   0.558 0.576875    
## RESP_AGE                       -0.045189   0.013232  -3.415 0.000638 ***
## RESP_ISTATFULLIMMUNIZED_SURE    0.375328   0.938043   0.400 0.689070    
## RESP_ISTATFULLIMMUNIZED_UNSURE  0.053480   0.924522   0.058 0.953871    
## RESP_ISTATPARTIMMUNIZED        -0.005901   0.924928  -0.006 0.994910    
## RESP_CSTATMARRIED               0.124750   0.457175   0.273 0.784953    
## RESP_CSTATSINGLE               -0.286459   0.504332  -0.568 0.570037    
## RESP_ESTATEMPLOYED             -0.031669   0.217526  -0.146 0.884249    
## RESP_EDUCCGRAD_ABOVE            0.900821   0.340096   2.649 0.008080 ** 
## RESP_EDUCHGRAD                  0.716043   0.282843   2.532 0.011355 *  
## RESP_MINC10KTO19K               0.196828   0.235032   0.837 0.402339    
## RESP_MINC20KTO49K               0.342881   0.290248   1.181 0.237468    
## RESP_MINC50K_ABOVE              0.378919   0.368790   1.027 0.304201    
## RESP_HEXP20K_ABOVE              0.181182   0.621832   0.291 0.770770    
## RESP_HEXP5KTO19K                0.300060   0.259556   1.156 0.247661    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 727.84  on 631  degrees of freedom
## Residual deviance: 669.57  on 602  degrees of freedom
## AIC: 729.57
## 
## Number of Fisher Scoring iterations: 4
exp(coef(KA.df.KVAM.logitfullmodel))
##                    (Intercept)                     KLAP_PERCT 
##                      0.2555896                      1.0033856 
##            KVCO_CATEGFUL_AWARE            KVCO_CATEGPAR_AWARE 
##                      1.1863418                      0.5212500 
##                     APVS_SCORE                     APSI_SCORE 
##                      1.0087066                      1.0863591 
##                     APVT_SCORE                     PDEX_SCORE 
##                      1.0319396                      1.0367629 
##                 RESP_SEXFEMALE            RESP_RELGNBORNAGAIN 
##                      2.1687993                      0.5470582 
##             RESP_RELGNCATHOLIC                  RESP_RELGNINC 
##                      0.9697428                      0.7565945 
##               RESP_RELATFATHER               RESP_RELATMOTHER 
##                      0.9678804                      0.6237488 
##                     RESP_NKIDS                     RESP_HSTAT 
##                      0.9776974                      1.0361950 
##                       RESP_AGE   RESP_ISTATFULLIMMUNIZED_SURE 
##                      0.9558165                      1.4554684 
## RESP_ISTATFULLIMMUNIZED_UNSURE        RESP_ISTATPARTIMMUNIZED 
##                      1.0549360                      0.9941165 
##              RESP_CSTATMARRIED               RESP_CSTATSINGLE 
##                      1.1328647                      0.7509180 
##             RESP_ESTATEMPLOYED           RESP_EDUCCGRAD_ABOVE 
##                      0.9688276                      2.4616237 
##                 RESP_EDUCHGRAD              RESP_MINC10KTO19K 
##                      2.0463207                      1.2175350 
##              RESP_MINC20KTO49K             RESP_MINC50K_ABOVE 
##                      1.4090016                      1.4607051 
##             RESP_HEXP20K_ABOVE               RESP_HEXP5KTO19K 
##                      1.1986332                      1.3499392
vif(KA.df.KVAM.logitfullmodel)
##                 GVIF Df GVIF^(1/(2*Df))
## KLAP_PERCT  1.180868  1        1.086678
## KVCO_CATEG  1.238189  2        1.054865
## APVS_SCORE  1.107837  1        1.052538
## APSI_SCORE  1.105480  1        1.051418
## APVT_SCORE  1.089764  1        1.043918
## PDEX_SCORE  1.068853  1        1.033853
## RESP_SEX    7.311470  1        2.703973
## RESP_RELGN  1.213375  3        1.032759
## RESP_RELAT 13.927102  2        1.931813
## RESP_NKIDS  1.101980  1        1.049752
## RESP_HSTAT  1.079103  1        1.038799
## RESP_AGE    2.482409  1        1.575566
## RESP_ISTAT  1.115521  3        1.018387
## RESP_CSTAT  1.749167  2        1.150026
## RESP_ESTAT  1.287273  1        1.134580
## RESP_EDUC   1.439660  2        1.095380
## RESP_MINC   1.439404  3        1.062585
## RESP_HEXP   1.174621  2        1.041057
######################################
# ZERO MODEL
######################################

KA.df.KVAM.logitzeromodel <- glm(KVAM ~ 1, 
                            family = binomial(link = 'logit'), 
                            data=KA.df)

summary(KA.df.KVAM.logitzeromodel)
## 
## Call:
## glm(formula = KVAM ~ 1, family = binomial(link = "logit"), data = KA.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6352  -1.6352   0.7806   0.7806   0.7806  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  1.03220    0.09039   11.42   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 727.84  on 631  degrees of freedom
## Residual deviance: 727.84  on 631  degrees of freedom
## AIC: 729.84
## 
## Number of Fisher Scoring iterations: 4
exp(coef(KA.df.KVAM.logitzeromodel))
## (Intercept) 
##    2.807229
######################################
# APPLYING BACKWARD ELIMINATION PROCEDURE
######################################

