library(MASS)
arboles<-data.frame(mvrnorm(100, mu=c(30,70),
                        Sigma = matrix(c(1,0.7,0.7,1),ncol =2),empirical=T));arboles
##           X1       X2
## 1   29.12199 69.59333
## 2   31.34742 71.59523
## 3   29.29974 70.04474
## 4   30.28608 69.54450
## 5   28.71671 68.97504
## 6   29.45941 68.57636
## 7   28.00074 68.53348
## 8   30.77024 70.20953
## 9   29.95835 68.94071
## 10  30.60133 69.85719
## 11  30.26015 70.88516
## 12  29.32369 68.98509
## 13  30.37847 70.75309
## 14  30.25995 71.08107
## 15  31.14463 71.53232
## 16  30.91592 71.07239
## 17  28.56689 68.90574
## 18  28.99949 69.97332
## 19  29.87611 70.30230
## 20  28.63684 69.34017
## 21  29.03489 69.84438
## 22  31.54077 71.39001
## 23  31.16268 71.27444
## 24  29.36901 69.29979
## 25  28.76302 68.58349
## 26  27.91468 68.04664
## 27  30.85755 70.98869
## 28  27.58590 67.08469
## 29  29.27665 70.48917
## 30  28.66615 71.02210
## 31  29.85270 70.01455
## 32  29.63017 69.57206
## 33  30.91599 71.01163
## 34  30.67326 70.28196
## 35  30.19451 68.98432
## 36  30.11325 68.84107
## 37  30.34777 69.92031
## 38  30.92681 71.25274
## 39  29.31585 70.25706
## 40  29.84553 69.94479
## 41  29.55202 70.10207
## 42  32.48445 69.45139
## 43  29.93851 69.33314
## 44  29.76089 68.68137
## 45  29.52394 70.28759
## 46  30.13833 70.06365
## 47  29.36078 69.63849
## 48  31.38426 71.78394
## 49  31.73611 71.90422
## 50  29.39307 69.19907
## 51  28.77596 70.25210
## 52  29.83210 70.92517
## 53  28.74345 69.16312
## 54  28.90442 70.06302
## 55  29.64297 69.94891
## 56  30.59011 71.04689
## 57  29.80260 69.98931
## 58  29.95453 71.25419
## 59  30.45244 69.35600
## 60  28.82598 68.96403
## 61  30.60834 70.59650
## 62  29.41618 70.07410
## 63  30.01723 69.54115
## 64  30.58869 71.07133
## 65  29.20575 69.92419
## 66  29.31579 69.04377
## 67  29.74700 69.28036
## 68  30.17043 70.08076
## 69  30.41874 70.29207
## 70  29.64457 67.72834
## 71  30.79472 70.16764
## 72  31.59076 71.30109
## 73  30.42316 69.93123
## 74  30.04516 71.04201
## 75  30.02713 70.47127
## 76  30.37738 69.25648
## 77  27.49132 67.30828
## 78  30.57008 70.74974
## 79  30.22687 70.19749
## 80  30.70677 71.15560
## 81  30.78354 69.46586
## 82  30.75035 70.46787
## 83  29.12981 69.51388
## 84  28.79221 69.38104
## 85  30.01733 70.33736
## 86  32.02282 71.60175
## 87  30.14189 69.45012
## 88  30.50537 70.68179
## 89  30.60648 70.07027
## 90  30.23933 69.89185
## 91  31.63867 70.60727
## 92  29.16013 68.40123
## 93  30.33869 69.43687
## 94  31.99900 71.55132
## 95  31.59225 70.40005
## 96  28.98697 69.24420
## 97  31.77961 70.75049
## 98  29.61383 69.75942
## 99  28.52905 69.19913
## 100 31.27831 72.36248
colnames(arboles)=c("y1.DAP","y2.EDAD")
View(arboles)

####Prueba de normalidad univariada###
norm.DAP<-shapiro.test(arboles$y1.DAP);norm.DAP
## 
##  Shapiro-Wilk normality test
## 
## data:  arboles$y1.DAP
## W = 0.99405, p-value = 0.9428
ifelse(norm.DAP$p.value<0.05, "rechazo Ho", "no rechazo Ho")
## [1] "no rechazo Ho"
norm.edad<-shapiro.test(arboles$y2.EDAD);norm.edad
## 
##  Shapiro-Wilk normality test
## 
## data:  arboles$y2.EDAD
## W = 0.98846, p-value = 0.5425
ifelse(norm.edad$p.value<0.05, "rechazo Ho", "no rechazo Ho")
## [1] "no rechazo Ho"
###prueba de normalidad bivariada###
library(royston)
##     The Royston's H test has been moved to 'MVN' package.
##     'royston' package will no longer be supported. Please use
##     'MVN' package for further analysis.
norm.total<-royston.test(arboles)

ifelse(norm.total$p.value<0.05,"rechazo Ho", "no rechazo Ho")
## [1] "no rechazo Ho"
####plot#####
plot(arboles$y1.DAP,arboles$y2.EDAD)
cor(arboles$y1.DAP,arboles$y2.EDAD)
## [1] 0.7
library(psych)

describe(arboles)
##         vars   n mean sd median trimmed  mad   min   max range  skew
## y1.DAP     1 100   30  1  30.02   29.99 1.00 27.49 32.48  4.99 -0.03
## y2.EDAD    2 100   70  1  70.03   70.02 1.05 67.08 72.36  5.28 -0.26
##         kurtosis  se
## y1.DAP     -0.19 0.1
## y2.EDAD     0.09 0.1
####Prueba hotelling### 
library(ICSNP)
## Loading required package: mvtnorm
## Loading required package: ICS
t2arboles<-HotellingsT2(arboles, mu=c(31,73));t2arboles
