Codes
#Installing libraries
library (readr)
library(texreg)
library(ggplot2)
library(ggthemes)
library(Zelig)
library(ggrepel)
library(HistData)
library(tidyverse)
library(gganimate)
library(dplyr)
library(viridis)
library (gifski)
library (devtools)
library (gapminder)
library (png)
library(plotly)
library(magrittr)
#filtering for USA
usa<-read_csv("C:/Users/Marcy/Documents/soc 712/master.csv")%>%
filter (country=="United States")%>%
rename(rate = "suicides/100k pop")
head (usa)
#filtering for Russian Federation.
rus<-read_csv("C:/Users/Marcy/Documents/soc 712/master.csv")%>%
filter (country=="Russian Federation")%>%
rename(rate = "suicides/100k pop")
head (rus)
# Arranging all countries from highest to lowest rate of suicide
mw%>%
filter(year==2015)%>%
group_by(country)%>%
summarise(rate=sum (rate))%>%
arrange (-rate)
#Correlation of rate and sex model
model1 <- lm(rate ~ sex, data = mw)
summary(model1)
#Correlation of rate and sex plus age model
model2 <- lm (rate ~ sex + age, data = mw)
summary (model2)
#Correlation of rate and sex plus age plus generation
model3 <- lm (rate ~ sex + age + generation, data = mw)
summary (model3)
library(texreg)
htmlreg(list(model1, model2, model3))
Masrate <- usa %>%
filter(sex %in% c("35-54 years"))
Masrate_plot <- ggplot(data = usa, aes(x = sex, y = rate)) +
geom_line(aes(color = sex), size = 6)
Masrate_plot
# Gender Variation in Suicide Rates Worldwide
dcoef <- mw %>%
group_by(`country`) %>%
do(mod = lm(rate ~ sex, data =.))
coef <- dcoef %>% do(data.frame(intc = coef(.$mod)[1]))
ggplot(coef, aes(x = intc)) + geom_density()+xlab("country")
#plotting of correlated variables below:
Masrate_plot <- ggplot(data = mw, aes(x = age, y = rate)) +
geom_line(aes(color = age), size = 8)
Masrate_plot
Masrate_plot <- ggplot(data = usa, aes(x = age, y = rate)) +
geom_line(aes(color = age), size = 8)
Masrate_plot
Masrate_plot <- ggplot(data = mw, aes(x = generation, y = rate)) +
geom_line(aes(color = generation), size = 8)
Masrate_plot
Masrate_plot <- ggplot(data = rus, aes(x = generation, y = rate)) +