KA.df.KVAM.backwardelimination = step(KA.df.KVAM.logitfullmodel) 
## Start:  AIC=729.57
## KVAM ~ KLAP_PERCT + KVCO_CATEG + APVS_SCORE + APSI_SCORE + APVT_SCORE + 
##     PDEX_SCORE + RESP_SEX + RESP_RELGN + RESP_RELAT + RESP_NKIDS + 
##     RESP_HSTAT + RESP_AGE + RESP_ISTAT + RESP_CSTAT + RESP_ESTAT + 
##     RESP_EDUC + RESP_MINC + RESP_HEXP
## 
##              Df Deviance    AIC
## - RESP_MINC   3   671.42 725.42
## - RESP_ISTAT  3   671.74 725.74
## - RESP_RELGN  3   672.58 726.58
## - RESP_HEXP   2   670.97 726.97
## - RESP_RELAT  2   671.35 727.35
## - RESP_ESTAT  1   669.59 727.59
## - APVS_SCORE  1   669.60 727.60
## - RESP_NKIDS  1   669.68 727.68
## - PDEX_SCORE  1   669.79 727.79
## - RESP_HSTAT  1   669.87 727.87
## - KLAP_PERCT  1   670.04 728.04
## - APVT_SCORE  1   670.21 728.21
## - RESP_SEX    1   670.49 728.49
## - RESP_CSTAT  2   672.70 728.70
## <none>            669.57 729.57
## - KVCO_CATEG  2   675.55 731.55
## - APSI_SCORE  1   675.26 733.26
## - RESP_EDUC   2   677.37 733.37
## - RESP_AGE    1   681.59 739.59
## 
## Step:  AIC=725.42
## KVAM ~ KLAP_PERCT + KVCO_CATEG + APVS_SCORE + APSI_SCORE + APVT_SCORE + 
##     PDEX_SCORE + RESP_SEX + RESP_RELGN + RESP_RELAT + RESP_NKIDS + 
##     RESP_HSTAT + RESP_AGE + RESP_ISTAT + RESP_CSTAT + RESP_ESTAT + 
##     RESP_EDUC + RESP_HEXP
## 
##              Df Deviance    AIC
## - RESP_ISTAT  3   673.97 721.97
## - RESP_RELGN  3   674.34 722.34
## - RESP_RELAT  2   673.23 723.23
## - RESP_HEXP   2   673.26 723.26
## - RESP_ESTAT  1   671.42 723.42
## - APVS_SCORE  1   671.47 723.47
## - RESP_NKIDS  1   671.64 723.64
## - PDEX_SCORE  1   671.76 723.76
## - RESP_HSTAT  1   671.91 723.91
## - KLAP_PERCT  1   671.97 723.97
## - APVT_SCORE  1   672.00 724.00
## - RESP_SEX    1   672.32 724.32
## - RESP_CSTAT  2   675.00 725.00
## <none>            671.42 725.42
## - KVCO_CATEG  2   677.23 727.23
## - APSI_SCORE  1   676.82 728.82
## - RESP_EDUC   2   681.13 731.13
## - RESP_AGE    1   683.03 735.03
## 
## Step:  AIC=721.97
## KVAM ~ KLAP_PERCT + KVCO_CATEG + APVS_SCORE + APSI_SCORE + APVT_SCORE + 
##     PDEX_SCORE + RESP_SEX + RESP_RELGN + RESP_RELAT + RESP_NKIDS + 
##     RESP_HSTAT + RESP_AGE + RESP_CSTAT + RESP_ESTAT + RESP_EDUC + 
##     RESP_HEXP
## 
##              Df Deviance    AIC
## - RESP_RELGN  3   676.92 718.92
## - RESP_RELAT  2   675.74 719.74
## - RESP_HEXP   2   675.82 719.82
## - RESP_ESTAT  1   673.98 719.98
## - APVS_SCORE  1   674.00 720.00
## - RESP_NKIDS  1   674.22 720.22
## - PDEX_SCORE  1   674.27 720.27
## - RESP_HSTAT  1   674.45 720.45
## - KLAP_PERCT  1   674.60 720.60
## - APVT_SCORE  1   674.72 720.72
## - RESP_SEX    1   674.84 720.84
## - RESP_CSTAT  2   677.79 721.79
## <none>            673.97 721.97
## - KVCO_CATEG  2   680.23 724.23
## - APSI_SCORE  1   679.21 725.21
## - RESP_EDUC   2   683.64 727.64
## - RESP_AGE    1   685.99 731.99
## 
## Step:  AIC=718.92
## KVAM ~ KLAP_PERCT + KVCO_CATEG + APVS_SCORE + APSI_SCORE + APVT_SCORE + 
##     PDEX_SCORE + RESP_SEX + RESP_RELAT + RESP_NKIDS + RESP_HSTAT + 
##     RESP_AGE + RESP_CSTAT + RESP_ESTAT + RESP_EDUC + RESP_HEXP
## 
##              Df Deviance    AIC
## - RESP_RELAT  2   678.87 716.87
## - RESP_ESTAT  1   676.93 716.93
## - APVS_SCORE  1   676.97 716.97
## - RESP_HEXP   2   679.01 717.01
## - RESP_NKIDS  1   677.24 717.24
## - PDEX_SCORE  1   677.29 717.29
## - RESP_HSTAT  1   677.59 717.59
## - KLAP_PERCT  1   677.63 717.63
## - RESP_SEX    1   677.74 717.74
## - APVT_SCORE  1   677.79 717.79
## - RESP_CSTAT  2   680.26 718.26
## <none>            676.92 718.92
## - KVCO_CATEG  2   682.93 720.93
## - APSI_SCORE  1   681.58 721.58
## - RESP_EDUC   2   685.63 723.63
## - RESP_AGE    1   689.28 729.28
## 
## Step:  AIC=716.87
## KVAM ~ KLAP_PERCT + KVCO_CATEG + APVS_SCORE + APSI_SCORE + APVT_SCORE + 
##     PDEX_SCORE + RESP_SEX + RESP_NKIDS + RESP_HSTAT + RESP_AGE + 
##     RESP_CSTAT + RESP_ESTAT + RESP_EDUC + RESP_HEXP
## 
##              Df Deviance    AIC
## - RESP_ESTAT  1   678.87 714.87
## - APVS_SCORE  1   678.94 714.94
## - RESP_NKIDS  1   679.07 715.07
## - PDEX_SCORE  1   679.13 715.13
## - RESP_HEXP   2   681.23 715.23
## - KLAP_PERCT  1   679.48 715.48
## - RESP_HSTAT  1   679.51 715.51
## - RESP_CSTAT  2   681.64 715.64
## - APVT_SCORE  1   680.03 716.03
## - RESP_SEX    1   680.23 716.23
## <none>            678.87 716.87
## - KVCO_CATEG  2   684.51 718.51
## - APSI_SCORE  1   683.35 719.35
## - RESP_EDUC   2   687.06 721.06
## - RESP_AGE    1   690.14 726.14
## 
## Step:  AIC=714.87
## KVAM ~ KLAP_PERCT + KVCO_CATEG + APVS_SCORE + APSI_SCORE + APVT_SCORE + 
##     PDEX_SCORE + RESP_SEX + RESP_NKIDS + RESP_HSTAT + RESP_AGE + 
##     RESP_CSTAT + RESP_EDUC + RESP_HEXP
## 
##              Df Deviance    AIC
## - APVS_SCORE  1   678.94 712.94
## - RESP_NKIDS  1   679.07 713.07
## - PDEX_SCORE  1   679.13 713.13
## - RESP_HEXP   2   681.24 713.24
## - KLAP_PERCT  1   679.48 713.48
## - RESP_HSTAT  1   679.51 713.51
## - RESP_CSTAT  2   681.65 713.65
## - APVT_SCORE  1   680.03 714.03
## - RESP_SEX    1   680.40 714.40
## <none>            678.87 714.87
## - KVCO_CATEG  2   684.57 716.57
## - APSI_SCORE  1   683.36 717.36
## - RESP_EDUC   2   687.11 719.11
## - RESP_AGE    1   690.14 724.14
## 
## Step:  AIC=712.94
## KVAM ~ KLAP_PERCT + KVCO_CATEG + APSI_SCORE + APVT_SCORE + PDEX_SCORE + 
##     RESP_SEX + RESP_NKIDS + RESP_HSTAT + RESP_AGE + RESP_CSTAT + 
##     RESP_EDUC + RESP_HEXP
## 
##              Df Deviance    AIC
## - RESP_NKIDS  1   679.13 711.13
## - PDEX_SCORE  1   679.19 711.19
## - RESP_HEXP   2   681.30 711.30
## - KLAP_PERCT  1   679.55 711.55
## - RESP_HSTAT  1   679.56 711.56
## - RESP_CSTAT  2   681.69 711.69
## - APVT_SCORE  1   680.12 712.12
## - RESP_SEX    1   680.50 712.50
## <none>            678.94 712.94
## - KVCO_CATEG  2   684.57 714.57
## - APSI_SCORE  1   683.67 715.67
## - RESP_EDUC   2   687.11 717.11
## - RESP_AGE    1   690.28 722.28
## 
## Step:  AIC=711.13
## KVAM ~ KLAP_PERCT + KVCO_CATEG + APSI_SCORE + APVT_SCORE + PDEX_SCORE + 
##     RESP_SEX + RESP_HSTAT + RESP_AGE + RESP_CSTAT + RESP_EDUC + 
##     RESP_HEXP
## 
##              Df Deviance    AIC
## - PDEX_SCORE  1   679.35 709.35
## - RESP_HEXP   2   681.42 709.42
## - KLAP_PERCT  1   679.69 709.69
## - RESP_HSTAT  1   679.72 709.72
## - RESP_CSTAT  2   681.89 709.89
## - APVT_SCORE  1   680.32 710.32
## - RESP_SEX    1   680.67 710.67
## <none>            679.13 711.13
## - KVCO_CATEG  2   684.70 712.70
## - APSI_SCORE  1   684.07 714.07
## - RESP_EDUC   2   687.89 715.89
## - RESP_AGE    1   690.36 720.36
## 
## Step:  AIC=709.35
## KVAM ~ KLAP_PERCT + KVCO_CATEG + APSI_SCORE + APVT_SCORE + RESP_SEX + 
##     RESP_HSTAT + RESP_AGE + RESP_CSTAT + RESP_EDUC + RESP_HEXP
## 
##              Df Deviance    AIC
## - RESP_HEXP   2   681.67 707.67
## - RESP_HSTAT  1   679.91 707.91
## - KLAP_PERCT  1   679.96 707.96
## - RESP_CSTAT  2   682.18 708.18
## - APVT_SCORE  1   680.51 708.51
## - RESP_SEX    1   680.91 708.91
## <none>            679.35 709.35
## - KVCO_CATEG  2   684.87 710.87
## - APSI_SCORE  1   684.24 712.24
## - RESP_EDUC   2   688.07 714.07
## - RESP_AGE    1   690.39 718.39
## 
## Step:  AIC=707.67
## KVAM ~ KLAP_PERCT + KVCO_CATEG + APSI_SCORE + APVT_SCORE + RESP_SEX + 
##     RESP_HSTAT + RESP_AGE + RESP_CSTAT + RESP_EDUC
## 
##              Df Deviance    AIC
## - RESP_HSTAT  1   682.36 706.36
## - KLAP_PERCT  1   682.40 706.40
## - RESP_CSTAT  2   684.78 706.78
## - RESP_SEX    1   682.97 706.97
## - APVT_SCORE  1   683.07 707.07
## <none>            681.67 707.67
## - KVCO_CATEG  2   686.94 708.94
## - APSI_SCORE  1   686.73 710.73
## - RESP_EDUC   2   691.54 713.54
## - RESP_AGE    1   692.69 716.69
## 
## Step:  AIC=706.36
## KVAM ~ KLAP_PERCT + KVCO_CATEG + APSI_SCORE + APVT_SCORE + RESP_SEX + 
##     RESP_AGE + RESP_CSTAT + RESP_EDUC
## 
##              Df Deviance    AIC
## - KLAP_PERCT  1   683.15 705.15
## - RESP_CSTAT  2   685.54 705.54
## - APVT_SCORE  1   683.74 705.74
## - RESP_SEX    1   683.74 705.74
## <none>            682.36 706.36
## - KVCO_CATEG  2   687.71 707.71
## - APSI_SCORE  1   687.27 709.27
## - RESP_EDUC   2   692.38 712.38
## - RESP_AGE    1   693.54 715.54
## 
## Step:  AIC=705.15
## KVAM ~ KVCO_CATEG + APSI_SCORE + APVT_SCORE + RESP_SEX + RESP_AGE + 
##     RESP_CSTAT + RESP_EDUC
## 
##              Df Deviance    AIC
## - RESP_CSTAT  2   686.26 704.26
## - APVT_SCORE  1   684.82 704.82
## - RESP_SEX    1   685.05 705.05
## <none>            683.15 705.15
## - KVCO_CATEG  2   689.57 707.57
## - APSI_SCORE  1   688.32 708.32
## - RESP_EDUC   2   693.94 711.94
## - RESP_AGE    1   694.09 714.09
## 
## Step:  AIC=704.26
## KVAM ~ KVCO_CATEG + APSI_SCORE + APVT_SCORE + RESP_SEX + RESP_AGE + 
##     RESP_EDUC
## 
##              Df Deviance    AIC
## - RESP_SEX    1   687.89 703.89
## - APVT_SCORE  1   687.94 703.94
## <none>            686.26 704.26
## - KVCO_CATEG  2   693.16 707.16
## - APSI_SCORE  1   691.49 707.49
## - RESP_AGE    1   695.55 711.55
## - RESP_EDUC   2   697.97 711.97
## 
## Step:  AIC=703.89
## KVAM ~ KVCO_CATEG + APSI_SCORE + APVT_SCORE + RESP_AGE + RESP_EDUC
## 
##              Df Deviance    AIC
## - APVT_SCORE  1   689.53 703.53
## <none>            687.89 703.89
## - KVCO_CATEG  2   695.41 707.41
## - APSI_SCORE  1   693.41 707.41
## - RESP_EDUC   2   698.61 710.61
## - RESP_AGE    1   697.15 711.15
## 
## Step:  AIC=703.53
## KVAM ~ KVCO_CATEG + APSI_SCORE + RESP_AGE + RESP_EDUC
## 
##              Df Deviance    AIC
## <none>            689.53 703.53
## - KVCO_CATEG  2   697.56 707.56
## - APSI_SCORE  1   696.32 708.32
## - RESP_EDUC   2   699.83 709.83
## - RESP_AGE    1   698.87 710.87
summary(KA.df.KVAM.backwardelimination)
## 
## Call:
## glm(formula = KVAM ~ KVCO_CATEG + APSI_SCORE + RESP_AGE + RESP_EDUC, 
##     family = binomial(link = "logit"), data = KA.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.0664  -1.0276   0.6501   0.7803   1.6157  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)   
## (Intercept)          -0.872855   1.524555  -0.573  0.56696   
## KVCO_CATEGFUL_AWARE   0.359423   1.250258   0.287  0.77375   
## KVCO_CATEGPAR_AWARE  -0.529161   1.275755  -0.415  0.67830   
## APSI_SCORE            0.085460   0.032839   2.602  0.00926 **
## RESP_AGE             -0.025296   0.008244  -3.068  0.00215 **
## RESP_EDUCCGRAD_ABOVE  0.972855   0.303032   3.210  0.00133 **
## RESP_EDUCHGRAD        0.686233   0.268828   2.553  0.01069 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 727.84  on 631  degrees of freedom
## Residual deviance: 689.53  on 625  degrees of freedom
## AIC: 703.53
## 
## Number of Fisher Scoring iterations: 4
######################################
# APPLYING FORWARD SELECTION PROCEDURE
######################################

KA.df.KVAM.forwardselection = step(KA.df.KVAM.logitzeromodel,
                                   scope=list(lower=formula(KA.df.KVAM.logitzeromodel),
                                              upper=formula(KA.df.KVAM.logitfullmodel)), 
                                   direction="forward")
## Start:  AIC=729.84
## KVAM ~ 1
## 
##              Df Deviance    AIC
## + RESP_EDUC   2   712.48 718.48
## + RESP_AGE    1   718.47 722.47
## + KVCO_CATEG  2   716.60 722.60
## + APSI_SCORE  1   721.71 725.71
## + KLAP_PERCT  1   722.53 726.53
## + APVT_SCORE  1   724.62 728.62
## + RESP_HEXP   2   723.66 729.66
## <none>            727.84 729.84
## + RESP_MINC   3   722.05 730.05
## + RESP_RELAT  2   724.64 730.64
## + RESP_HSTAT  1   726.65 730.65
## + RESP_SEX    1   726.79 730.79
## + RESP_ISTAT  3   723.25 731.25
## + RESP_ESTAT  1   727.48 731.48
## + RESP_NKIDS  1   727.50 731.50
## + RESP_CSTAT  2   725.54 731.54
## + PDEX_SCORE  1   727.81 731.81
## + APVS_SCORE  1   727.82 731.82
## + RESP_RELGN  3   726.51 734.51
## 
## Step:  AIC=718.48
## KVAM ~ RESP_EDUC
## 
##              Df Deviance    AIC
## + RESP_AGE    1   704.25 712.25
## + APSI_SCORE  1   706.01 714.01
## + KVCO_CATEG  2   705.40 715.40
## + APVT_SCORE  1   708.72 716.72
## + KLAP_PERCT  1   709.21 717.21
## + RESP_SEX    1   710.19 718.19
## <none>            712.48 718.48
## + RESP_RELAT  2   709.21 719.21
## + RESP_HSTAT  1   711.57 719.57
## + RESP_HEXP   2   709.76 719.76
## + APVS_SCORE  1   712.10 720.10
## + RESP_ISTAT  3   708.31 720.31
## + PDEX_SCORE  1   712.44 720.44
## + RESP_NKIDS  1   712.48 720.48
## + RESP_ESTAT  1   712.48 720.48
## + RESP_CSTAT  2   710.95 720.95
## + RESP_RELGN  3   709.99 721.99
## + RESP_MINC   3   710.41 722.41
## 
## Step:  AIC=712.25
## KVAM ~ RESP_EDUC + RESP_AGE
## 
##              Df Deviance    AIC
## + APSI_SCORE  1   697.56 707.56
## + KVCO_CATEG  2   696.32 708.32
## + KLAP_PERCT  1   700.45 710.45
## + APVT_SCORE  1   700.62 710.62
## + RESP_SEX    1   701.85 711.85
## <none>            704.25 712.25
## + RESP_CSTAT  2   700.82 712.82
## + RESP_RELAT  2   701.17 713.17
## + RESP_HEXP   2   701.23 713.23
## + RESP_HSTAT  1   703.26 713.26
## + PDEX_SCORE  1   704.03 714.03
## + APVS_SCORE  1   704.06 714.06
## + RESP_NKIDS  1   704.18 714.18
## + RESP_ESTAT  1   704.25 714.25
## + RESP_ISTAT  3   700.31 714.31
## + RESP_MINC   3   701.09 715.09
## + RESP_RELGN  3   701.89 715.89
## 
## Step:  AIC=707.56
## KVAM ~ RESP_EDUC + RESP_AGE + APSI_SCORE
## 
##              Df Deviance    AIC
## + KVCO_CATEG  2   689.53 703.53
## + KLAP_PERCT  1   694.39 706.39
## + RESP_SEX    1   695.40 707.40
## + APVT_SCORE  1   695.41 707.41
## <none>            697.56 707.56
## + RESP_CSTAT  2   694.29 708.29
## + RESP_HSTAT  1   696.39 708.39
## + RESP_RELAT  2   694.80 708.80
## + RESP_HEXP   2   694.87 708.87
## + PDEX_SCORE  1   697.25 709.25
## + APVS_SCORE  1   697.56 709.56
## + RESP_ESTAT  1   697.56 709.56
## + RESP_NKIDS  1   697.56 709.56
## + RESP_ISTAT  3   693.61 709.61
## + RESP_MINC   3   694.06 710.06
## + RESP_RELGN  3   694.56 710.56
## 
## Step:  AIC=703.53
## KVAM ~ RESP_EDUC + RESP_AGE + APSI_SCORE + KVCO_CATEG
## 
##              Df Deviance    AIC
## <none>            689.53 703.53
## + APVT_SCORE  1   687.89 703.89
## + RESP_SEX    1   687.94 703.94
## + KLAP_PERCT  1   688.02 704.02
## + RESP_HSTAT  1   688.56 704.56
## + RESP_HEXP   2   686.61 704.61
## + RESP_CSTAT  2   686.65 704.65
## + RESP_RELAT  2   687.07 705.07
## + PDEX_SCORE  1   689.21 705.21
## + RESP_ESTAT  1   689.45 705.45
## + APVS_SCORE  1   689.46 705.46
## + RESP_NKIDS  1   689.50 705.50
## + RESP_MINC   3   686.01 706.01
## + RESP_RELGN  3   686.12 706.12
## + RESP_ISTAT  3   686.42 706.42
summary(KA.df.KVAM.forwardselection)
## 
## Call:
## glm(formula = KVAM ~ RESP_EDUC + RESP_AGE + APSI_SCORE + KVCO_CATEG, 
##     family = binomial(link = "logit"), data = KA.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.0664  -1.0276   0.6501   0.7803   1.6157  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)   
## (Intercept)          -0.872855   1.524555  -0.573  0.56696   
## RESP_EDUCCGRAD_ABOVE  0.972855   0.303032   3.210  0.00133 **
## RESP_EDUCHGRAD        0.686233   0.268828   2.553  0.01069 * 
## RESP_AGE             -0.025296   0.008244  -3.068  0.00215 **
## APSI_SCORE            0.085460   0.032839   2.602  0.00926 **
## KVCO_CATEGFUL_AWARE   0.359423   1.250258   0.287  0.77375   
## KVCO_CATEGPAR_AWARE  -0.529161   1.275755  -0.415  0.67830   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 727.84  on 631  degrees of freedom
## Residual deviance: 689.53  on 625  degrees of freedom
## AIC: 703.53
## 
## Number of Fisher Scoring iterations: 4
######################################
# APPLYING STEPWISE REGRESSION PROCEDURE
######################################