## 
##  Hotelling's one sample T2-test
## 
## data:  arboles
## T.2 = 562.88, df1 = 2, df2 = 98, p-value < 2.2e-16
## alternative hypothesis: true location is not equal to c(31,73)
ifelse(t2arboles$p.value<0.05, "rechazo Ho", "no rechazo Ho")
## [1] "rechazo Ho"
######Prueba de Hotelling dos muestras independientes###
z<-cbind(arboles$y1.DAP,arboles$y2.EDAD); z
##            [,1]     [,2]
##   [1,] 29.12199 69.59333
##   [2,] 31.34742 71.59523
##   [3,] 29.29974 70.04474
##   [4,] 30.28608 69.54450
##   [5,] 28.71671 68.97504
##   [6,] 29.45941 68.57636
##   [7,] 28.00074 68.53348
##   [8,] 30.77024 70.20953
##   [9,] 29.95835 68.94071
##  [10,] 30.60133 69.85719
##  [11,] 30.26015 70.88516
##  [12,] 29.32369 68.98509
##  [13,] 30.37847 70.75309
##  [14,] 30.25995 71.08107
##  [15,] 31.14463 71.53232
##  [16,] 30.91592 71.07239
##  [17,] 28.56689 68.90574
##  [18,] 28.99949 69.97332
##  [19,] 29.87611 70.30230
##  [20,] 28.63684 69.34017
##  [21,] 29.03489 69.84438
##  [22,] 31.54077 71.39001
##  [23,] 31.16268 71.27444
##  [24,] 29.36901 69.29979
##  [25,] 28.76302 68.58349
##  [26,] 27.91468 68.04664
##  [27,] 30.85755 70.98869
##  [28,] 27.58590 67.08469
##  [29,] 29.27665 70.48917
##  [30,] 28.66615 71.02210
##  [31,] 29.85270 70.01455
##  [32,] 29.63017 69.57206
##  [33,] 30.91599 71.01163
##  [34,] 30.67326 70.28196
##  [35,] 30.19451 68.98432
##  [36,] 30.11325 68.84107
##  [37,] 30.34777 69.92031
##  [38,] 30.92681 71.25274
##  [39,] 29.31585 70.25706
##  [40,] 29.84553 69.94479
##  [41,] 29.55202 70.10207
##  [42,] 32.48445 69.45139
##  [43,] 29.93851 69.33314
##  [44,] 29.76089 68.68137
##  [45,] 29.52394 70.28759
##  [46,] 30.13833 70.06365
##  [47,] 29.36078 69.63849
##  [48,] 31.38426 71.78394
##  [49,] 31.73611 71.90422
##  [50,] 29.39307 69.19907
##  [51,] 28.77596 70.25210
##  [52,] 29.83210 70.92517
##  [53,] 28.74345 69.16312
##  [54,] 28.90442 70.06302
##  [55,] 29.64297 69.94891
##  [56,] 30.59011 71.04689
##  [57,] 29.80260 69.98931
##  [58,] 29.95453 71.25419
##  [59,] 30.45244 69.35600
##  [60,] 28.82598 68.96403
##  [61,] 30.60834 70.59650
##  [62,] 29.41618 70.07410
##  [63,] 30.01723 69.54115
##  [64,] 30.58869 71.07133
##  [65,] 29.20575 69.92419
##  [66,] 29.31579 69.04377
##  [67,] 29.74700 69.28036
##  [68,] 30.17043 70.08076
##  [69,] 30.41874 70.29207
##  [70,] 29.64457 67.72834
##  [71,] 30.79472 70.16764
##  [72,] 31.59076 71.30109
##  [73,] 30.42316 69.93123
##  [74,] 30.04516 71.04201
##  [75,] 30.02713 70.47127
##  [76,] 30.37738 69.25648
##  [77,] 27.49132 67.30828
##  [78,] 30.57008 70.74974
##  [79,] 30.22687 70.19749
##  [80,] 30.70677 71.15560
##  [81,] 30.78354 69.46586
##  [82,] 30.75035 70.46787
##  [83,] 29.12981 69.51388
##  [84,] 28.79221 69.38104
##  [85,] 30.01733 70.33736
##  [86,] 32.02282 71.60175
##  [87,] 30.14189 69.45012
##  [88,] 30.50537 70.68179
##  [89,] 30.60648 70.07027
##  [90,] 30.23933 69.89185
##  [91,] 31.63867 70.60727
##  [92,] 29.16013 68.40123
##  [93,] 30.33869 69.43687
##  [94,] 31.99900 71.55132
##  [95,] 31.59225 70.40005
##  [96,] 28.98697 69.24420
##  [97,] 31.77961 70.75049
##  [98,] 29.61383 69.75942
##  [99,] 28.52905 69.19913
## [100,] 31.27831 72.36248
g<-gl(2,50,100,c("tabio","torca"));g
##   [1] tabio tabio tabio tabio tabio tabio tabio tabio tabio tabio tabio
##  [12] tabio tabio tabio tabio tabio tabio tabio tabio tabio tabio tabio
##  [23] tabio tabio tabio tabio tabio tabio tabio tabio tabio tabio tabio
##  [34] tabio tabio tabio tabio tabio tabio tabio tabio tabio tabio tabio
##  [45] tabio tabio tabio tabio tabio tabio torca torca torca torca torca
##  [56] torca torca torca torca torca torca torca torca torca torca torca
##  [67] torca torca torca torca torca torca torca torca torca torca torca
##  [78] torca torca torca torca torca torca torca torca torca torca torca
##  [89] torca torca torca torca torca torca torca torca torca torca torca
## [100] torca
## Levels: tabio torca
hot.arbol<-HotellingsT2(z~g, mu=c(0,0))
ifelse(hot.arbol$p.value<0.05,"rechazo Ho", "no rechazo Ho")
##      [,1]           
## [1,] "no rechazo Ho"
##la aproximación de Chi cuadrado se utiliza cuando se utilizan muestras con un
#n>5 y cuando el número de variables dependientes es mayor o igual a 5. 

