x <- c(5.6, 6.3, 7, 7.7, 8.4)
y <- c(8.8, 12.4, 14.8, 18.2, 20.8)
l_mod <- lm(y ~ x)
l_mod
##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## -14.800 4.257
plot(x,y)
abline(l_mod, col="green")
\[ f(x,y) = 24x - 6xy^{2} - 8y^{3} \]
\[ 1st order partial \space derivatives:\] \[ \frac {\delta f}{\delta x} = 24 -6y^{2}\] \[ \frac {\delta f}{\delta y} = -12xy -24y^{2} \]
\[ Critical \space points:\] \[ 24 -6y^{2} = 0 \] \[ 4 - y^{2} = 0 \] \[ y^{2} = 4 \] \[ y = 2 \space and \space -2 \] \[ -12xy -24y^{2} = 0 \]
\[ -xy -2y^{2} = 0 \]
\[ y=-2 >> -2x - 2(-2)^{2} = -2x + 8 = 0, x = 4 \]
\[ y=2 >> 2x - 2(2)^{2} = 2x + 8 = 0, x = -4 \] \[ Therefore, \space the \space critical \space points \space are: (4,-2) \space and \space (-4,2) \] \[ 2nd \space order \space partial \space derivatives:\] \[ \frac {\delta^{2} f}{\delta x^{2}} = 24 -6y^{2} = 0\] \[ \frac {\delta ^{2} f}{\delta y^{2}} = -12xy -24y^{2} = - 12x - 48y\] \[ \frac {\delta^{2} f}{\delta x^{2}y} = 24 -6y^{2} = -12y\] \[ D = 0 * (-12x - 48y) - (- 12y)^{2} = 12y^{2} \] \[ D(4,-2) = 12(-2)^{2}, -12x -48y = -12(4) -48(-2) = 48 \] \[ D(-4,2) = 12(2)^{2}, -12x -48y = -12(-4) -48(2) = - 48 \]
Step 1. Find the revenue function R (x, y).
\[ R(x,y) = x * (81 - 21x + 17y) + y * (40 + 11x - 23y)\] \[ R(x,y) = 81x - 21x^{2} + 17xy + 40y + 11xy - 23y^{2} \] \[ R(x,y) = 81x - 21x^{2} + 28xy + 40y - 23y^{2} \]
Step 2. What is the revenue if she sells the “house” brand for $2.30 and the “name” brand for $4.10?
\[ R((2.30),(4.10)) = 81(2.30) - 21(2.3)^{2} + 28(2.30)(4.10) + 40(4.10) - 23(4.10)^{2} = 116.62\]
\[ C(x,y) = \frac{1}{6}x^{2} + \frac{1}{6}y^{2} + 7x + 25y + 700 \]
where x is the number of units produced in Los Angeles and y is the number of units produced in Denver. How many units should be produced in each plant to minimize the total weekly cost?
\[ y = 96 - x \] \[ C(x,y) = \frac{1}{6}x^{2} + \frac{1}{6}(96 - x)^{2} + 7x + 25(96 - x) + 700 \] \[ C(x) = \frac{1}{6}x^{2} + 1536 - 32x + \frac {1}{6}x^{2} + 7x + 2400 - 25x + 700 \] \[ C(x) = \frac{1}{3}x^{2} - 50x + 4636 \] \[ C'(x) = \frac{2}{3}x - 50 \] \[ \frac{2}{3}x - 50 = 0 \] \[ x = 75, \space therefore, \space y = 21 \]
\[ \int\int_{R} (e^{8x+3y})dA ; R: 2\leq x \leq 4 \space and \space 2\leq y \leq 4 \] \[ u = 8x; du = 8x \]
\[ \int_{y=2}^{y=4}\int_{u=16}^{u=32} e^{ey}e^u * \frac {1}{8} du \space dy \]
\[ \int_{y=2}^{y=4} \frac {1}{8} e^{ey} \int_{u=16}^{u=32} e^u du\space dy \] \[ \int_{u=16}^{u=32} e^u du = e^u |_{16}^{32} \space e^{32} - e^{16} \]
\[ \int_{y=2}^{y=4} \frac {1}{8} e^{32} - e^{16} e^{ey} dy = \frac {1}{8} e^{32} - e^{16} \int_{y=2}^{y=4} e^{ey} dy\] \[ \frac {1}{8} e^{32} - e^{16} \int_{u=2e}^{u=4e} \frac {1}{e}e^u du = \frac {1}{8e} e^{32} - e^{16} \int_{u=2e}^{u=4e} e^u du \]
\[ (\frac {1}{8e} e^{31} - e^{15}) e^u |_2e^4e = (\frac {1}{8e} e^{31} - e^{15})(e^{4e}- e^{2e}) + C \]