geom_line(aes(color = generation), size = 8)
Masrate_plot
# span of 3 years
graph_data <- ggplot(mw, mapping =aes(x=year, y = rate))
graph1 <- graph_data + geom_smooth()
graph1 + labs(title = 'Trend of Worldwide Suicide Rate Over the Span of 30 Years (World)') + theme_tufte()
graph_data <- ggplot(usa, mapping =aes(x=year, y = rate))
graph1 <- graph_data + geom_smooth()
graph1 + labs(title = 'Suicide Rate Over the Span of 30 Years (USA)') + theme_tufte()
graph_data <- ggplot(rus, mapping =aes(x=year, y = rate))
graph1 <- graph_data + geom_smooth()
graph1 + labs(title = 'Suicide Rate Over the Span of 30 Years (Russian Federation)') + theme_tufte()
mw %>%
ggplot(aes(x=factor(generation),y=rate, fill = sex)) +
geom_col(alpha = 0.8) +
scale_size(range = c(4, 8)) +
guides(fill=guide_legend(title="Suicide Rate"))+
labs(title = 'World Suicide Rate Change by Gender and Generation Over The Span of 30 Years',
subtitle='Date: {frame_time}',
x = 'Year',
y = 'Ratio')+
transition_time(year)+
coord_flip()+
theme_gray()
```
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KIyMgQ29kZXMgDQoNCmBgYHtyfQ0KI0luc3RhbGxpbmcgbGlicmFyaWVzDQoNCmxpYnJhcnkgKHJlYWRyKQ0KbGlicmFyeSh0ZXhyZWcpDQpsaWJyYXJ5KGdncGxvdDIpDQpsaWJyYXJ5KGdndGhlbWVzKQ0KbGlicmFyeShaZWxpZykNCmxpYnJhcnkoZ2dyZXBlbCkNCmxpYnJhcnkoSGlzdERhdGEpDQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmxpYnJhcnkoZ2dhbmltYXRlKQ0KbGlicmFyeShkcGx5cikNCmxpYnJhcnkodmlyaWRpcykNCmxpYnJhcnkgKGdpZnNraSkNCmxpYnJhcnkgKGRldnRvb2xzKQ0KbGlicmFyeSAoZ2FwbWluZGVyKQ0KbGlicmFyeSAocG5nKQ0KbGlicmFyeShwbG90bHkpDQpsaWJyYXJ5KG1hZ3JpdHRyKQ0KDQpgYGANCg0KYGBge3IgZWNobz1GQUxTRX0NCiN1cGxvYWRpbmcgZGF0YSBhbmQgcmVuYW1pbmcgdmFyaWFibGUNCg0KbXc8LXJlYWRfY3N2KCJDOi9Vc2Vycy9NYXJjeS9Eb2N1bWVudHMvc29jIDcxMi9tYXN0ZXIuY3N2IiklPiUNCiAgcmVuYW1lKHJhdGUgPSAic3VpY2lkZXMvMTAwayBwb3AiKQ0KaGVhZChtdykNCmBgYA0KDQoNCmBgYHtyfQ0KI2ZpbHRlcmluZyBmb3IgVVNBDQp1c2E8LXJlYWRfY3N2KCJDOi9Vc2Vycy9NYXJjeS9Eb2N1bWVudHMvc29jIDcxMi9tYXN0ZXIuY3N2IiklPiUNCiAgZmlsdGVyIChjb3VudHJ5PT0iVW5pdGVkIFN0YXRlcyIpJT4lDQogIHJlbmFtZShyYXRlID0gInN1aWNpZGVzLzEwMGsgcG9wIikNCmhlYWQgKHVzYSkNCg0KYGBgDQoNCg0KYGBge3J9