KA.df.KVAM.stepwiseregression = step(KA.df.KVAM.logitzeromodel,
                                   scope=list(lower=formula(KA.df.KVAM.logitzeromodel),
                                              upper=formula(KA.df.KVAM.logitfullmodel)), 
                                   direction="both")
## Start:  AIC=729.84
## KVAM ~ 1
## 
##              Df Deviance    AIC
## + RESP_EDUC   2   712.48 718.48
## + RESP_AGE    1   718.47 722.47
## + KVCO_CATEG  2   716.60 722.60
## + APSI_SCORE  1   721.71 725.71
## + KLAP_PERCT  1   722.53 726.53
## + APVT_SCORE  1   724.62 728.62
## + RESP_HEXP   2   723.66 729.66
## <none>            727.84 729.84
## + RESP_MINC   3   722.05 730.05
## + RESP_RELAT  2   724.64 730.64
## + RESP_HSTAT  1   726.65 730.65
## + RESP_SEX    1   726.79 730.79
## + RESP_ISTAT  3   723.25 731.25
## + RESP_ESTAT  1   727.48 731.48
## + RESP_NKIDS  1   727.50 731.50
## + RESP_CSTAT  2   725.54 731.54
## + PDEX_SCORE  1   727.81 731.81
## + APVS_SCORE  1   727.82 731.82
## + RESP_RELGN  3   726.51 734.51
## 
## Step:  AIC=718.48
## KVAM ~ RESP_EDUC
## 
##              Df Deviance    AIC
## + RESP_AGE    1   704.25 712.25
## + APSI_SCORE  1   706.01 714.01
## + KVCO_CATEG  2   705.40 715.40
## + APVT_SCORE  1   708.72 716.72
## + KLAP_PERCT  1   709.21 717.21
## + RESP_SEX    1   710.19 718.19
## <none>            712.48 718.48
## + RESP_RELAT  2   709.21 719.21
## + RESP_HSTAT  1   711.57 719.57
## + RESP_HEXP   2   709.76 719.76
## + APVS_SCORE  1   712.10 720.10
## + RESP_ISTAT  3   708.31 720.31
## + PDEX_SCORE  1   712.44 720.44
## + RESP_NKIDS  1   712.48 720.48
## + RESP_ESTAT  1   712.48 720.48
## + RESP_CSTAT  2   710.95 720.95
## + RESP_RELGN  3   709.99 721.99
## + RESP_MINC   3   710.41 722.41
## - RESP_EDUC   2   727.84 729.84
## 
## Step:  AIC=712.25
## KVAM ~ RESP_EDUC + RESP_AGE
## 
##              Df Deviance    AIC
## + APSI_SCORE  1   697.56 707.56
## + KVCO_CATEG  2   696.32 708.32
## + KLAP_PERCT  1   700.45 710.45
## + APVT_SCORE  1   700.62 710.62
## + RESP_SEX    1   701.85 711.85
## <none>            704.25 712.25
## + RESP_CSTAT  2   700.82 712.82
## + RESP_RELAT  2   701.17 713.17
## + RESP_HEXP   2   701.23 713.23
## + RESP_HSTAT  1   703.26 713.26
## + PDEX_SCORE  1   704.03 714.03
## + APVS_SCORE  1   704.06 714.06
## + RESP_NKIDS  1   704.18 714.18
## + RESP_ESTAT  1   704.25 714.25
## + RESP_ISTAT  3   700.31 714.31
## + RESP_MINC   3   701.09 715.09
## + RESP_RELGN  3   701.89 715.89
## - RESP_AGE    1   712.48 718.48
## - RESP_EDUC   2   718.47 722.47
## 
## Step:  AIC=707.56
## KVAM ~ RESP_EDUC + RESP_AGE + APSI_SCORE
## 
##              Df Deviance    AIC
## + KVCO_CATEG  2   689.53 703.53
## + KLAP_PERCT  1   694.39 706.39
## + RESP_SEX    1   695.40 707.40
## + APVT_SCORE  1   695.41 707.41
## <none>            697.56 707.56
## + RESP_CSTAT  2   694.29 708.29
## + RESP_HSTAT  1   696.39 708.39
## + RESP_RELAT  2   694.80 708.80
## + RESP_HEXP   2   694.87 708.87
## + PDEX_SCORE  1   697.25 709.25
## + APVS_SCORE  1   697.56 709.56
## + RESP_ESTAT  1   697.56 709.56
## + RESP_NKIDS  1   697.56 709.56
## + RESP_ISTAT  3   693.61 709.61
## + RESP_MINC   3   694.06 710.06
## + RESP_RELGN  3   694.56 710.56
## - APSI_SCORE  1   704.25 712.25
## - RESP_AGE    1   706.01 714.01
## - RESP_EDUC   2   712.11 718.11
## 
## Step:  AIC=703.53
## KVAM ~ RESP_EDUC + RESP_AGE + APSI_SCORE + KVCO_CATEG
## 
##              Df Deviance    AIC
## <none>            689.53 703.53
## + APVT_SCORE  1   687.89 703.89
## + RESP_SEX    1   687.94 703.94
## + KLAP_PERCT  1   688.02 704.02
## + RESP_HSTAT  1   688.56 704.56
## + RESP_HEXP   2   686.61 704.61
## + RESP_CSTAT  2   686.65 704.65
## + RESP_RELAT  2   687.07 705.07
## + PDEX_SCORE  1   689.21 705.21
## + RESP_ESTAT  1   689.45 705.45
## + APVS_SCORE  1   689.46 705.46
## + RESP_NKIDS  1   689.50 705.50
## + RESP_MINC   3   686.01 706.01
## + RESP_RELGN  3   686.12 706.12
## + RESP_ISTAT  3   686.42 706.42
## - KVCO_CATEG  2   697.56 707.56
## - APSI_SCORE  1   696.32 708.32
## - RESP_EDUC   2   699.83 709.83
## - RESP_AGE    1   698.87 710.87
summary(KA.df.KVAM.stepwiseregression )
## 
## Call:
## glm(formula = KVAM ~ RESP_EDUC + RESP_AGE + APSI_SCORE + KVCO_CATEG, 
##     family = binomial(link = "logit"), data = KA.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.0664  -1.0276   0.6501   0.7803   1.6157  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)   
## (Intercept)          -0.872855   1.524555  -0.573  0.56696   
## RESP_EDUCCGRAD_ABOVE  0.972855   0.303032   3.210  0.00133 **
## RESP_EDUCHGRAD        0.686233   0.268828   2.553  0.01069 * 
## RESP_AGE             -0.025296   0.008244  -3.068  0.00215 **
## APSI_SCORE            0.085460   0.032839   2.602  0.00926 **
## KVCO_CATEGFUL_AWARE   0.359423   1.250258   0.287  0.77375   
## KVCO_CATEGPAR_AWARE  -0.529161   1.275755  -0.415  0.67830   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 727.84  on 631  degrees of freedom
## Residual deviance: 689.53  on 625  degrees of freedom
## AIC: 703.53
## 
## Number of Fisher Scoring iterations: 4
######################################
# COMPARING THE MODELS
######################################

formula(KA.df.KVAM.backwardelimination)
## KVAM ~ KVCO_CATEG + APSI_SCORE + RESP_AGE + RESP_EDUC
formula(KA.df.KVAM.forwardselection)
## KVAM ~ RESP_EDUC + RESP_AGE + APSI_SCORE + KVCO_CATEG
formula(KA.df.KVAM.stepwiseregression)
## KVAM ~ RESP_EDUC + RESP_AGE + APSI_SCORE + KVCO_CATEG
######################################
# OBTAINING THE MODEL COEFFICIENTS
######################################

coef(summary(KA.df.KVAM.backwardelimination))[,'Pr(>|z|)']
##          (Intercept)  KVCO_CATEGFUL_AWARE  KVCO_CATEGPAR_AWARE 
##          0.566962533          0.773745462          0.678301065 
##           APSI_SCORE             RESP_AGE RESP_EDUCCGRAD_ABOVE 
##          0.009257538          0.002152111          0.001325499 
##       RESP_EDUCHGRAD 
##          0.010689745
coef(summary(KA.df.KVAM.forwardselection))[,'Pr(>|z|)']
##          (Intercept) RESP_EDUCCGRAD_ABOVE       RESP_EDUCHGRAD 
##          0.566962533          0.001325499          0.010689745 
##             RESP_AGE           APSI_SCORE  KVCO_CATEGFUL_AWARE 
##          0.002152111          0.009257538          0.773745462 
##  KVCO_CATEGPAR_AWARE 
##          0.678301065
coef(summary(KA.df.KVAM.stepwiseregression))[,'Pr(>|z|)']
##          (Intercept) RESP_EDUCCGRAD_ABOVE       RESP_EDUCHGRAD 
##          0.566962533          0.001325499          0.010689745 
##             RESP_AGE           APSI_SCORE  KVCO_CATEGFUL_AWARE 
##          0.002152111          0.009257538          0.773745462 
##  KVCO_CATEGPAR_AWARE 
##          0.678301065
######################################
# OBTAINING THE DEVIANCE
######################################

KA.df.KVAM.backwardelimination$deviance
## [1] 689.5267
KA.df.KVAM.forwardselection$deviance
## [1] 689.5267
KA.df.KVAM.stepwiseregression$deviance
## [1] 689.5267
######################################
# OBTAINING THE AIC
######################################

KA.df.KVAM.backwardelimination$aic
## [1] 703.5267
KA.df.KVAM.forwardselection$aic
## [1] 703.5267
KA.df.KVAM.stepwiseregression$aic
## [1] 703.5267
######################################
# CHALLENGE IS TO CREATE A MODEL WITH AIC CLOSE TO 704
# BUT WITH MORE SIGNIFICANT INDEPENDENT VARIABLES 
# PROVIDING BETTER CONTEXT TO THE DEPENDENT VARIABLE
# STEP 1: REVIEW DESCRIPTIVE STATS TO SELECT VARIABLES
# STEP 2: RUN THE MODEL
# STEP 3: DRINK COFFEE 
# STEP 4: EVALUATE THE RESULTS
# STEP 5: GO BACK TO STEP 1 IF UNHAPPY WITH THE RESULTS
######################################

######################################
# RERUNNING THE FINAL MODEL WITH 
# THE MOST IMPORTANT VARIABLES BASED
# FROM THE MANUAL EVALUATION
######################################
KA.df.KVAM.finalmodel1 <- glm(KVAM ~ APSI_SCORE +
                               RESP_EDUC +
                               RESP_AGE,
                            family = binomial(link = 'logit'), 
                            data=KA.df)

formula(KA.df.KVAM.finalmodel1)
## KVAM ~ APSI_SCORE + RESP_EDUC + RESP_AGE
summary(KA.df.KVAM.finalmodel1)
## 
## Call:
## glm(formula = KVAM ~ APSI_SCORE + RESP_EDUC + RESP_AGE, family = binomial(link = "logit"), 
##     data = KA.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.0314  -1.0563   0.6689   0.7818   1.2946  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)          -0.706900   0.813130  -0.869 0.384652    
## APSI_SCORE            0.083619   0.032409   2.580 0.009878 ** 
## RESP_EDUCCGRAD_ABOVE  1.132113   0.296350   3.820 0.000133 ***
## RESP_EDUCHGRAD        0.778881   0.264141   2.949 0.003191 ** 
## RESP_AGE             -0.023994   0.008221  -2.919 0.003514 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 727.84  on 631  degrees of freedom
## Residual deviance: 697.56  on 627  degrees of freedom
## AIC: 707.56
## 
## Number of Fisher Scoring iterations: 4
exp(coef(KA.df.KVAM.finalmodel1))
##          (Intercept)           APSI_SCORE RESP_EDUCCGRAD_ABOVE 
##            0.4931707            1.0872140            3.1022044 
##       RESP_EDUCHGRAD             RESP_AGE 
##            2.1790332            0.9762918
vif(KA.df.KVAM.finalmodel1)
##                GVIF Df GVIF^(1/(2*Df))
## APSI_SCORE 1.004337  1        1.002166
## RESP_EDUC  1.006093  2        1.001520
## RESP_AGE   1.003957  1        1.001976
KA.df.KVAM.finalmodel2 <- glm(KVAM ~ APSI_SCORE +
                                RESP_EDUC +
                                RESP_AGE +
                                KLAP_PERCT,
                              family = binomial(link = 'logit'), 
                              data=KA.df)

formula(KA.df.KVAM.finalmodel2)
## KVAM ~ APSI_SCORE + RESP_EDUC + RESP_AGE + KLAP_PERCT
summary(KA.df.KVAM.finalmodel2)
## 
## Call:
## glm(formula = KVAM ~ APSI_SCORE + RESP_EDUC + RESP_AGE + KLAP_PERCT, 
##     family = binomial(link = "logit"), data = KA.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.0578  -1.1003   0.6619   0.7899   1.4007  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)          -0.996219   0.832577  -1.197 0.231483    
## APSI_SCORE            0.080026   0.032584   2.456 0.014051 *  
## RESP_EDUCCGRAD_ABOVE  1.071056   0.298436   3.589 0.000332 ***
## RESP_EDUCHGRAD        0.729331   0.265481   2.747 0.006010 ** 
## RESP_AGE             -0.024735   0.008258  -2.995 0.002741 ** 
## KLAP_PERCT            0.007959   0.004471   1.780 0.075073 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 727.84  on 631  degrees of freedom
## Residual deviance: 694.39  on 626  degrees of freedom
## AIC: 706.39
## 
## Number of Fisher Scoring iterations: 4
exp(coef(KA.df.KVAM.finalmodel2))
##          (Intercept)           APSI_SCORE RESP_EDUCCGRAD_ABOVE 
##            0.3692732            1.0833151            2.9184601 
##       RESP_EDUCHGRAD             RESP_AGE           KLAP_PERCT 
##            2.0736923            0.9755687            1.0079903
vif(KA.df.KVAM.finalmodel2)
##                GVIF Df GVIF^(1/(2*Df))
## APSI_SCORE 1.007636  1        1.003811
## RESP_EDUC  1.018408  2        1.004571
## RESP_AGE   1.007637  1        1.003811
## KLAP_PERCT 1.017834  1        1.008878
######################################
# TESTING MODEL FIT
######################################

######################################
# COMPUTING FOR THE DEVIANCE 
######################################

1 - pchisq(KA.df.KVAM.finalmodel2$null.deviance-KA.df.KVAM.finalmodel2$deviance,
           KA.df.KVAM.finalmodel2$df.null-KA.df.KVAM.finalmodel2$df.residual)
## [1] 3.070329e-06
######################################
# COMPUTING FOR THE ROC AUC
######################################

KA.df.KVAM.finalmodel2.logitProbS <- predict(KA.df.KVAM.finalmodel2,type=c("response"))
KA.df$LOGITPROBS<-KA.df.KVAM.finalmodel2.logitProbS
KA.df.KVAM.finalmodel2.ROC <- roc(KVAM ~ LOGITPROBS, data = KA.df,auc=TRUE,ci=TRUE,plot=TRUE)

KA.df.KVAM.finalmodel2.ROC.AUC <- KA.df.KVAM.finalmodel2.ROC$auc
KA.df.KVAM.finalmodel2.ROC.AUC
## Area under the curve: 0.6373
######################################
# COMPUTING FOR THE SENSITIVITY 
# COMPUTING FOR THE SPECIFICITY 
# COMPUTING FOR THE PRECISION 
# COMPUTING FOR THE ACCURACY 
######################################

KA.df.KVAM.finalmodel2.initialProbs <- round(sum(KA.df$KVAM)/length(KA.df$KVAM),5)
KA.df.KVAM.finalmodel2.initialProbs 
## [1] 0.73734
Threshold=KA.df.KVAM.finalmodel2.initialProbs
logitPredicted_Values<-ifelse(predict(KA.df.KVAM.finalmodel2,type="response")>Threshold,1,0)
logitActual_Values<-KA.df$KVAM
logitConfusion_Matrix<-table(logitPredicted_Values,logitActual_Values)
logitConfusion_Matrix
##                      logitActual_Values
## logitPredicted_Values   0   1
##                     0  89 170
##                     1  77 296
KA.df.KVAM.finalmodel2.Sensitivity <- (logitConfusion_Matrix[2,2])/
  sum(logitConfusion_Matrix[1,2],logitConfusion_Matrix[2,2])
KA.df.KVAM.finalmodel2.Specificity <- (logitConfusion_Matrix[1,1])/
  sum(logitConfusion_Matrix[1,1],logitConfusion_Matrix[2,1])
KA.df.KVAM.finalmodel2.Precision <- (logitConfusion_Matrix[2,2])/
  sum(logitConfusion_Matrix[2,1],logitConfusion_Matrix[2,2])
KA.df.KVAM.finalmodel2.Accuracy <-(logitConfusion_Matrix[1,1]+logitConfusion_Matrix[2,2])/
  sum(logitConfusion_Matrix[1,1],logitConfusion_Matrix[1,2],logitConfusion_Matrix[2,1],logitConfusion_Matrix[2,2])
KA.df.KVAM.finalmodel2.Sensitivity
## [1] 0.6351931
KA.df.KVAM.finalmodel2.Specificity
## [1] 0.5361446
KA.df.KVAM.finalmodel2.Precision
## [1] 0.7935657
KA.df.KVAM.finalmodel2.Accuracy
## [1] 0.6091772
######################################
# INTERPRETING MODEL RESULTS
######################################

# Respondents with the following characteristics have been observed to have sufficient knowledge on vaccination, common misconceptions and general disease prevention (KVAM):
# 1. Higher educational level attained
# 2. Favorable perception on the quality of immunization information
# 3. Younger age
# 4. Higher assessment rating in terms of the knowledge and awareness on immunization laws and programs

# All five significant predictor variables collectively represent the aspects of knowledge and awareness, perceptions on immunization and demographics.

# Educational Attainment - College Graduate and Above
# Having a college or a higher degree increases the odds of having sufficient knowledge in vaccination, common misconceptions and general disease prevention by almost 191% holding the rest of the variables constant.

# Educational Attainment - High School Graduate
# Having a high school diploma increases the odds of having sufficient knowledge in vaccination, common misconceptions and general disease prevention by almost 107% holding the rest of the variables constant.

# Perception on the Quality of Immunization Information
# An increased belief towards the information shared by the government regarding immunization increases the odds of having knowledge in vaccination, common misconceptions and general disease prevention by 8% holding the rest of the variables constant.

# Respondent Age in Years
# A 5-year increase in age reduces the odds of having knowledge in vaccination, common misconceptions and general disease prevention by 15% holding the rest of the variables constant.

# Knowledge on Immunization Laws and Programs
# A 10-unit increase in the knowledge towards the various immunization laws and programs increases the odds of having sufficient knowledge in vaccination, common misconceptions and general disease prevention by 8%% holding the rest of the variables constant.

LOGIT MODELING FOR KVPD

######################################
# CREATING THE LOGIT MODEL FOR KVPD
######################################

######################################
# USING THE FULL MODEL
######################################

KA.df.KVPD.logitfullmodel <- glm(KVPD ~ KLAP_PERCT +
                                   KVCO_CATEG +
                                   APVS_SCORE +
                                   APSI_SCORE   +
                                   APVT_SCORE +
                                   PDEX_SCORE   +
                                   RESP_SEX +
                                   RESP_RELGN   +
                                   RESP_RELAT   +
                                   RESP_NKIDS   +
                                   RESP_HSTAT   +
                                   RESP_AGE +
                                   RESP_ISTAT   +
                                   RESP_CSTAT   +
                                   RESP_ESTAT   +
                                   RESP_EDUC    +
                                   RESP_MINC    +
                                   RESP_HEXP, 
                                 family = binomial(link = 'logit'), 
                                 data=KA.df)

summary(KA.df.KVPD.logitfullmodel)
## 
## Call:
## glm(formula = KVPD ~ KLAP_PERCT + KVCO_CATEG + APVS_SCORE + APSI_SCORE + 
##     APVT_SCORE + PDEX_SCORE + RESP_SEX + RESP_RELGN + RESP_RELAT + 
##     RESP_NKIDS + RESP_HSTAT + RESP_AGE + RESP_ISTAT + RESP_CSTAT + 
##     RESP_ESTAT + RESP_EDUC + RESP_MINC + RESP_HEXP, family = binomial(link = "logit"), 
##     data = KA.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.6606   0.2721   0.4563   0.6106   1.5704  
## 
## Coefficients:
##                                 Estimate Std. Error z value Pr(>|z|)   
## (Intercept)                    -6.992665   2.511989  -2.784  0.00537 **
## KLAP_PERCT                      0.010617   0.005931   1.790  0.07344 . 
## KVCO_CATEGFUL_AWARE             2.922612   1.309092   2.233  0.02558 * 
## KVCO_CATEGPAR_AWARE             2.781363   1.341071   2.074  0.03808 * 
## APVS_SCORE                     -0.075710   0.060313  -1.255  0.20937   
## APSI_SCORE                      0.098806   0.041943   2.356  0.01849 * 
## APVT_SCORE                      0.116703   0.048494   2.407  0.01610 * 
## PDEX_SCORE                      0.131370   0.093663   1.403  0.16074   
## RESP_SEXFEMALE                 -0.088043   0.930958  -0.095  0.92465   
## RESP_RELGNBORNAGAIN             0.578955   0.622384   0.930  0.35226   
## RESP_RELGNCATHOLIC              0.551368   0.463407   1.190  0.23412   
## RESP_RELGNINC                   0.196913   0.552007   0.357  0.72130   
## RESP_RELATFATHER               -0.916387   0.958232  -0.956  0.33890   
## RESP_RELATMOTHER               -0.061032   0.449484  -0.136  0.89199   
## RESP_NKIDS                      0.117566   0.090250   1.303  0.19269   
## RESP_HSTAT                      0.052083   0.079178   0.658  0.51066   
## RESP_AGE                       -0.002424   0.015736  -0.154  0.87758   
## RESP_ISTATFULLIMMUNIZED_SURE    1.207751   0.889664   1.358  0.17461   
## RESP_ISTATFULLIMMUNIZED_UNSURE  0.750801   0.861921   0.871  0.38371   
## RESP_ISTATPARTIMMUNIZED         0.578684   0.860548   0.672  0.50129   
## RESP_CSTATMARRIED               0.320580   0.583974   0.549  0.58303   
## RESP_CSTATSINGLE               -0.186480   0.630720  -0.296  0.76749   
## RESP_ESTATEMPLOYED              0.351867   0.275568   1.277  0.20165   
## RESP_EDUCCGRAD_ABOVE            0.364005   0.440364   0.827  0.40846   
## RESP_EDUCHGRAD                 -0.085496   0.361744  -0.236  0.81317   
## RESP_MINC10KTO19K               0.032153   0.278485   0.115  0.90808   
## RESP_MINC20KTO49K               0.486730   0.375487   1.296  0.19488   
## RESP_MINC50K_ABOVE             -0.513205   0.407037  -1.261  0.20737   
## RESP_HEXP20K_ABOVE              1.314916   1.102759   1.192  0.23311   
## RESP_HEXP5KTO19K                0.402302   0.329980   1.219  0.22278   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 561.94  on 631  degrees of freedom
## Residual deviance: 495.60  on 602  degrees of freedom
## AIC: 555.6
## 
## Number of Fisher Scoring iterations: 5
exp(coef(KA.df.KVPD.logitfullmodel))
##                    (Intercept)                     KLAP_PERCT 
##                   9.185953e-04                   1.010674e+00 
##            KVCO_CATEGFUL_AWARE            KVCO_CATEGPAR_AWARE 
##                   1.858979e+01                   1.614101e+01 
##                     APVS_SCORE                     APSI_SCORE 
##                   9.270848e-01                   1.103852e+00 
##                     APVT_SCORE                     PDEX_SCORE 
##                   1.123786e+00                   1.140389e+00 
##                 RESP_SEXFEMALE            RESP_RELGNBORNAGAIN 
##                   9.157216e-01                   1.784173e+00 
##             RESP_RELGNCATHOLIC                  RESP_RELGNINC 
##                   1.735625e+00                   1.217638e+00 
##               RESP_RELATFATHER               RESP_RELATMOTHER 
##                   3.999614e-01                   9.407932e-01 
##                     RESP_NKIDS                     RESP_HSTAT 
##                   1.124756e+00                   1.053464e+00 
##                       RESP_AGE   RESP_ISTATFULLIMMUNIZED_SURE 
##                   9.975790e-01                   3.345952e+00 
## RESP_ISTATFULLIMMUNIZED_UNSURE        RESP_ISTATPARTIMMUNIZED 
##                   2.118697e+00                   1.783690e+00 
##              RESP_CSTATMARRIED               RESP_CSTATSINGLE 
##                   1.377927e+00                   8.298751e-01 
##             RESP_ESTATEMPLOYED           RESP_EDUCCGRAD_ABOVE 
##                   1.421719e+00                   1.439082e+00 
##                 RESP_EDUCHGRAD              RESP_MINC10KTO19K 
##                   9.180569e-01                   1.032676e+00 
##              RESP_MINC20KTO49K             RESP_MINC50K_ABOVE 
##                   1.626987e+00                   5.985738e-01 
##             RESP_HEXP20K_ABOVE               RESP_HEXP5KTO19K 
##                   3.724438e+00                   1.495262e+00
vif(KA.df.KVPD.logitfullmodel)
##                 GVIF Df GVIF^(1/(2*Df))
## KLAP_PERCT  1.155444  1        1.074916
## KVCO_CATEG  1.302894  2        1.068384
## APVS_SCORE  1.127193  1        1.061693
## APSI_SCORE  1.114049  1        1.055485
## APVT_SCORE  1.114894  1        1.055886
## PDEX_SCORE  1.049805  1        1.024600
## RESP_SEX    8.118153  1        2.849237
## RESP_RELGN  1.237144  3        1.036104
## RESP_RELAT 14.740403  2        1.959419
## RESP_NKIDS  1.088874  1        1.043491
## RESP_HSTAT  1.091573  1        1.044784
## RESP_AGE    2.298480  1        1.516074
## RESP_ISTAT  1.162927  3        1.025476
## RESP_CSTAT  1.804532  2        1.159021
## RESP_ESTAT  1.362344  1        1.167195
## RESP_EDUC   1.431306  2        1.093788
## RESP_MINC   1.443830  3        1.063129
## RESP_HEXP   1.162534  2        1.038368
######################################
# ZERO MODEL
######################################

KA.df.KVPD.logitzeromodel <- glm(KVPD ~ 1, 
                                 family = binomial(link = 'logit'), 
                                 data=KA.df)

summary(KA.df.KVPD.logitzeromodel)
## 
## Call:
## glm(formula = KVPD ~ 1, family = binomial(link = "logit"), data = KA.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.9048   0.5965   0.5965   0.5965   0.5965  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   1.6363     0.1077   15.19   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 561.94  on 631  degrees of freedom
## Residual deviance: 561.94  on 631  degrees of freedom
## AIC: 563.94
## 
## Number of Fisher Scoring iterations: 3
exp(coef(KA.df.KVPD.logitzeromodel))
## (Intercept) 
##    5.135922
######################################
# APPLYING BACKWARD ELIMINATION PROCEDURE
######################################

KA.df.KVPD.backwardelimination = step(KA.df.KVPD.logitfullmodel) 
## Start:  AIC=555.6
## KVPD ~ KLAP_PERCT + KVCO_CATEG + APVS_SCORE + APSI_SCORE + APVT_SCORE + 
##     PDEX_SCORE + RESP_SEX + RESP_RELGN + RESP_RELAT + RESP_NKIDS + 
##     RESP_HSTAT + RESP_AGE + RESP_ISTAT + RESP_CSTAT + RESP_ESTAT + 
##     RESP_EDUC + RESP_MINC + RESP_HEXP
## 
##              Df Deviance    AIC
## - RESP_RELGN  3   497.60 551.60
## - RESP_RELAT  2   496.60 552.60
## - RESP_SEX    1   495.61 553.61
## - RESP_AGE    1   495.62 553.62
## - RESP_EDUC   2   497.76 553.76
## - RESP_ISTAT  3   499.98 553.98
## - RESP_HSTAT  1   496.02 554.02
## - RESP_MINC   3   500.53 554.53
## - RESP_HEXP   2   498.84 554.84
## - RESP_CSTAT  2   499.03 555.03
## - APVS_SCORE  1   497.18 555.18
## - RESP_ESTAT  1   497.26 555.26
## - RESP_NKIDS  1   497.42 555.42
## <none>            495.60 555.60
## - PDEX_SCORE  1   497.60 555.60
## - KVCO_CATEG  2   500.80 556.80
## - KLAP_PERCT  1   498.82 556.82
## - APSI_SCORE  1   501.17 559.17
## - APVT_SCORE  1   501.52 559.52
## 
## Step:  AIC=551.6
## KVPD ~ KLAP_PERCT + KVCO_CATEG + APVS_SCORE + APSI_SCORE + APVT_SCORE + 
##     PDEX_SCORE + RESP_SEX + RESP_RELAT + RESP_NKIDS + RESP_HSTAT + 
##     RESP_AGE + RESP_ISTAT + RESP_CSTAT + RESP_ESTAT + RESP_EDUC + 
##     RESP_MINC + RESP_HEXP
## 
##              Df Deviance    AIC
## - RESP_RELAT  2   498.36 548.36
## - RESP_SEX    1   497.61 549.61
## - RESP_AGE    1   497.63 549.63
## - RESP_HSTAT  1   497.94 549.94
## - RESP_EDUC   2   500.02 550.02
## - RESP_ISTAT  3   502.04 550.04
## - RESP_MINC   3   502.26 550.26
## - RESP_CSTAT  2   500.27 550.27
## - RESP_HEXP   2   500.47 550.47
## - APVS_SCORE  1   498.87 550.87
## - RESP_ESTAT  1   499.06 551.06
## - RESP_NKIDS  1   499.59 551.59
## <none>            497.60 551.60
## - PDEX_SCORE  1   500.00 552.00
## - KVCO_CATEG  2   502.54 552.54
## - KLAP_PERCT  1   501.19 553.19
## - APSI_SCORE  1   503.44 555.44
## - APVT_SCORE  1   503.50 555.50
## 
## Step:  AIC=548.36
## KVPD ~ KLAP_PERCT + KVCO_CATEG + APVS_SCORE + APSI_SCORE + APVT_SCORE + 
##     PDEX_SCORE + RESP_SEX + RESP_NKIDS + RESP_HSTAT + RESP_AGE + 
##     RESP_ISTAT + RESP_CSTAT + RESP_ESTAT + RESP_EDUC + RESP_MINC + 
##     RESP_HEXP
## 
##              Df Deviance    AIC
## - RESP_AGE    1   498.36 546.36
## - RESP_HSTAT  1   498.62 546.62
## - RESP_EDUC   2   500.65 546.65
## - RESP_ISTAT  3   502.76 546.76
## - RESP_CSTAT  2   500.80 546.80
## - RESP_MINC   3   503.41 547.41
## - RESP_HEXP   2   501.47 547.47
## - RESP_ESTAT  1   499.53 547.53
## - APVS_SCORE  1   499.60 547.60
## <none>            498.36 548.36
## - RESP_NKIDS  1   500.47 548.47
## - RESP_SEX    1   500.60 548.60
## - PDEX_SCORE  1   500.84 548.84
## - KVCO_CATEG  2   503.41 549.41
## - KLAP_PERCT  1   502.07 550.07
## - APSI_SCORE  1   504.19 552.19
## - APVT_SCORE  1   504.38 552.38
## 
## Step:  AIC=546.36
## KVPD ~ KLAP_PERCT + KVCO_CATEG + APVS_SCORE + APSI_SCORE + APVT_SCORE + 
##     PDEX_SCORE + RESP_SEX + RESP_NKIDS + RESP_HSTAT + RESP_ISTAT + 
##     RESP_CSTAT + RESP_ESTAT + RESP_EDUC + RESP_MINC + RESP_HEXP
## 
##              Df Deviance    AIC
## - RESP_HSTAT  1   498.62 544.62
## - RESP_EDUC   2   500.65 544.65
## - RESP_ISTAT  3   502.77 544.77
## - RESP_CSTAT  2   501.23 545.23
## - RESP_MINC   3   503.47 545.47
## - RESP_HEXP   2   501.47 545.47
## - RESP_ESTAT  1   499.53 545.53
## - APVS_SCORE  1   499.60 545.60
## <none>            498.36 546.36
## - RESP_NKIDS  1   500.48 546.48
## - RESP_SEX    1   500.60 546.60
## - PDEX_SCORE  1   500.86 546.86
## - KVCO_CATEG  2   503.42 547.42
## - KLAP_PERCT  1   502.07 548.07
## - APSI_SCORE  1   504.19 550.19
## - APVT_SCORE  1   504.38 550.38
## 
## Step:  AIC=544.62
## KVPD ~ KLAP_PERCT + KVCO_CATEG + APVS_SCORE + APSI_SCORE + APVT_SCORE + 
##     PDEX_SCORE + RESP_SEX + RESP_NKIDS + RESP_ISTAT + RESP_CSTAT + 
##     RESP_ESTAT + RESP_EDUC + RESP_MINC + RESP_HEXP
## 
##              Df Deviance    AIC
## - RESP_EDUC   2   500.91 542.91
## - RESP_ISTAT  3   502.94 542.94
## - RESP_CSTAT  2   501.47 543.47
## - RESP_HEXP   2   501.65 543.65
## - RESP_MINC   3   503.66 543.66
## - RESP_ESTAT  1   499.82 543.82
## - APVS_SCORE  1   499.90 543.90
## <none>            498.62 544.62
## - RESP_NKIDS  1   500.81 544.81
## - RESP_SEX    1   501.04 545.04
## - PDEX_SCORE  1   501.07 545.07
## - KVCO_CATEG  2   503.55 545.55
## - KLAP_PERCT  1   502.45 546.45
## - APSI_SCORE  1   504.44 548.44
## - APVT_SCORE  1   504.60 548.60
## 
## Step:  AIC=542.91
## KVPD ~ KLAP_PERCT + KVCO_CATEG + APVS_SCORE + APSI_SCORE + APVT_SCORE + 
##     PDEX_SCORE + RESP_SEX + RESP_NKIDS + RESP_ISTAT + RESP_CSTAT + 
##     RESP_ESTAT + RESP_MINC + RESP_HEXP
## 
##              Df Deviance    AIC
## - RESP_ISTAT  3   505.02 541.02
## - RESP_MINC   3   506.02 542.02
## - RESP_CSTAT  2   504.07 542.07
## - APVS_SCORE  1   502.49 542.49
## - RESP_HEXP   2   504.50 542.50
## - RESP_NKIDS  1   502.88 542.88
## - RESP_ESTAT  1   502.89 542.89
## <none>            500.91 542.91
## - PDEX_SCORE  1   503.34 543.34
## - RESP_SEX    1   503.52 543.52
## - KVCO_CATEG  2   505.77 543.77
## - KLAP_PERCT  1   504.92 544.92
## - APVT_SCORE  1   506.45 546.45
## - APSI_SCORE  1   506.62 546.62
## 
## Step:  AIC=541.02
## KVPD ~ KLAP_PERCT + KVCO_CATEG + APVS_SCORE + APSI_SCORE + APVT_SCORE + 
##     PDEX_SCORE + RESP_SEX + RESP_NKIDS + RESP_CSTAT + RESP_ESTAT + 
##     RESP_MINC + RESP_HEXP
## 
##              Df Deviance    AIC
## - RESP_MINC   3   510.06 540.06
## - RESP_CSTAT  2   508.37 540.37
## - RESP_HEXP   2   508.58 540.58
## - APVS_SCORE  1   506.69 540.69
## - RESP_ESTAT  1   506.80 540.80
## - RESP_NKIDS  1   506.93 540.93
## <none>            505.02 541.02
## - PDEX_SCORE  1   507.36 541.36
## - RESP_SEX    1   507.76 541.76
## - KVCO_CATEG  2   510.28 542.28
## - KLAP_PERCT  1   509.14 543.14
## - APSI_SCORE  1   510.60 544.60
## - APVT_SCORE  1   511.20 545.20
## 
## Step:  AIC=540.06
## KVPD ~ KLAP_PERCT + KVCO_CATEG + APVS_SCORE + APSI_SCORE + APVT_SCORE + 
##     PDEX_SCORE + RESP_SEX + RESP_NKIDS + RESP_CSTAT + RESP_ESTAT + 
##     RESP_HEXP
## 
##              Df Deviance    AIC
## - RESP_NKIDS  1   511.29 539.29
## - RESP_HEXP   2   513.52 539.52
## - APVS_SCORE  1   511.64 539.64
## - RESP_CSTAT  2   513.96 539.96
## <none>            510.06 540.06
## - KVCO_CATEG  2   515.00 541.00
## - RESP_ESTAT  1   513.03 541.03
## - PDEX_SCORE  1   513.13 541.13
## - RESP_SEX    1   513.59 541.59
## - KLAP_PERCT  1   514.58 542.58
## - APSI_SCORE  1   515.20 543.20
## - APVT_SCORE  1   516.61 544.61
## 
## Step:  AIC=539.29
## KVPD ~ KLAP_PERCT + KVCO_CATEG + APVS_SCORE + APSI_SCORE + APVT_SCORE + 
##     PDEX_SCORE + RESP_SEX + RESP_CSTAT + RESP_ESTAT + RESP_HEXP
## 
##              Df Deviance    AIC
## - APVS_SCORE  1   512.75 538.75
## - RESP_HEXP   2   514.90 538.90
## - RESP_CSTAT  2   515.11 539.11
## <none>            511.29 539.29
## - KVCO_CATEG  2   516.06 540.06
## - RESP_ESTAT  1   514.37 540.37
## - PDEX_SCORE  1   514.58 540.58
## - RESP_SEX    1   515.08 541.08
## - APSI_SCORE  1   516.11 542.11
## - KLAP_PERCT  1   516.17 542.17
## - APVT_SCORE  1   517.94 543.94
## 
## Step:  AIC=538.75
## KVPD ~ KLAP_PERCT + KVCO_CATEG + APSI_SCORE + APVT_SCORE + PDEX_SCORE + 
##     RESP_SEX + RESP_CSTAT + RESP_ESTAT + RESP_HEXP
## 
##              Df Deviance    AIC
## - RESP_HEXP   2   516.35 538.35
## <none>            512.75 538.75
## - RESP_CSTAT  2   516.92 538.92
## - KVCO_CATEG  2   518.00 540.00
## - PDEX_SCORE  1   516.18 540.18
## - RESP_ESTAT  1   516.19 540.19
## - RESP_SEX    1   516.36 540.36
## - APSI_SCORE  1   517.00 541.00
## - KLAP_PERCT  1   517.50 541.50
## - APVT_SCORE  1   518.93 542.93
## 
## Step:  AIC=538.35
## KVPD ~ KLAP_PERCT + KVCO_CATEG + APSI_SCORE + APVT_SCORE + PDEX_SCORE + 
##     RESP_SEX + RESP_CSTAT + RESP_ESTAT
## 
##              Df Deviance    AIC
## <none>            516.35 538.35
## - RESP_CSTAT  2   520.86 538.86
## - RESP_SEX    1   519.72 539.72
## - KVCO_CATEG  2   521.85 539.85
## - PDEX_SCORE  1   519.90 539.90
## - RESP_ESTAT  1   520.26 540.26
## - APSI_SCORE  1   520.57 540.57
## - KLAP_PERCT  1   521.44 541.44
## - APVT_SCORE  1   522.99 542.99
summary(KA.df.KVPD.backwardelimination)
## 
## Call:
## glm(formula = KVPD ~ KLAP_PERCT + KVCO_CATEG + APSI_SCORE + APVT_SCORE + 
##     PDEX_SCORE + RESP_SEX + RESP_CSTAT + RESP_ESTAT, family = binomial(link = "logit"), 
##     data = KA.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.5045   0.3492   0.4812   0.6364   1.6074  
## 
## Coefficients:
##                      Estimate Std. Error z value Pr(>|z|)    
## (Intercept)         -6.164502   1.816228  -3.394 0.000688 ***
## KLAP_PERCT           0.012720   0.005658   2.248 0.024561 *  
## KVCO_CATEGFUL_AWARE  2.758216   1.281624   2.152 0.031387 *  
## KVCO_CATEGPAR_AWARE  2.421035   1.315751   1.840 0.065762 .  
## APSI_SCORE           0.082112   0.039943   2.056 0.039808 *  
## APVT_SCORE           0.119042   0.046635   2.553 0.010690 *  
## PDEX_SCORE           0.170266   0.091575   1.859 0.062983 .  
## RESP_SEXFEMALE       0.669133   0.356417   1.877 0.060465 .  
## RESP_CSTATMARRIED    0.317238   0.528740   0.600 0.548515    
## RESP_CSTATSINGLE    -0.181756   0.527568  -0.345 0.730458    
## RESP_ESTATEMPLOYED   0.498148   0.256020   1.946 0.051687 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 561.94  on 631  degrees of freedom
## Residual deviance: 516.35  on 621  degrees of freedom
## AIC: 538.35
## 
## Number of Fisher Scoring iterations: 5
######################################
# APPLYING FORWARD SELECTION PROCEDURE
######################################

KA.df.KVPD.forwardselection = step(KA.df.KVPD.logitzeromodel,
                                   scope=list(lower=formula(KA.df.KVPD.logitzeromodel),
                                              upper=formula(KA.df.KVPD.logitfullmodel)), 
                                   direction="forward")
## Start:  AIC=563.94
## KVPD ~ 1
## 
##              Df Deviance    AIC
## + KLAP_PERCT  1   546.68 550.68
## + APVT_SCORE  1   551.78 555.78
## + KVCO_CATEG  2   553.46 559.46
## + APSI_SCORE  1   555.48 559.48
## + PDEX_SCORE  1   557.44 561.44
## + RESP_HEXP   2   555.69 561.69
## + RESP_MINC   3   553.85 561.85
## + RESP_SEX    1   558.59 562.59
## + RESP_ISTAT  3   554.71 562.71
## + RESP_EDUC   2   556.71 562.71
## + RESP_ESTAT  1   559.28 563.28
## + RESP_CSTAT  2   557.32 563.32
## + RESP_RELAT  2   557.45 563.45
## <none>            561.94 563.94
## + RESP_NKIDS  1   560.22 564.22
## + APVS_SCORE  1   560.80 564.80
## + RESP_AGE    1   561.34 565.34
## + RESP_HSTAT  1   561.55 565.55
## + RESP_RELGN  3   560.96 568.96
## 
## Step:  AIC=550.68
## KVPD ~ KLAP_PERCT
## 
##              Df Deviance    AIC
## + APVT_SCORE  1   539.62 545.62
## + APSI_SCORE  1   541.48 547.48
## + PDEX_SCORE  1   542.69 548.69
## + RESP_HEXP   2   541.36 549.36
## + RESP_CSTAT  2   541.80 549.80
## + KVCO_CATEG  2   542.37 550.37
## + RESP_ESTAT  1   544.46 550.46
## + RESP_MINC   3   540.48 550.48
## + RESP_EDUC   2   542.60 550.60
## <none>            546.68 550.68
## + RESP_ISTAT  3   540.70 550.70
## + APVS_SCORE  1   545.41 551.41
## + RESP_SEX    1   545.54 551.54
## + RESP_NKIDS  1   545.57 551.57
## + RESP_AGE    1   546.21 552.21
## + RESP_HSTAT  1   546.53 552.53
## + RESP_RELAT  2   544.67 552.67
## + RESP_RELGN  3   545.97 555.97
## 
## Step:  AIC=545.62
## KVPD ~ KLAP_PERCT + APVT_SCORE
## 
##              Df Deviance    AIC
## + PDEX_SCORE  1   535.13 543.13
## + RESP_EDUC   2   534.34 544.34
## + APSI_SCORE  1   536.36 544.36
## + RESP_CSTAT  2   534.45 544.45
## + RESP_MINC   3   532.88 544.88
## + KVCO_CATEG  2   534.92 544.92
## + RESP_HEXP   2   535.00 545.00
## + RESP_ESTAT  1   537.30 545.30
## <none>            539.62 545.62
## + APVS_SCORE  1   537.69 545.69
## + RESP_SEX    1   538.23 546.23
## + RESP_ISTAT  3   534.44 546.44
## + RESP_NKIDS  1   538.50 546.50
## + RESP_AGE    1   539.02 547.02
## + RESP_HSTAT  1   539.46 547.46
## + RESP_RELAT  2   537.57 547.57
## + RESP_RELGN  3   538.81 550.81
## 
## Step:  AIC=543.13
## KVPD ~ KLAP_PERCT + APVT_SCORE + PDEX_SCORE
## 
##              Df Deviance    AIC
## + APSI_SCORE  1   531.71 541.71
## + RESP_EDUC   2   530.00 542.00
## + KVCO_CATEG  2   530.29 542.29
## + RESP_HEXP   2   530.78 542.78
## + RESP_CSTAT  2   530.83 542.83
## <none>            535.13 543.13
## + RESP_ESTAT  1   533.21 543.21
## + APVS_SCORE  1   533.38 543.38
## + RESP_MINC   3   529.41 543.41
## + RESP_SEX    1   533.67 543.67
## + RESP_ISTAT  3   530.02 544.02
## + RESP_NKIDS  1   534.23 544.23
## + RESP_AGE    1   534.78 544.78
## + RESP_HSTAT  1   534.93 544.93
## + RESP_RELAT  2   533.12 545.12
## + RESP_RELGN  3   534.41 548.41
## 
## Step:  AIC=541.71
## KVPD ~ KLAP_PERCT + APVT_SCORE + PDEX_SCORE + APSI_SCORE
## 
##              Df Deviance    AIC
## + KVCO_CATEG  2   525.84 539.84
## + RESP_EDUC   2   526.29 540.29
## + APVS_SCORE  1   528.98 540.98
## + RESP_HEXP   2   527.28 541.28
## + RESP_ESTAT  1   529.31 541.31
## + RESP_MINC   3   525.62 541.62
## + RESP_CSTAT  2   527.69 541.69
## <none>            531.71 541.71
## + RESP_SEX    1   530.51 542.51
## + RESP_NKIDS  1   530.55 542.55
## + RESP_ISTAT  3   526.59 542.59
## + RESP_HSTAT  1   531.41 543.41
## + RESP_AGE    1   531.41 543.41
## + RESP_RELAT  2   530.04 544.04
## + RESP_RELGN  3   531.24 547.24
## 
## Step:  AIC=539.84
## KVPD ~ KLAP_PERCT + APVT_SCORE + PDEX_SCORE + APSI_SCORE + KVCO_CATEG
## 
##              Df Deviance    AIC
## + RESP_EDUC   2   520.94 538.94
## + RESP_ESTAT  1   523.63 539.63
## + RESP_HEXP   2   521.66 539.66
## + RESP_MINC   3   519.71 539.71
## + RESP_CSTAT  2   521.72 539.72
## + APVS_SCORE  1   523.81 539.81
## <none>            525.84 539.84
## + RESP_NKIDS  1   524.45 540.45
## + RESP_SEX    1   524.82 540.82
## + RESP_ISTAT  3   521.43 541.43
## + RESP_HSTAT  1   525.44 541.44
## + RESP_AGE    1   525.58 541.58
## + RESP_RELAT  2   524.47 542.47
## + RESP_RELGN  3   525.41 545.41
## 
## Step:  AIC=538.94
## KVPD ~ KLAP_PERCT + APVT_SCORE + PDEX_SCORE + APSI_SCORE + KVCO_CATEG + 
##     RESP_EDUC
## 
##              Df Deviance    AIC
## <none>            520.94 538.94
## + RESP_NKIDS  1   518.97 538.97
## + RESP_SEX    1   519.33 539.33
## + APVS_SCORE  1   519.69 539.69
## + RESP_CSTAT  2   517.70 539.70
## + RESP_MINC   3   515.76 539.76
## + RESP_ESTAT  1   519.90 539.90
## + RESP_HEXP   2   517.96 539.96
## + RESP_ISTAT  3   516.35 540.35
## + RESP_HSTAT  1   520.65 540.65
## + RESP_RELAT  2   518.77 540.77
## + RESP_AGE    1   520.78 540.78
## + RESP_RELGN  3   520.66 544.66
summary(KA.df.KVPD.forwardselection)
## 
## Call:
## glm(formula = KVPD ~ KLAP_PERCT + APVT_SCORE + PDEX_SCORE + APSI_SCORE + 
##     KVCO_CATEG + RESP_EDUC, family = binomial(link = "logit"), 
##     data = KA.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.5642   0.3526   0.4851   0.6270   1.6210  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)   
## (Intercept)          -5.402697   1.672168  -3.231  0.00123 **
## KLAP_PERCT            0.014327   0.005507   2.601  0.00928 **
## APVT_SCORE            0.117904   0.046624   2.529  0.01145 * 
## PDEX_SCORE            0.192043   0.090572   2.120  0.03398 * 
## APSI_SCORE            0.086552   0.039707   2.180  0.02928 * 
## KVCO_CATEGFUL_AWARE   2.618630   1.270482   2.061  0.03929 * 
## KVCO_CATEGPAR_AWARE   2.205838   1.295115   1.703  0.08853 . 
## RESP_EDUCCGRAD_ABOVE  0.465391   0.394196   1.181  0.23776   
## RESP_EDUCHGRAD       -0.128453   0.340906  -0.377  0.70632   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 561.94  on 631  degrees of freedom
## Residual deviance: 520.94  on 623  degrees of freedom
## AIC: 538.94
## 
## Number of Fisher Scoring iterations: 5
######################################
# APPLYING STEPWISE REGRESSION PROCEDURE
######################################

KA.df.KVPD.stepwiseregression = step(KA.df.KVPD.logitzeromodel,
                                     scope=list(lower=formula(KA.df.KVPD.logitzeromodel),
                                                upper=formula(KA.df.KVPD.logitfullmodel)), 
                                     direction="both")
## Start:  AIC=563.94
## KVPD ~ 1
## 
##              Df Deviance    AIC
## + KLAP_PERCT  1   546.68 550.68
## + APVT_SCORE  1   551.78 555.78
## + KVCO_CATEG  2   553.46 559.46
## + APSI_SCORE  1   555.48 559.48
## + PDEX_SCORE  1   557.44 561.44
## + RESP_HEXP   2   555.69 561.69
## + RESP_MINC   3   553.85 561.85
## + RESP_SEX    1   558.59 562.59
## + RESP_ISTAT  3   554.71 562.71
## + RESP_EDUC   2   556.71 562.71
## + RESP_ESTAT  1   559.28 563.28
## + RESP_CSTAT  2   557.32 563.32
## + RESP_RELAT  2   557.45 563.45
## <none>            561.94 563.94
## + RESP_NKIDS  1   560.22 564.22
## + APVS_SCORE  1   560.80 564.80
## + RESP_AGE    1   561.34 565.34
## + RESP_HSTAT  1   561.55 565.55
## + RESP_RELGN  3   560.96 568.96
## 
## Step:  AIC=550.68
## KVPD ~ KLAP_PERCT
## 
##              Df Deviance    AIC
## + APVT_SCORE  1   539.62 545.62
## + APSI_SCORE  1   541.48 547.48
## + PDEX_SCORE  1   542.69 548.69
## + RESP_HEXP   2   541.36 549.36
## + RESP_CSTAT  2   541.80 549.80
## + KVCO_CATEG  2   542.37 550.37
## + RESP_ESTAT  1   544.46 550.46
## + RESP_MINC   3   540.48 550.48
## + RESP_EDUC   2   542.60 550.60
## <none>            546.68 550.68
## + RESP_ISTAT  3   540.70 550.70
## + APVS_SCORE  1   545.41 551.41
## + RESP_SEX    1   545.54 551.54
## + RESP_NKIDS  1   545.57 551.57
## + RESP_AGE    1   546.21 552.21
## + RESP_HSTAT  1   546.53 552.53
## + RESP_RELAT  2   544.67 552.67
## + RESP_RELGN  3   545.97 555.97
## - KLAP_PERCT  1   561.94 563.94
## 
## Step:  AIC=545.62
## KVPD ~ KLAP_PERCT + APVT_SCORE
## 
##              Df Deviance    AIC
## + PDEX_SCORE  1   535.13 543.13
## + RESP_EDUC   2   534.34 544.34
## + APSI_SCORE  1   536.36 544.36
## + RESP_CSTAT  2   534.45 544.45
## + RESP_MINC   3   532.88 544.88
## + KVCO_CATEG  2   534.92 544.92
## + RESP_HEXP   2   535.00 545.00
## + RESP_ESTAT  1   537.30 545.30
## <none>            539.62 545.62
## + APVS_SCORE  1   537.69 545.69
## + RESP_SEX    1   538.23 546.23
## + RESP_ISTAT  3   534.44 546.44
## + RESP_NKIDS  1   538.50 546.50
## + RESP_AGE    1   539.02 547.02
## + RESP_HSTAT  1   539.46 547.46
## + RESP_RELAT  2   537.57 547.57
## - APVT_SCORE  1   546.68 550.68
## + RESP_RELGN  3   538.81 550.81
## - KLAP_PERCT  1   551.78 555.78
## 
## Step:  AIC=543.13
## KVPD ~ KLAP_PERCT + APVT_SCORE + PDEX_SCORE
## 
##              Df Deviance    AIC
## + APSI_SCORE  1   531.71 541.71
## + RESP_EDUC   2   530.00 542.00
## + KVCO_CATEG  2   530.29 542.29
## + RESP_HEXP   2   530.78 542.78
## + RESP_CSTAT  2   530.83 542.83
## <none>            535.13 543.13
## + RESP_ESTAT  1   533.21 543.21
## + APVS_SCORE  1   533.38 543.38
## + RESP_MINC   3   529.41 543.41
## + RESP_SEX    1   533.67 543.67
## + RESP_ISTAT  3   530.02 544.02
## + RESP_NKIDS  1   534.23 544.23
## + RESP_AGE    1   534.78 544.78
## + RESP_HSTAT  1   534.93 544.93
## + RESP_RELAT  2   533.12 545.12
## - PDEX_SCORE  1   539.62 545.62
## + RESP_RELGN  3   534.41 548.41
## - APVT_SCORE  1   542.69 548.69
## - KLAP_PERCT  1   546.60 552.60
## 
## Step:  AIC=541.71
## KVPD ~ KLAP_PERCT + APVT_SCORE + PDEX_SCORE + APSI_SCORE
## 
##              Df Deviance    AIC
## + KVCO_CATEG  2   525.84 539.84
## + RESP_EDUC   2   526.29 540.29
## + APVS_SCORE  1   528.98 540.98
## + RESP_HEXP   2   527.28 541.28
## + RESP_ESTAT  1   529.31 541.31
## + RESP_MINC   3   525.62 541.62
## + RESP_CSTAT  2   527.69 541.69
## <none>            531.71 541.71
## + RESP_SEX    1   530.51 542.51
## + RESP_NKIDS  1   530.55 542.55
## + RESP_ISTAT  3   526.59 542.59
## - APSI_SCORE  1   535.13 543.13
## + RESP_HSTAT  1   531.41 543.41
## + RESP_AGE    1   531.41 543.41
## + RESP_RELAT  2   530.04 544.04
## - PDEX_SCORE  1   536.36 544.36
## - APVT_SCORE  1   537.13 545.13
## + RESP_RELGN  3   531.24 547.24
## - KLAP_PERCT  1   542.47 550.47
## 
## Step:  AIC=539.84
## KVPD ~ KLAP_PERCT + APVT_SCORE + PDEX_SCORE + APSI_SCORE + KVCO_CATEG
## 
##              Df Deviance    AIC
## + RESP_EDUC   2   520.94 538.94
## + RESP_ESTAT  1   523.63 539.63
## + RESP_HEXP   2   521.66 539.66
## + RESP_MINC   3   519.71 539.71
## + RESP_CSTAT  2   521.72 539.72
## + APVS_SCORE  1   523.81 539.81
## <none>            525.84 539.84
## + RESP_NKIDS  1   524.45 540.45
## + RESP_SEX    1   524.82 540.82
## + RESP_ISTAT  3   521.43 541.43
## + RESP_HSTAT  1   525.44 541.44
## + RESP_AGE    1   525.58 541.58
## - KVCO_CATEG  2   531.71 541.71
## - APSI_SCORE  1   530.29 542.29
## + RESP_RELAT  2   524.47 542.47
## - PDEX_SCORE  1   530.69 542.69
## - APVT_SCORE  1   531.52 543.52
## - KLAP_PERCT  1   532.89 544.89
## + RESP_RELGN  3   525.41 545.41
## 
## Step:  AIC=538.94
## KVPD ~ KLAP_PERCT + APVT_SCORE + PDEX_SCORE + APSI_SCORE + KVCO_CATEG + 
##     RESP_EDUC
## 
##              Df Deviance    AIC
## <none>            520.94 538.94
## + RESP_NKIDS  1   518.97 538.97
## + RESP_SEX    1   519.33 539.33
## + APVS_SCORE  1   519.69 539.69
## + RESP_CSTAT  2   517.70 539.70
## + RESP_MINC   3   515.76 539.76
## - RESP_EDUC   2   525.84 539.84
## + RESP_ESTAT  1   519.90 539.90
## + RESP_HEXP   2   517.96 539.96
## - KVCO_CATEG  2   526.29 540.29
## + RESP_ISTAT  3   516.35 540.35
## + RESP_HSTAT  1   520.65 540.65
## + RESP_RELAT  2   518.77 540.77
## + RESP_AGE    1   520.78 540.78
## - PDEX_SCORE  1   525.58 541.58
## - APSI_SCORE  1   525.69 541.69
## - APVT_SCORE  1   527.47 543.47
## - KLAP_PERCT  1   527.77 543.77
## + RESP_RELGN  3   520.66 544.66
summary(KA.df.KVPD.stepwiseregression )
## 
## Call:
## glm(formula = KVPD ~ KLAP_PERCT + APVT_SCORE + PDEX_SCORE + APSI_SCORE + 
##     KVCO_CATEG + RESP_EDUC, family = binomial(link = "logit"), 
##     data = KA.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.5642   0.3526   0.4851   0.6270   1.6210  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)   
## (Intercept)          -5.402697   1.672168  -3.231  0.00123 **
## KLAP_PERCT            0.014327   0.005507   2.601  0.00928 **
## APVT_SCORE            0.117904   0.046624   2.529  0.01145 * 
## PDEX_SCORE            0.192043   0.090572   2.120  0.03398 * 
## APSI_SCORE            0.086552   0.039707   2.180  0.02928 * 
## KVCO_CATEGFUL_AWARE   2.618630   1.270482   2.061  0.03929 * 
## KVCO_CATEGPAR_AWARE   2.205838   1.295115   1.703  0.08853 . 
## RESP_EDUCCGRAD_ABOVE  0.465391   0.394196   1.181  0.23776   
## RESP_EDUCHGRAD       -0.128453   0.340906  -0.377  0.70632   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 561.94  on 631  degrees of freedom
## Residual deviance: 520.94  on 623  degrees of freedom
## AIC: 538.94
## 
## Number of Fisher Scoring iterations: 5
######################################
# COMPARING THE MODELS
######################################

formula(KA.df.KVPD.backwardelimination)
## KVPD ~ KLAP_PERCT + KVCO_CATEG + APSI_SCORE + APVT_SCORE + PDEX_SCORE + 
##     RESP_SEX + RESP_CSTAT + RESP_ESTAT
formula(KA.df.KVPD.forwardselection)
## KVPD ~ KLAP_PERCT + APVT_SCORE + PDEX_SCORE + APSI_SCORE + KVCO_CATEG + 
##     RESP_EDUC
formula(KA.df.KVPD.stepwiseregression)
## KVPD ~ KLAP_PERCT + APVT_SCORE + PDEX_SCORE + APSI_SCORE + KVCO_CATEG + 
##     RESP_EDUC
######################################
# OBTAINING THE MODEL COEFFICIENTS
######################################

coef(summary(KA.df.KVPD.backwardelimination))[,'Pr(>|z|)']
##         (Intercept)          KLAP_PERCT KVCO_CATEGFUL_AWARE 
##        0.0006884851        0.0245614374        0.0313873947 
## KVCO_CATEGPAR_AWARE          APSI_SCORE          APVT_SCORE 
##        0.0657622733        0.0398082977        0.0106904543 
##          PDEX_SCORE      RESP_SEXFEMALE   RESP_CSTATMARRIED 
##        0.0629826511        0.0604651446        0.5485145762 
##    RESP_CSTATSINGLE  RESP_ESTATEMPLOYED 
##        0.7304578442        0.0516867827
coef(summary(KA.df.KVPD.forwardselection))[,'Pr(>|z|)']
##          (Intercept)           KLAP_PERCT           APVT_SCORE 
##          0.001233776          0.009284196          0.011445143 
##           PDEX_SCORE           APSI_SCORE  KVCO_CATEGFUL_AWARE 
##          0.033978504          0.029276009          0.039290501 
##  KVCO_CATEGPAR_AWARE RESP_EDUCCGRAD_ABOVE       RESP_EDUCHGRAD 
##          0.088531031          0.237758565          0.706322288
coef(summary(KA.df.KVPD.stepwiseregression))[,'Pr(>|z|)']
##          (Intercept)           KLAP_PERCT           APVT_SCORE 
##          0.001233776          0.009284196          0.011445143 
##           PDEX_SCORE           APSI_SCORE  KVCO_CATEGFUL_AWARE 
##          0.033978504          0.029276009          0.039290501 
##  KVCO_CATEGPAR_AWARE RESP_EDUCCGRAD_ABOVE       RESP_EDUCHGRAD 
##          0.088531031          0.237758565          0.706322288
######################################
# OBTAINING THE DEVIANCE
######################################

KA.df.KVPD.backwardelimination$deviance
## [1] 516.3477
KA.df.KVPD.forwardselection$deviance
## [1] 520.9374
KA.df.KVPD.stepwiseregression$deviance
## [1] 520.9374
######################################
# OBTAINING THE AIC
######################################

KA.df.KVPD.backwardelimination$aic
## [1] 538.3477
KA.df.KVPD.forwardselection$aic
## [1] 538.9374
KA.df.KVPD.stepwiseregression$aic
## [1] 538.9374
######################################
# CHALLENGE IS TO CREATE A MODEL WITH AIC CLOSE TO 539
# BUT WITH MORE SIGNIFICANT INDEPENDENT VARIABLES 
# PROVIDING BETTER CONTEXT TO THE DEPENDENT VARIABLE
# STEP 1: REVIEW DESCRIPTIVE STATS TO SELECT VARIABLES
# STEP 2: RUN THE MODEL
# STEP 3: DRINK COFFEE 
# STEP 4: EVALUATE THE RESULTS
# STEP 5: GO BACK TO STEP 1 IF UNHAPPY WITH THE RESULTS
######################################

######################################
# RERUNNING THE FINAL MODEL WITH 
# THE MOST IMPORTANT VARIABLES BASED
# FROM THE MANUAL EVALUATION
######################################
KA.df.KVPD.finalmodel1 <- glm(KVPD ~ KVCO_CATEG +
                                APVT_SCORE +
                                PDEX_SCORE +
                                APSI_SCORE +
                                KLAP_PERCT,
                              family = binomial(link = 'logit'), 
                              data=KA.df)

formula(KA.df.KVPD.finalmodel1)
## KVPD ~ KVCO_CATEG + APVT_SCORE + PDEX_SCORE + APSI_SCORE + KLAP_PERCT
summary(KA.df.KVPD.finalmodel1)
## 
## Call:
## glm(formula = KVPD ~ KVCO_CATEG + APVT_SCORE + PDEX_SCORE + APSI_SCORE + 
##     KLAP_PERCT, family = binomial(link = "logit"), data = KA.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3914   0.3820   0.5003   0.6218   1.5411  
## 
## Coefficients:
##                      Estimate Std. Error z value Pr(>|z|)   
## (Intercept)         -5.049597   1.651280  -3.058  0.00223 **
## KVCO_CATEGFUL_AWARE  2.482330   1.253289   1.981  0.04763 * 
## KVCO_CATEGPAR_AWARE  1.962722   1.280363   1.533  0.12529   
## APVT_SCORE           0.108274   0.045837   2.362  0.01817 * 
## PDEX_SCORE           0.195598   0.090329   2.165  0.03036 * 
## APSI_SCORE           0.083430   0.039528   2.111  0.03480 * 
## KLAP_PERCT           0.014431   0.005464   2.641  0.00826 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 561.94  on 631  degrees of freedom
## Residual deviance: 525.84  on 625  degrees of freedom
## AIC: 539.84
## 
## Number of Fisher Scoring iterations: 4
exp(coef(KA.df.KVPD.finalmodel1))
##         (Intercept) KVCO_CATEGFUL_AWARE KVCO_CATEGPAR_AWARE 
##         0.006411916        11.969119295         7.118679943 
##          APVT_SCORE          PDEX_SCORE          APSI_SCORE 
##         1.114353158         1.216038323         1.087008661 
##          KLAP_PERCT 
##         1.014535446
vif(KA.df.KVPD.finalmodel1)
##                GVIF Df GVIF^(1/(2*Df))
## KVCO_CATEG 1.082207  2        1.019947
## APVT_SCORE 1.058002  1        1.028592
## PDEX_SCORE 1.005832  1        1.002912
## APSI_SCORE 1.055954  1        1.027596
## KLAP_PERCT 1.080567  1        1.039503
KA.df.KVPD.finalmodel2 <- glm(KVPD ~ KVCO_CATEG +
                                APVT_SCORE +
                                PDEX_SCORE +
                                APSI_SCORE,
                              family = binomial(link = 'logit'), 
                              data=KA.df)

formula(KA.df.KVPD.finalmodel2)
## KVPD ~ KVCO_CATEG + APVT_SCORE + PDEX_SCORE + APSI_SCORE
summary(KA.df.KVPD.finalmodel2)
## 
## Call:
## glm(formula = KVPD ~ KVCO_CATEG + APVT_SCORE + PDEX_SCORE + APSI_SCORE, 
##     family = binomial(link = "logit"), data = KA.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3005   0.3984   0.5153   0.6302   1.3693  
## 
## Coefficients:
##                     Estimate Std. Error z value Pr(>|z|)   
## (Intercept)         -5.04764    1.65110  -3.057  0.00223 **
## KVCO_CATEGFUL_AWARE  2.94991    1.24685   2.366  0.01799 * 
## KVCO_CATEGPAR_AWARE  2.22114    1.28062   1.734  0.08284 . 
## APVT_SCORE           0.12372    0.04500   2.749  0.00597 **
## PDEX_SCORE           0.20775    0.08981   2.313  0.02071 * 
## APSI_SCORE           0.08945    0.03900   2.294  0.02181 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 561.94  on 631  degrees of freedom
## Residual deviance: 532.89  on 626  degrees of freedom
## AIC: 544.89
## 
## Number of Fisher Scoring iterations: 4
exp(coef(KA.df.KVPD.finalmodel2))
##         (Intercept) KVCO_CATEGFUL_AWARE KVCO_CATEGPAR_AWARE 
##         0.006424448        19.104327746         9.217848987 
##          APVT_SCORE          PDEX_SCORE          APSI_SCORE 
##         1.131701098         1.230904553         1.093574434
vif(KA.df.KVPD.finalmodel2)
##                GVIF Df GVIF^(1/(2*Df))
## KVCO_CATEG 1.020254  2        1.005026
## APVT_SCORE 1.038872  1        1.019250
## PDEX_SCORE 1.005774  1        1.002883
## APSI_SCORE 1.052466  1        1.025898
######################################
# TESTING MODEL FIT
######################################

######################################
# COMPUTING FOR THE DEVIANCE 
######################################

1 - pchisq(KA.df.KVPD.finalmodel2$null.deviance-KA.df.KVPD.finalmodel2$deviance,
           KA.df.KVPD.finalmodel2$df.null-KA.df.KVPD.finalmodel2$df.residual)
## [1] 2.271048e-05
######################################
# COMPUTING FOR THE ROC AUC
######################################

KA.df.KVPD.finalmodel2.logitProbS <- predict(KA.df.KVPD.finalmodel2,type=c("response"))
KA.df$LOGITPROBS<-KA.df.KVPD.finalmodel2.logitProbS
KA.df.KVPD.finalmodel2.ROC <- roc(KVPD ~ LOGITPROBS, data = KA.df,auc=TRUE,ci=TRUE,plot=TRUE)

KA.df.KVPD.finalmodel2.ROC.AUC <- KA.df.KVPD.finalmodel2.ROC$auc
KA.df.KVPD.finalmodel2.ROC.AUC
## Area under the curve: 0.6463
######################################
# COMPUTING FOR THE SENSITIVITY 
# COMPUTING FOR THE SPECIFICITY 
# COMPUTING FOR THE PRECISION 
# COMPUTING FOR THE ACCURACY 
######################################

KA.df.KVPD.finalmodel2.initialProbs <- round(sum(KA.df$KVPD)/length(KA.df$KVPD),5)
KA.df.KVPD.finalmodel2.initialProbs 
## [1] 0.83703
Threshold=KA.df.KVPD.finalmodel2.initialProbs
logitPredicted_Values<-ifelse(predict(KA.df.KVPD.finalmodel2,type="response")>Threshold,1,0)
logitActual_Values<-KA.df$KVPD
logitConfusion_Matrix<-table(logitPredicted_Values,logitActual_Values)
logitConfusion_Matrix
##                      logitActual_Values
## logitPredicted_Values   0   1
##                     0  59 203
##                     1  44 326
KA.df.KVPD.finalmodel2.Sensitivity <- (logitConfusion_Matrix[2,2])/
  sum(logitConfusion_Matrix[1,2],logitConfusion_Matrix[2,2])
KA.df.KVPD.finalmodel2.Specificity <- (logitConfusion_Matrix[1,1])/
  sum(logitConfusion_Matrix[1,1],logitConfusion_Matrix[2,1])
KA.df.KVPD.finalmodel2.Precision <- (logitConfusion_Matrix[2,2])/
  sum(logitConfusion_Matrix[2,1],logitConfusion_Matrix[2,2])
KA.df.KVPD.finalmodel2.Accuracy <-(logitConfusion_Matrix[1,1]+logitConfusion_Matrix[2,2])/
  sum(logitConfusion_Matrix[1,1],logitConfusion_Matrix[1,2],logitConfusion_Matrix[2,1],logitConfusion_Matrix[2,2])
KA.df.KVPD.finalmodel2.Sensitivity
## [1] 0.6162571
KA.df.KVPD.finalmodel2.Specificity
## [1] 0.5728155
KA.df.KVPD.finalmodel2.Precision
## [1] 0.8810811
KA.df.KVPD.finalmodel2.Accuracy
## [1] 0.6091772
######################################
# INTERPRETING MODEL RESULTS
######################################

# Respondents with the following characteristics have been observed to have sufficient knowledge on vaccine-preventable diseases (KVPD):
# 1. Higher awareness on controversial issues regarding immunization
# 2. Favorable perception on the quality of immunization information
# 3. Favorable perception on the trustworthiness of the immunization program
# 4. More members of their households have experienced or acquired vaccine-preventable diseases

# All five significant predictor variables collectively represent the aspects of knowledge and awareness, perceptions and practices on immunization.

# Full Awareness on Vaccine Controversies
#Being fully aware of the controversies involving vaccines increases the odds of having sufficient knowledge in vaccine preventable diseases by almost 1,800% holding the rest of the variables constant.

# Partial Awareness on Vaccine Controversies
# Being partially aware of the controversies involving vaccines increases the odds of having sufficient knowledge in vaccine preventable diseases by almost 820% holding the rest of the variables constant.

# Perception on Immunization Program Trustworthiness
# An improved trust towards the government's immunization program increases the odds of having sufficient knowledge in vaccine preventable diseases by almost 13% holding the rest of the variables constant.

# Perception on the Quality of Immunization Information
# A unit increasedin the belief towards the information shared by the government regarding immunization increases the odds of having sufficient knowledge in vaccine preventable diseases by 9% holding the rest of the variables constant.

# Number of Household Members Who Acquired VPDs
# Having a single member of the household experience a vaccine preventable disease increases the odds of having sufficient knowledge about them by 23% holding the rest of the variables constant.