######prueba de igualdad de covarianzas####
library(biotools)
## Loading required package: rpanel
## Loading required package: tcltk
## Package `rpanel', version 1.1-4: type help(rpanel) for summary information
## Loading required package: tkrplot
## Loading required package: lattice
## Loading required package: SpatialEpi
## Loading required package: sp
## ---
## biotools version 3.1
## 
mbox.arbol<-boxM(arboles,g);mbox.arbol
## 
##  Box's M-test for Homogeneity of Covariance Matrices
## 
## data:  arboles
## Chi-Sq (approx.) = 0.67914, df = 3, p-value = 0.8781
ifelse(mbox.arbol$p.value<0.05,"Rechazo Ho","no rechazo Ho") #igualdad de covaria
## [1] "no rechazo Ho"
hot.leche<-HotellingsT2(z~g, mu=c(0,0)); hot.leche #se pone cero porque en las localidades 
## 
##  Hotelling's two sample T2-test
## 
## data:  z by g
## T.2 = 0.47397, df1 = 2, df2 = 97, p-value = 0.624
## alternative hypothesis: true location difference is not equal to c(0,0)
ifelse(hot.arbol$p.value<0.05,"rechazo Ho", "no rechazo Ho")
##      [,1]           
## [1,] "no rechazo Ho"
######igualdad de covarianzas####
var(arboles[1:50,])
##            y1.DAP   y2.EDAD
## y1.DAP  1.0726718 0.7617071
## y2.EDAD 0.7617071 1.1036029
var(arboles[51:100,])
##            y1.DAP   y2.EDAD
## y1.DAP  0.9288000 0.6417649
## y2.EDAD 0.6417649 0.9106300
library(biotools)
mbox.arbol<-boxM(arboles,g)
ifelse(mbox.arbol$p.value<0.05,"Rechazo Ho","no rechazo Ho") #igualdad de covarianzas
## [1] "no rechazo Ho"
####prueba t para dos muestras#####
arboles2<-cbind(arboles,g);arboles2
##       y1.DAP  y2.EDAD     g
## 1   29.12199 69.59333 tabio
## 2   31.34742 71.59523 tabio
## 3   29.29974 70.04474 tabio
## 4   30.28608 69.54450 tabio
## 5   28.71671 68.97504 tabio
## 6   29.45941 68.57636 tabio
## 7   28.00074 68.53348 tabio
## 8   30.77024 70.20953 tabio
## 9   29.95835 68.94071 tabio
## 10  30.60133 69.85719 tabio
## 11  30.26015 70.88516 tabio
## 12  29.32369 68.98509 tabio
## 13  30.37847 70.75309 tabio
## 14  30.25995 71.08107 tabio
## 15  31.14463 71.53232 tabio
## 16  30.91592 71.07239 tabio
## 17  28.56689 68.90574 tabio
## 18  28.99949 69.97332 tabio
## 19  29.87611 70.30230 tabio
## 20  28.63684 69.34017 tabio
## 21  29.03489 69.84438 tabio
## 22  31.54077 71.39001 tabio
## 23  31.16268 71.27444 tabio
## 24  29.36901 69.29979 tabio
## 25  28.76302 68.58349 tabio
## 26  27.91468 68.04664 tabio
## 27  30.85755 70.98869 tabio
## 28  27.58590 67.08469 tabio
## 29  29.27665 70.48917 tabio
## 30  28.66615 71.02210 tabio
## 31  29.85270 70.01455 tabio
## 32  29.63017 69.57206 tabio
## 33  30.91599 71.01163 tabio
## 34  30.67326 70.28196 tabio
## 35  30.19451 68.98432 tabio
## 36  30.11325 68.84107 tabio
## 37  30.34777 69.92031 tabio
## 38  30.92681 71.25274 tabio
## 39  29.31585 70.25706 tabio
## 40  29.84553 69.94479 tabio
## 41  29.55202 70.10207 tabio
## 42  32.48445 69.45139 tabio
## 43  29.93851 69.33314 tabio
## 44  29.76089 68.68137 tabio
## 45  29.52394 70.28759 tabio
## 46  30.13833 70.06365 tabio
## 47  29.36078 69.63849 tabio
## 48  31.38426 71.78394 tabio
## 49  31.73611 71.90422 tabio
## 50  29.39307 69.19907 tabio
## 51  28.77596 70.25210 torca
## 52  29.83210 70.92517 torca
## 53  28.74345 69.16312 torca
## 54  28.90442 70.06302 torca
## 55  29.64297 69.94891 torca
## 56  30.59011 71.04689 torca
## 57  29.80260 69.98931 torca
## 58  29.95453 71.25419 torca
## 59  30.45244 69.35600 torca
## 60  28.82598 68.96403 torca
## 61  30.60834 70.59650 torca
## 62  29.41618 70.07410 torca
## 63  30.01723 69.54115 torca
## 64  30.58869 71.07133 torca
## 65  29.20575 69.92419 torca
## 66  29.31579 69.04377 torca
## 67  29.74700 69.28036 torca
## 68  30.17043 70.08076 torca
## 69  30.41874 70.29207 torca
## 70  29.64457 67.72834 torca
## 71  30.79472 70.16764 torca
## 72  31.59076 71.30109 torca
## 73  30.42316 69.93123 torca
## 74  30.04516 71.04201 torca
## 75  30.02713 70.47127 torca
## 76  30.37738 69.25648 torca
## 77  27.49132 67.30828 torca
## 78  30.57008 70.74974 torca
## 79  30.22687 70.19749 torca
## 80  30.70677 71.15560 torca
## 81  30.78354 69.46586 torca
## 82  30.75035 70.46787 torca
## 83  29.12981 69.51388 torca
## 84  28.79221 69.38104 torca
## 85  30.01733 70.33736 torca
## 86  32.02282 71.60175 torca
## 87  30.14189 69.45012 torca
## 88  30.50537 70.68179 torca
## 89  30.60648 70.07027 torca
## 90  30.23933 69.89185 torca
## 91  31.63867 70.60727 torca
## 92  29.16013 68.40123 torca
## 93  30.33869 69.43687 torca
## 94  31.99900 71.55132 torca
## 95  31.59225 70.40005 torca
## 96  28.98697 69.24420 torca
## 97  31.77961 70.75049 torca
## 98  29.61383 69.75942 torca
## 99  28.52905 69.19913 torca
## 100 31.27831 72.36248 torca
DAP.tabio<-matrix(subset(arboles2$y1.DAP,g=="tabio"));DAP.tabio
##           [,1]
##  [1,] 29.12199
##  [2,] 31.34742
##  [3,] 29.29974
##  [4,] 30.28608
##  [5,] 28.71671
##  [6,] 29.45941
##  [7,] 28.00074
##  [8,] 30.77024
##  [9,] 29.95835
## [10,] 30.60133
## [11,] 30.26015
## [12,] 29.32369
## [13,] 30.37847
## [14,] 30.25995
## [15,] 31.14463
## [16,] 30.91592
## [17,] 28.56689
## [18,] 28.99949
## [19,] 29.87611
## [20,] 28.63684
## [21,] 29.03489
## [22,] 31.54077
## [23,] 31.16268
## [24,] 29.36901
## [25,] 28.76302
## [26,] 27.91468
## [27,] 30.85755
## [28,] 27.58590
## [29,] 29.27665
## [30,] 28.66615
## [31,] 29.85270
## [32,] 29.63017
## [33,] 30.91599
## [34,] 30.67326
## [35,] 30.19451
## [36,] 30.11325
## [37,] 30.34777
## [38,] 30.92681
## [39,] 29.31585
## [40,] 29.84553
## [41,] 29.55202
## [42,] 32.48445
## [43,] 29.93851
## [44,] 29.76089
## [45,] 29.52394
## [46,] 30.13833
## [47,] 29.36078
## [48,] 31.38426
## [49,] 31.73611
## [50,] 29.39307
DAP.torca<-matrix(subset(arboles2$y1.DAP,g=="torca"));DAP.torca
##           [,1]
##  [1,] 28.77596
##  [2,] 29.83210
##  [3,] 28.74345
##  [4,] 28.90442
##  [5,] 29.64297
##  [6,] 30.59011
##  [7,] 29.80260
##  [8,] 29.95453
##  [9,] 30.45244
## [10,] 28.82598
## [11,] 30.60834
## [12,] 29.41618
## [13,] 30.01723
## [14,] 30.58869
## [15,] 29.20575
## [16,] 29.31579
## [17,] 29.74700
## [18,] 30.17043
## [19,] 30.41874
## [20,] 29.64457
## [21,] 30.79472
## [22,] 31.59076
## [23,] 30.42316
## [24,] 30.04516
## [25,] 30.02713
## [26,] 30.37738
## [27,] 27.49132
## [28,] 30.57008
## [29,] 30.22687
## [30,] 30.70677
## [31,] 30.78354
## [32,] 30.75035
## [33,] 29.12981
## [34,] 28.79221
## [35,] 30.01733
## [36,] 32.02282
## [37,] 30.14189
## [38,] 30.50537
## [39,] 30.60648
## [40,] 30.23933
## [41,] 31.63867
## [42,] 29.16013
## [43,] 30.33869
## [44,] 31.99900
## [45,] 31.59225
## [46,] 28.98697
## [47,] 31.77961
## [48,] 29.61383
## [49,] 28.52905
## [50,] 31.27831
t.test(DAP.tabio,DAP.torca)
## 
##  Welch Two Sample t-test
## 
## data:  DAP.tabio and DAP.torca
## t = -0.96291, df = 97.496, p-value = 0.338
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.5897182  0.2044121
## sample estimates:
## mean of x mean of y 
##  29.90367  30.09633
nrow(DAP.tabio)
## [1] 50
ncol(DAP.tabio)
## [1] 1
######ver outliers multivariado####
library(mvoutlier)
## Loading required package: sgeostat
## Registered S3 methods overwritten by 'ggplot2':
##   method         from 
##   [.quosures     rlang
##   c.quosures     rlang
##   print.quosures rlang
## Registered S3 method overwritten by 'GGally':
##   method from   
##   +.gg   ggplot2
## sROC 0.1-2 loaded
dd.plot(arboles)

## $outliers
##   [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [12] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [23] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE
##  [34] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [45] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [56] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [67] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [78] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [89] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [100] FALSE
## 
## $md.cla
##   [1] 0.9250303 1.6276243 1.0253901 0.9617631 1.2954906 1.5602564 2.0014613
##   [8] 0.8979606 1.4430747 0.9923364 1.0182641 1.0160326 0.7813462 1.2855525
##  [15] 1.5356325 1.0970697 1.4387729 1.3751032 0.5586490 1.4241231 1.2089427
##  [22] 1.6013082 1.3295689 0.7274505 1.4576018 2.1968962 1.0154796 2.9618263
##  [29] 1.5705117 3.0462161 0.2210004 0.4391083 1.0526660 0.7235704 1.6245753
##  [36] 1.7375241 0.5706715 1.2546823 1.2369658 0.1713170 0.7344723 4.0539601
##  [43] 0.8756816 1.6297081 0.9911425 0.1459272 0.6504451 1.7939999 1.9861388
##  [50] 0.8035447 1.9772429 1.4696946 1.2579725 1.5971412 0.4527575 1.0657945
##  [57] 0.2661430 1.8013629 1.4192969 1.2117122 0.6535927 0.8932212 0.6596370
##  [64] 1.0948627 1.0406183 0.9564597 0.8007316 0.1787688 0.4187440 2.8547837
##  [71] 0.9632162 1.6122934 0.6635220 1.4155602 0.6338996 1.4606446 2.8301930
##  [78] 0.7524142 0.2332477 1.1644187 1.7064852 0.7546385 0.8870724 1.2487352
##  [85] 0.4557498 2.0394821 0.9200659 0.6829279 0.7835215 0.4541934 1.8046039
##  [92] 1.6459023 1.1705984 2.0103011 1.8805099 1.0151339 1.9099524 0.3884042
##  [99] 1.5054309 2.4202657
## 
## $md.rob
##   [1] 0.7720037 1.3172630 0.9244769 1.3518199 1.1203608 1.8899666 1.7036013
##   [8] 1.1011728 1.8803341 1.3322956 0.8790948 1.1601758 0.5915650 1.1840548
##  [15] 1.2547824 0.8579871 1.2313466 1.2917792 0.4103440 1.2310990 1.0918275
##  [22] 1.3312623 1.0608103 0.7748677 1.4139241 1.9235289 0.7898604 2.7754961
##  [29] 1.5741493 3.2728861 0.1197939 0.5514599 0.8264862 0.8656154 2.1148858
##  [36] 2.2367668 0.8615869 1.0016207 1.1810181 0.1809037 0.6132780 4.7496035
##  [43] 1.2288432 2.0554836 0.9097280 0.3376839 0.5372219 1.4794494 1.6211179
##  [50] 0.9119853 1.9938336 1.4558633 1.0659219 1.5476975 0.3216595 0.8625148
##  [57] 0.1587789 1.8217900 1.8804882 1.0797981 0.5342258 0.7843331 0.9950395
##  [64] 0.8948679 0.9249441 1.0746157 1.0912946 0.3608081 0.4755758 3.4355538
##  [71] 1.1922404 1.3827777 0.9575005 1.3694206 0.4803608 1.9315878 2.5487218
##  [78] 0.5542817 0.2930736 0.9461251 2.1876305 0.7853458 0.7390118 1.0643843
##  [85] 0.2786748 1.7578381 1.3036428 0.4925295 1.0360690 0.7454370 1.9415357
##  [92] 1.8774883 1.5942187 1.7448434 2.1115339 0.8747094 1.9977489 0.3489832
##  [99] 1.2924650 2.2225090
dd.plot(log(arboles[,c("y1.DAP","y2.EDAD")]))

## $outliers
##   [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [12] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [23] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE
##  [34] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [45] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [56] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [67] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [78] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [89] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [100] FALSE
## 
## $md.cla
##   [1] 0.9230652 1.6113374 1.0229497 0.9751003 1.3027852 1.5764711 2.0493065
##   [8] 0.9030058 1.4619851 1.0012785 1.0098455 1.0150360 0.7790652 1.2727556
##  [15] 1.5227817 1.0942151 1.4532006 1.3848601 0.5494815 1.4443472 1.2153227
##  [22] 1.5797197 1.3208518 0.7193577 1.4623992 2.2387648 1.0143569 3.0206119
##  [29] 1.5704246 3.0710198 0.2063562 0.4293366 1.0508180 0.7319007 1.6452591
##  [36] 1.7609071 0.5842092 1.2482030 1.2355028 0.1542693 0.7255136 3.9439447
##  [43] 0.8862727 1.6513283 0.9842628 0.1631683 0.6402155 1.7739157 1.9557957
##  [50] 0.7983094 2.0011539 1.4560524 1.2672295 1.6127331 0.4394181 1.0606758
##  [57] 0.2510593 1.7815423 1.4333061 1.2140335 0.6601791 0.8873487 0.6696052
##  [64] 1.0890596 1.0403379 0.9536753 0.8058638 0.1957753 0.4316754 2.9117533
##  [71] 0.9672498 1.5875619 0.6761414 1.4006845 0.6269611 1.4765318 2.8938791
##  [78] 0.7548246 0.2467295 1.1583889 1.7125529 0.7608208 0.8834600 1.2598686
##  [85] 0.4497071 1.9911102 0.9332342 0.6859838 0.7929418 0.4681490 1.7672362
##  [92] 1.6592696 1.1846185 1.9627768 1.8443527 1.0137521 1.8641736 0.3734850
##  [99] 1.5296971 2.3821539
## 
## $md.rob
##   [1] 0.7696318 1.3060578 0.9215727 1.3689804 1.1261121 1.9217287 1.7448675
##   [8] 1.1035476 1.9103595 1.3409681 0.8693454 1.1711192 0.5888971 1.1701737
##  [15] 1.2463819 0.8568184 1.2428532 1.3020430 0.3985408 1.2505645 1.0982424
##  [22] 1.3097900 1.0544145 0.7763795 1.4227273 1.9546890 0.7901114 2.8221389
##  [29] 1.5744580 3.3017421 0.1102437 0.5544360 0.8258904 0.8715001 2.1447285
##  [36] 2.2710293 0.8748102 0.9976851 1.1794037 0.1801727 0.6029754 4.6295150
##  [43] 1.2481743 2.0912877 0.9019317 0.3522813 0.5287278 1.4661381 1.5983690
##  [50] 0.9179704 2.0199553 1.4413140 1.0735432 1.5644324 0.3076837 0.8578929
##  [57] 0.1465191 1.8011935 1.8989503 1.0825063 0.5417129 0.7776255 1.0115069
##  [64] 0.8895256 0.9243093 1.0831510 1.1076142 0.3755556 0.4881845 3.5157798
##  [71] 1.1936780 1.3558051 0.9696076 1.3533895 0.4711766 1.9531933 2.5948192
##  [78] 0.5579827 0.3084470 0.9413486 2.1956066 0.7893482 0.7353905 1.0745810
##  [85] 0.2703645 1.7065754 1.3225840 0.4970209 1.0437470 0.7596225 1.8962529
##  [92] 1.9059074 1.6126723 1.6937326 2.0682152 0.8737828 1.9429542 0.3416308
##  [99] 1.3153535 2.1911972
xy <- arboles[,c("y1.DAP","y2.EDAD")] # coordenadas
myarboles <- log(arboles[, c("y1.DAP","y2.EDAD")])
out.arboles<-map.plot(xy, myarboles, symb=FALSE)

out.arboles$outliers
##   [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [12] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [23] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE
##  [34] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [45] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [56] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [67] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [78] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [89] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [100] FALSE
which(out.arboles$outliers==TRUE)
## [1] 28 30 42 70
##mbox con varianzas difernetes, se modifican datos de la base real ###
arboles3<-read.csv("E:/MAESTRÍA GEOMÁTICA UNAL/MÉTODOS MULTIVARIADOS/arboles3.csv");arboles3
##        y1.DAP   y2.EDAD
## 1   100.00000 500.00000
## 2   100.00000 600.00000
## 3   100.00000 600.00000
## 4   100.00000 700.00000
## 5    31.22613  70.96583
## 6    29.17756  67.62307
## 7    29.69489  69.80774
## 8    30.72601  70.39250
## 9    29.81925  71.20414
## 10   30.33947  69.91948
## 11   29.17371  70.34514
## 12   30.05829  70.79238
## 13   29.55078  68.94653
## 14   30.14137  71.13297
## 15   30.09772  68.10602
## 16   28.28280  69.95423
## 17   30.62392  69.77860
## 18   30.56126  71.11539
## 19   30.26792  70.29489
## 20   30.99743  70.10319
## 21   31.63077  71.57348
## 22   28.61379  70.20410
## 23   29.87908  69.91571
## 24   29.05957  70.01355
## 25   30.25529  70.29213
## 26   30.55576  69.90386
## 27   30.64925  70.23139
## 28   29.99646  70.17729
## 29   28.74708  68.85466
## 30   29.53504  69.83996
## 31   29.65476  69.29433
## 32   29.28896  69.53387
## 33   29.33432  69.73313
## 34   31.43666  70.97132
## 35   29.87576  70.85401
## 36   28.89247  69.30493
## 37   30.16758  69.36015
## 38   29.85290  69.96537
## 39   29.61444  70.27093
## 40   29.56664  71.02264
## 41   29.19429  69.41983
## 42   30.56264  71.07806
## 43   31.48485  72.46583
## 44   30.74595  70.09927
## 45   28.07410  68.65816
## 46   30.58726  70.48032
## 47   30.34081  70.96698
## 48   28.32970  69.38704
## 49   29.46412  70.36561
## 50   27.49464  66.56940
## 51   28.88579  69.18094
## 52   29.77453  70.46573
## 53   31.40064  70.83727
## 54   31.47604  71.08809
## 55   30.35154  68.55542
## 56   29.58612  70.34135
## 57   29.77835  69.89455
## 58   29.55675  68.99481
## 59   30.74077  70.69356
## 60   30.54432  69.57129
## 61   30.37338  70.37492
## 62   29.37278  69.13922
## 63   29.43511  68.74652
## 64   29.44560  69.70162
## 65   30.03451  69.12347
## 66   29.72585  69.88569
## 67   28.83287  69.82107
## 68   30.88588  70.76458
## 69   29.36579  68.51447
## 70   30.29081  70.06042
## 71   29.23074  69.27020
## 72   29.80536  69.96907
## 73   28.89823  69.96130
## 74   33.21748  72.23982
## 75   30.46822  69.68905
## 76   31.11455  71.82586
## 77   32.85476  71.61878
## 78   31.33164  69.89939
## 79   29.97864  70.72713
## 80   29.29297  68.99570
## 81   31.39348  69.81856
## 82   30.64165  70.94479
## 83   29.17104  68.41422
## 84   28.44670  70.04441
## 85   32.02750  71.54783
## 86   31.11716  71.05420
## 87   29.48303  69.42496
## 88   29.56931  70.13687
## 89   28.86489  68.62693
## 90   29.47127  69.62892
## 91   30.05929  70.19470
## 92   29.72441  70.12540
## 93   28.60693  68.94474
## 94   29.11514  70.45353
## 95   30.01272  69.73961
## 96   28.73206  67.81383
## 97   29.67820  68.98438
## 98   29.44732  68.35918
## 99   30.84374  71.12952
## 100  30.54691  70.42006
######prueba de igualdad de covarianzas####
mbox.arbol3<-boxM(arboles3,g);mbox.arbol3
## 
##  Box's M-test for Homogeneity of Covariance Matrices
## 
## data:  arboles3
## Chi-Sq (approx.) = 488.97, df = 3, p-value < 2.2e-16
ifelse(2.2e-16<0.05,"Rechazo Ho","no rechazo Ho") #igualdad de covaria
## [1] "Rechazo Ho"
######prueba de igualdad de covarianzas####
var(arboles3[1:50,])
##            y1.DAP   y2.EDAD
## y1.DAP   370.2298  2792.226
## y2.EDAD 2792.2256 21503.068
var(arboles3[51:100,])
##            y1.DAP   y2.EDAD
## y1.DAP  1.0867700 0.7422112
## y2.EDAD 0.7422112 0.9453209
library(biotools)
mbox.arbol<-boxM(arboles3,g)
ifelse(mbox.arbol$p.value<0.05,"Rechazo Ho","no rechazo Ho") #igualdad de covarianzas
## [1] "Rechazo Ho"
###########################################################################
###factorial completo, bloques completos, generalizados y al azar###
germ=rnorm(120, 70 ,2); germ
##   [1] 71.93730 66.31486 68.53724 67.10922 69.95993 68.00244 68.21334
##   [8] 69.72642 73.16099 71.38334 73.34402 67.97647 69.08663 71.58141
##  [15] 68.98315 71.54040 70.25418 72.38624 70.95110 73.31673 71.37498
##  [22] 73.23477 67.26619 70.78834 67.75792 71.09554 73.23581 75.06873
##  [29] 70.30881 66.90380 69.42939 70.69188 71.60011 65.86823 66.34788
##  [36] 68.53927 71.32948 73.27147 70.45638 69.30115 70.36132 67.16559
##  [43] 70.46225 66.56699 69.39718 67.64799 70.83207 69.70786 71.74424
##  [50] 69.38384 69.03722 72.97304 68.96537 73.27933 69.15313 72.51368
##  [57] 67.55527 69.36992 67.97955 70.85013 71.04904 70.41014 70.99828
##  [64] 71.33098 66.45227 70.13874 72.02532 70.70118 68.01788 69.91353
##  [71] 72.94702 72.50269 66.46316 69.94691 68.62457 71.55954 70.72958
##  [78] 67.55373 70.14681 68.43730 69.86100 73.08314 68.14168 70.40921
##  [85] 72.49029 70.73779 71.25077 70.25724 71.04440 68.63795 71.34470
##  [92] 74.57727 69.35732 69.49836 74.23016 68.56676 69.98838 68.38846
##  [99] 68.59635 66.78296 70.35337 67.78981 73.69663 70.10184 68.21259
## [106] 73.92886 71.23719 73.02118 70.16699 73.22179 71.61555 71.13085
## [113] 67.81338 68.82444 69.60822 68.35704 70.29335 67.95400 69.68343
## [120] 68.81901
var=(gl(3, 40, 120, labels=c("V1", "V2", "V3"))); var
##   [1] V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1
##  [24] V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V2 V2 V2 V2 V2 V2
##  [47] V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2
##  [70] V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V3 V3 V3 V3 V3 V3 V3 V3 V3 V3 V3 V3
##  [93] V3 V3 V3 V3 V3 V3 V3 V3 V3 V3 V3 V3 V3 V3 V3 V3 V3 V3 V3 V3 V3 V3 V3
## [116] V3 V3 V3 V3 V3
## Levels: V1 V2 V3
var2<-data.frame(var)
proc=gl(2, 20, 120, labels=c("L1", "L2")); proc
##   [1] L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L2 L2 L2
##  [24] L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L1 L1 L1 L1 L1 L1
##  [47] L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L2 L2 L2 L2 L2 L2 L2 L2 L2
##  [70] L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1
##  [93] L1 L1 L1 L1 L1 L1 L1 L1 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2
## [116] L2 L2 L2 L2 L2
## Levels: L1 L2
horm=gl(2, 10, 120, labels=c("A", "B"));horm
##   [1] A A A A A A A A A A B B B B B B B B B B A A A A A A A A A A B B B B B
##  [36] B B B B B A A A A A A A A A A B B B B B B B B B B A A A A A A A A A A
##  [71] B B B B B B B B B B A A A A A A A A A A B B B B B B B B B B A A A A A
## [106] A A A A A B B B B B B B B B B
## Levels: A B
lgg=log10(germ)
data=data.frame(germ, var, proc, horm);data
##         germ var proc horm
## 1   71.93730  V1   L1    A
## 2   66.31486  V1   L1    A
## 3   68.53724  V1   L1    A
## 4   67.10922  V1   L1    A
## 5   69.95993  V1   L1    A
## 6   68.00244  V1   L1    A
## 7   68.21334  V1   L1    A
## 8   69.72642  V1   L1    A
## 9   73.16099  V1   L1    A
## 10  71.38334  V1   L1    A
## 11  73.34402  V1   L1    B
## 12  67.97647  V1   L1    B
## 13  69.08663  V1   L1    B
## 14  71.58141  V1   L1    B
## 15  68.98315  V1   L1    B
## 16  71.54040  V1   L1    B
## 17  70.25418  V1   L1    B
## 18  72.38624  V1   L1    B
## 19  70.95110  V1   L1    B
## 20  73.31673  V1   L1    B
## 21  71.37498  V1   L2    A
## 22  73.23477  V1   L2    A
## 23  67.26619  V1   L2    A
## 24  70.78834  V1   L2    A
## 25  67.75792  V1   L2    A
## 26  71.09554  V1   L2    A
## 27  73.23581  V1   L2    A
## 28  75.06873  V1   L2    A
## 29  70.30881  V1   L2    A
## 30  66.90380  V1   L2    A
## 31  69.42939  V1   L2    B
## 32  70.69188  V1   L2    B
## 33  71.60011  V1   L2    B
## 34  65.86823  V1   L2    B
## 35  66.34788  V1   L2    B
## 36  68.53927  V1   L2    B
## 37  71.32948  V1   L2    B
## 38  73.27147  V1   L2    B
## 39  70.45638  V1   L2    B
## 40  69.30115  V1   L2    B
## 41  70.36132  V2   L1    A
## 42  67.16559  V2   L1    A
## 43  70.46225  V2   L1    A
## 44  66.56699  V2   L1    A
## 45  69.39718  V2   L1    A
## 46  67.64799  V2   L1    A
## 47  70.83207  V2   L1    A
## 48  69.70786  V2   L1    A
## 49  71.74424  V2   L1    A
## 50  69.38384  V2   L1    A
## 51  69.03722  V2   L1    B
## 52  72.97304  V2   L1    B
## 53  68.96537  V2   L1    B
## 54  73.27933  V2   L1    B
## 55  69.15313  V2   L1    B
## 56  72.51368  V2   L1    B
## 57  67.55527  V2   L1    B
## 58  69.36992  V2   L1    B
## 59  67.97955  V2   L1    B
## 60  70.85013  V2   L1    B
## 61  71.04904  V2   L2    A
## 62  70.41014  V2   L2    A
## 63  70.99828  V2   L2    A
## 64  71.33098  V2   L2    A
## 65  66.45227  V2   L2    A
## 66  70.13874  V2   L2    A
## 67  72.02532  V2   L2    A
## 68  70.70118  V2   L2    A
## 69  68.01788  V2   L2    A
## 70  69.91353  V2   L2    A
## 71  72.94702  V2   L2    B
## 72  72.50269  V2   L2    B
## 73  66.46316  V2   L2    B
## 74  69.94691  V2   L2    B
## 75  68.62457  V2   L2    B
## 76  71.55954  V2   L2    B
## 77  70.72958  V2   L2    B
## 78  67.55373  V2   L2    B
## 79  70.14681  V2   L2    B
## 80  68.43730  V2   L2    B
## 81  69.86100  V3   L1    A
## 82  73.08314  V3   L1    A
## 83  68.14168  V3   L1    A
## 84  70.40921  V3   L1    A
## 85  72.49029  V3   L1    A
## 86  70.73779  V3   L1    A
## 87  71.25077  V3   L1    A
## 88  70.25724  V3   L1    A
## 89  71.04440  V3   L1    A
## 90  68.63795  V3   L1    A
## 91  71.34470  V3   L1    B
## 92  74.57727  V3   L1    B
## 93  69.35732  V3   L1    B
## 94  69.49836  V3   L1    B
## 95  74.23016  V3   L1    B
## 96  68.56676  V3   L1    B
## 97  69.98838  V3   L1    B
## 98  68.38846  V3   L1    B
## 99  68.59635  V3   L1    B
## 100 66.78296  V3   L1    B
## 101 70.35337  V3   L2    A
## 102 67.78981  V3   L2    A
## 103 73.69663  V3   L2    A
## 104 70.10184  V3   L2    A
## 105 68.21259  V3   L2    A
## 106 73.92886  V3   L2    A
## 107 71.23719  V3   L2    A
## 108 73.02118  V3   L2    A
## 109 70.16699  V3   L2    A
## 110 73.22179  V3   L2    A
## 111 71.61555  V3   L2    B
## 112 71.13085  V3   L2    B
## 113 67.81338  V3   L2    B
## 114 68.82444  V3   L2    B
## 115 69.60822  V3   L2    B
## 116 68.35704  V3   L2    B
## 117 70.29335  V3   L2    B
## 118 67.95400  V3   L2    B
## 119 69.68343  V3   L2    B
## 120 68.81901  V3   L2    B
#with(data, aggregate(germ, list(var, horm, proc), mean)) #Igual que tapply
#tapply(data$germ, list(var, horm, proc), mean)
# H0: mu(V1)=mu(V2)=mu(V3)
modelo.3b=aov(germ~proc*var*horm, data=data)
summary(modelo.3b)
##                Df Sum Sq Mean Sq F value Pr(>F)  
## proc            1    0.1   0.114   0.027 0.8706  
## var             2    4.4   2.177   0.511 0.6014  
## horm            1    1.0   1.019   0.239 0.6258  
## proc:var        2    0.6   0.281   0.066 0.9362  
## proc:horm       1   19.9  19.891   4.669 0.0329 *
## var:horm        2   12.9   6.449   1.514 0.2247  
## proc:var:horm   2    3.1   1.555   0.365 0.6951  
## Residuals     108  460.1   4.260                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(modelo.3b)[[1]][["Pr(>F)"]][1]  #Extracción del p-valor
## [1] 0.8705712
res.3b=modelo.3b$residuals
shapiro.test(res.3b)  #Revisando normalidad
## 
##  Shapiro-Wilk normality test
## 
## data:  res.3b
## W = 0.98575, p-value = 0.2399
TukeyHSD(modelo.3b)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = germ ~ proc * var * horm, data = data)
## 
## $proc
##             diff        lwr       upr     p adj
## L2-L1 0.06154587 -0.6854179 0.8085096 0.8705712
## 
## $var
##             diff        lwr       upr     p adj
## V2-V1 -0.3185216 -1.4153374 0.7782942 0.7697491
## V3-V1  0.1359552 -0.9608606 1.2327710 0.9533145
## V3-V2  0.4544768 -0.6423390 1.5512926 0.5880822
## 
## $horm
##           diff        lwr       upr     p adj
## B-A -0.1842813 -0.9312451 0.5626824 0.6258217
## 
## $`proc:var`
##                     diff       lwr      upr     p adj
## L2:V1-L1:V1  0.005234428 -1.888617 1.899086 1.0000000
## L1:V2-L1:V1 -0.440972119 -2.334823 1.452879 0.9842772
## L2:V2-L1:V1 -0.190836663 -2.084688 1.703015 0.9997053
## L1:V3-L1:V1  0.173938564 -1.719913 2.067790 0.9998131
## L2:V3-L1:V1  0.103206281 -1.790645 1.997058 0.9999859
## L1:V2-L2:V1 -0.446206547 -2.340058 1.447645 0.9834229
## L2:V2-L2:V1 -0.196071090 -2.089922 1.697780 0.9996636
## L1:V3-L2:V1  0.168704137 -1.725147 2.062556 0.9998392
## L2:V3-L2:V1  0.097971853 -1.795880 1.991823 0.9999891
## L2:V2-L1:V2  0.250135457 -1.643716 2.143987 0.9988996
## L1:V3-L1:V2  0.614910684 -1.278941 2.508762 0.9345755
## L2:V3-L1:V2  0.544178400 -1.349673 2.438030 0.9605720
## L1:V3-L2:V2  0.364775227 -1.529076 2.258627 0.9933959
## L2:V3-L2:V2  0.294042944 -1.599808 2.187894 0.9976080
## L2:V3-L1:V3 -0.070732283 -1.964584 1.823119 0.9999978
## 
## $`proc:horm`
##                 diff        lwr       upr     p adj
## L2:A-L1:A  0.8758206 -0.5148607 2.2665019 0.3589073
## L1:B-L1:A  0.6299934 -0.7606879 2.0206747 0.6394095
## L2:B-L1:A -0.1227355 -1.5134168 1.2679459 0.9956715
## L1:B-L2:A -0.2458272 -1.6365085 1.1448541 0.9672732
## L2:B-L2:A -0.9985561 -2.3892374 0.3921253 0.2454615
## L2:B-L1:B -0.7527289 -2.1434102 0.6379525 0.4944010
## 
## $`var:horm`
##                  diff        lwr      upr     p adj
## V2:A-V1:A -0.35366435 -2.2475157 1.540187 0.9942818
## V3:A-V1:A  0.81318764 -1.0806637 2.707039 0.8131646
## V1:B-V1:A  0.24377845 -1.6500729 2.137630 0.9990284
## V2:B-V1:A -0.03960041 -1.9334518 1.854251 0.9999999
## V3:B-V1:A -0.29749877 -2.1913501 1.596353 0.9974710
## V3:A-V2:A  1.16685199 -0.7269994 3.060703 0.4779654
## V1:B-V2:A  0.59744280 -1.2964086 2.491294 0.9418136
## V2:B-V2:A  0.31406394 -1.5797874 2.207915 0.9967287
## V3:B-V2:A  0.05616557 -1.8376858 1.950017 0.9999993
## V1:B-V3:A -0.56940919 -2.4632606 1.324442 0.9522942
## V2:B-V3:A -0.85278805 -2.7466394 1.041063 0.7808556
## V3:B-V3:A -1.11068642 -3.0045378 0.783165 0.5337270
## V2:B-V1:B -0.28337886 -2.1772302 1.610473 0.9979949
## V3:B-V1:B -0.54127723 -2.4351286 1.352574 0.9614560
## V3:B-V2:B -0.25789836 -2.1517497 1.635953 0.9987248
## 
## $`proc:var:horm`
##                        diff       lwr      upr     p adj
## L2:V1:A-L1:V1:A  1.26897946 -1.814921 4.352880 0.9659166
## L1:V2:A-L1:V1:A -0.10757616 -3.191477 2.976324 1.0000000
## L2:V2:A-L1:V1:A  0.66922693 -2.414674 3.753128 0.9998733
## L1:V3:A-L1:V1:A  1.15683776 -1.927063 4.240738 0.9829930
## L2:V3:A-L1:V1:A  1.73851698 -1.345384 4.822418 0.7666734
## L1:V1:B-L1:V1:A  1.50752348 -1.576377 4.591424 0.8928238
## L2:V1:B-L1:V1:A  0.24901288 -2.834888 3.332913 1.0000000
## L1:V2:B-L1:V1:A  0.73315541 -2.350745 3.817056 0.9996926
## L2:V2:B-L1:V1:A  0.45662323 -2.627277 3.540524 0.9999974
## L1:V3:B-L1:V1:A  0.69856285 -2.385338 3.782463 0.9998073
## L2:V3:B-L1:V1:A -0.02458094 -3.108482 3.059320 1.0000000
## L1:V2:A-L2:V1:A -1.37655562 -4.460456 1.707345 0.9399097
## L2:V2:A-L2:V1:A -0.59975253 -3.683653 2.484148 0.9999573
## L1:V3:A-L2:V1:A -0.11214170 -3.196042 2.971759 1.0000000
## L2:V3:A-L2:V1:A  0.46953752 -2.614363 3.553438 0.9999965
## L1:V1:B-L2:V1:A  0.23854402 -2.845357 3.322445 1.0000000
## L2:V1:B-L2:V1:A -1.01996658 -4.103867 2.063934 0.9938758
## L1:V2:B-L2:V1:A -0.53582405 -3.619725 2.548077 0.9999864
## L2:V2:B-L2:V1:A -0.81235623 -3.896257 2.271544 0.9991896
## L1:V3:B-L2:V1:A -0.57041661 -3.654317 2.513484 0.9999743
## L2:V3:B-L2:V1:A -1.29356040 -4.377461 1.790340 0.9608881
## L2:V2:A-L1:V2:A  0.77680309 -2.307098 3.860704 0.9994671
## L1:V3:A-L1:V2:A  1.26441393 -1.819487 4.348315 0.9667951
## L2:V3:A-L1:V2:A  1.84609315 -1.237807 4.929994 0.6924110
## L1:V1:B-L1:V2:A  1.61509965 -1.468801 4.699000 0.8406100
## L2:V1:B-L1:V2:A  0.35658904 -2.727312 3.440490 0.9999998
## L1:V2:B-L1:V2:A  0.84073157 -2.243169 3.924632 0.9988869
## L2:V2:B-L1:V2:A  0.56419939 -2.519701 3.648100 0.9999770
## L1:V3:B-L1:V2:A  0.80613901 -2.277762 3.890040 0.9992455
## L2:V3:B-L1:V2:A  0.08299523 -3.000905 3.166896 1.0000000
## L1:V3:A-L2:V2:A  0.48761084 -2.596290 3.571511 0.9999948
## L2:V3:A-L2:V2:A  1.06929006 -2.014611 4.153191 0.9909329
## L1:V1:B-L2:V2:A  0.83829656 -2.245604 3.922197 0.9989162
## L2:V1:B-L2:V2:A -0.42021405 -3.504115 2.663687 0.9999989
## L1:V2:B-L2:V2:A  0.06392848 -3.019972 3.147829 1.0000000
## L2:V2:B-L2:V2:A -0.21260370 -3.296504 2.871297 1.0000000
## L1:V3:B-L2:V2:A  0.02933592 -3.054565 3.113237 1.0000000
## L2:V3:B-L2:V2:A -0.69380786 -3.777708 2.390093 0.9998197
## L2:V3:A-L1:V3:A  0.58167922 -2.502221 3.665580 0.9999687
## L1:V1:B-L1:V3:A  0.35068572 -2.733215 3.434586 0.9999998
## L2:V1:B-L1:V3:A -0.90782488 -3.991725 2.176076 0.9977699
## L1:V2:B-L1:V3:A -0.42368235 -3.507583 2.660218 0.9999988
## L2:V2:B-L1:V3:A -0.70021453 -3.784115 2.383686 0.9998028
## L1:V3:B-L1:V3:A -0.45827491 -3.542176 2.625626 0.9999973
## L2:V3:B-L1:V3:A -1.18141870 -4.265319 1.902482 0.9799945
## L1:V1:B-L2:V3:A -0.23099350 -3.314894 2.852907 1.0000000
## L2:V1:B-L2:V3:A -1.48950410 -4.573405 1.594397 0.9003732
## L1:V2:B-L2:V3:A -1.00536157 -4.089262 2.078539 0.9945787
## L2:V2:B-L2:V3:A -1.28189375 -4.365794 1.802007 0.9633383
## L1:V3:B-L2:V3:A -1.03995413 -4.123855 2.043946 0.9927949
## L2:V3:B-L2:V3:A -1.76309792 -4.846999 1.320803 0.7503969
## L2:V1:B-L1:V1:B -1.25851060 -4.342411 1.825390 0.9679060
## L1:V2:B-L1:V1:B -0.77436808 -3.858269 2.309533 0.9994826
## L2:V2:B-L1:V1:B -1.05090025 -4.134801 2.033000 0.9921403
## L1:V3:B-L1:V1:B -0.80896063 -3.892861 2.274940 0.9992205
## L2:V3:B-L1:V1:B -1.53210442 -4.616005 1.551796 0.8819667
## L1:V2:B-L2:V1:B  0.48414253 -2.599758 3.568043 0.9999952
## L2:V2:B-L2:V1:B  0.20761035 -2.876290 3.291511 1.0000000
## L1:V3:B-L2:V1:B  0.44954997 -2.634351 3.533451 0.9999978
## L2:V3:B-L2:V1:B -0.27359382 -3.357494 2.810307 1.0000000
## L2:V2:B-L1:V2:B -0.27653218 -3.360433 2.807368 1.0000000
## L1:V3:B-L1:V2:B -0.03459256 -3.118493 3.049308 1.0000000
## L2:V3:B-L1:V2:B -0.75773635 -3.841637 2.326164 0.9995788
## L1:V3:B-L2:V2:B  0.24193962 -2.841961 3.325840 1.0000000
## L2:V3:B-L2:V2:B -0.48120417 -3.565105 2.602696 0.9999955
## L2:V3:B-L1:V3:B -0.72314379 -3.807044 2.360757 0.9997307