DQojZmlsdGVyaW5nIGZvciBSdXNzaWFuIEZlZGVyYXRpb24uIA0KDQpydXM8LXJlYWRfY3N2KCJDOi9Vc2Vycy9NYXJjeS9Eb2N1bWVudHMvc29jIDcxMi9tYXN0ZXIuY3N2IiklPiUNCiAgZmlsdGVyIChjb3VudHJ5PT0iUnVzc2lhbiBGZWRlcmF0aW9uIiklPiUNCiAgcmVuYW1lKHJhdGUgPSAic3VpY2lkZXMvMTAwayBwb3AiKQ0KaGVhZCAocnVzKQ0KYGBgDQoNCmBgYHtyfQ0KDQojIEFycmFuZ2luZyBhbGwgY291bnRyaWVzIGZyb20gaGlnaGVzdCB0byBsb3dlc3QgcmF0ZSBvZiBzdWljaWRlDQptdyU+JQ0KICBmaWx0ZXIoeWVhcj09MjAxNSklPiUNCiAgZ3JvdXBfYnkoY291bnRyeSklPiUNCiAgc3VtbWFyaXNlKHJhdGU9c3VtIChyYXRlKSklPiUNCiAgYXJyYW5nZSAoLXJhdGUpDQpgYGANCg0KDQoNCmBgYHtyfQ0KDQojQ29ycmVsYXRpb24gb2YgcmF0ZSBhbmQgc2V4IG1vZGVsDQptb2RlbDEgPC0gbG0ocmF0ZSB+IHNleCwgZGF0YSA9IG13KQ0Kc3VtbWFyeShtb2RlbDEpDQpgYGANCg0KYGBge3J9DQojQ29ycmVsYXRpb24gb2YgcmF0ZSBhbmQgc2V4IHBsdXMgYWdlIG1vZGVsDQptb2RlbDIgPC0gbG0gKHJhdGUgfiBzZXggKyBhZ2UsIGRhdGEgPSBtdykNCnN1bW1hcnkgKG1vZGVsMikNCmBgYA0KDQpgYGB7cn0NCiNDb3JyZWxhdGlvbiBvZiByYXRlIGFuZCBzZXggcGx1cyBhZ2UgcGx1cyBnZW5lcmF0aW9uDQptb2RlbDMgPC0gbG0gKHJhdGUgfiBzZXggKyBhZ2UgKyBnZW5lcmF0aW9uLCBkYXRhID0gbXcpDQpzdW1tYXJ5IChtb2RlbDMpDQpgYGANCg0KYGBge3J9DQpsaWJyYXJ5KHRleHJlZykNCg0KaHRtbHJlZyhsaXN0KG1vZGVsMSwgbW9kZWwyLCBtb2RlbDMpKQ0KDQpgYGANCg0KDQpgYGB7cn0NCk1hc3JhdGUgPC0gdXNhICU+JQ0KICBmaWx0ZXIoc2V4ICVpbiUgYygiMzUtNTQgeWVhcnMiKSkNCg0KTWFzcmF0ZV9wbG90IDwtIGdncGxvdChkYXRhID0gdXNhLCBhZXMoeCA9IHNleCwgeSA9IHJhdGUpKSArDQogIGdlb21fbGluZShhZXMoY29sb3IgPSBzZXgpLCBzaXplID0gNikNCg0KTWFzcmF0ZV9wbG90DQpgYGANCg0KDQpgYGB7cn0NCiMgR2VuZGVyIFZhcmlhdGlvbiBpbiBTdWljaWRlIFJhdGVzIFdvcmxkd2lkZSANCmRjb2VmIDwtIG13ICU+JSANCiAgICBncm91cF9ieShgY291bnRyeWApICU+JSANCiAgICBkbyhtb2QgPSBsbShyYXRlIH4gc2V4LCBkYXRhID0uKSkNCmNvZWYgPC0gZGNvZWYgJT4lIGRvKGRhdGEuZnJhbWUoaW50YyA9IGNvZWYoLiRtb2QpWzFdKSkNCmdncGxvdChjb2VmLCBhZXMoeCA9IGludGMpKSArIGdlb21fZGVuc2l0eSgpK3hsYWIoImNvdW50cnkiKQ0KYGBgDQoNCg0KDQpgYGB7cn0NCiNwbG90dGluZyBvZiBjb3JyZWxhdGVkIHZhcmlhYmxlcyBiZWxvdzoNCg0KDQoNCk1hc3JhdGVfcGxvdCA8LSBnZ3Bsb3QoZGF0YSA9IG13LCBhZXMoeCA9IGFnZSwgeSA9IHJhdGUpKSArDQogIGdlb21fbGluZShhZXMoY29sb3IgPSBhZ2UpLCBzaXplID0gOCkNCg0KTWFzcmF0ZV9wbG90DQpgYGANCg0KDQoNCmBgYHtyfQ0KTWFzcmF0ZV9wbG90IDwtIGdncGxvdChkYXRhID0gdXNhLCBhZXMoeCA9IGFnZSwgeSA9IHJhdGUpKSArDQogIGdlb21fbGluZShhZXMoY29sb3IgPSBhZ2UpLCBzaXplID0gOCkNCg0KTWFzcmF0ZV9wbG90DQpgYGANCg0KDQoNCmBgYHtyfQ0KTWFzcmF0ZV9wbG90IDwtIGdncGxvdChkYXRhID0gbXcsIGFlcyh4ID0gZ2VuZXJhdGlvbiwgeSA9IHJhdGUpKSArDQogIGdlb21fbGluZShhZXMoY29sb3IgPSBnZW5lcmF0aW9uKSwgc2l6ZSA9IDgpDQoNCk1hc3JhdGVfcGxvdA0KDQpgYGANCg0KDQpgYGB7cn0NCk1hc3JhdGVfcGxvdCA8LSBnZ3Bsb3QoZGF0YSA9IHJ1cywgYWVzKHggPSBnZW5lcmF0aW9uLCB5ID0gcmF0ZSkpICsNCiAgZ2VvbV9saW5lKGFlcyhjb2xvciA9IGdlbmVyYXRpb24pLCBzaXplID0gOCkNCg0KTWFzcmF0ZV9wbG90DQpgYGANCg0KDQpgYGB7cn0NCiMgc3BhbiBvZiAzIHllYXJzDQpncmFwaF9kYXRhIDwtIGdncGxvdChtdywgbWFwcGluZyA9YWVzKHg9eWVhciwgeSA9IHJhdGUpKQ0KDQpncmFwaDEgPC0gZ3JhcGhfZGF0YSArIGdlb21fc21vb3RoKCkgDQoNCmdyYXBoMSArIGxhYnModGl0bGUgPSAnVHJlbmQgb2YgV29ybGR3aWRlIFN1aWNpZGUgUmF0ZSBPdmVyIHRoZSBTcGFuIG9mIDMwIFllYXJzIChXb3JsZCknKSArIHRoZW1lX3R1ZnRlKCkgDQpgYGANCg0KDQpgYGB7cn0NCmdyYXBoX2RhdGEgPC0gZ2dwbG90KHVzYSwgbWFwcGluZyA9YWVzKHg9eWVhciwgeSA9IHJhdGUpKQ0KDQpncmFwaDEgPC0gZ3JhcGhfZGF0YSArIGdlb21fc21vb3RoKCkgDQoNCmdyYXBoMSArIGxhYnModGl0bGUgPSAnU3VpY2lkZSBSYXRlIE92ZXIgdGhlIFNwYW4gb2YgMzAgWWVhcnMgKFVTQSknKSArIHRoZW1lX3R1ZnRlKCkgDQpgYGANCg0KDQoNCmBgYHtyfQ0KZ3JhcGhfZGF0YSA8LSBnZ3Bsb3QocnVzLCBtYXBwaW5nID1hZXMoeD15ZWFyLCB5ID0gcmF0ZSkpDQoNCmdyYXBoMSA8LSBncmFwaF9kYXRhICsgZ2VvbV9zbW9vdGgoKSANCg0KZ3JhcGgxICsgbGFicyh0aXRsZSA9ICdTdWljaWRlIFJhdGUgT3ZlciB0aGUgU3BhbiBvZiAzMCBZZWFycyAoUnVzc2lhbiBGZWRlcmF0aW9uKScpICsgdGhlbWVfdHVmdGUoKSANCmBgYA0KDQoNCmBgYHtyfQ0KDQpgYGB7ciBlY2hvPVRSVUV9DQptdyAlPiUNCmdncGxvdChhZXMoeD1mYWN0b3IoZ2VuZXJhdGlvbikseT1yYXRlLCBmaWxsID0gc2V4KSkgKw0KICBnZW9tX2NvbChhbHBoYSA9IDAuOCkgKw0KICBzY2FsZV9zaXplKHJhbmdlID0gYyg0LCA4KSkgKyANCiAgZ3VpZGVzKGZpbGw9Z3VpZGVfbGVnZW5kKHRpdGxlPSJTdWljaWRlIFJhdGUiKSkrDQogIGxhYnModGl0bGUgPSAnV29ybGQgU3VpY2lkZSBSYXRlIENoYW5nZSBieSBHZW5kZXIgYW5kIEdlbmVyYXRpb24gT3ZlciBUaGUgU3BhbiBvZiAzMCBZZWFycycsDQogICAgICAgc3VidGl0bGU9J0RhdGU6IHtmcmFtZV90aW1lfScsIA0KICAgICAgIHggPSAnWWVhcicsIA0KICAgICAgIHkgPSAnUmF0aW8nKSsNCiAgdHJhbnNpdGlvbl90aW1lKHllYXIpKw0KICBjb29yZF9mbGlwKCkrDQogIHRoZW1lX2dyYXkoKQ0KYGBgDQoNCmBgYA0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg==