Should Travelers Avoid Flying Airlines That Have Had Crashes in the Past?
The data set contains crash data from many airlines. After a crash people move to other airlines for safety. Does that mean than other airlines are more safe than the airlines that crashed? We will take a look at historical data to find if there is a pattern after the crash or is it just a fear
Parameters
- airline: Airline (asterisk indicates that regional subsidiaries are included)
- avail_seat_km_per_week: Available seat kilometers flown every week
- incidents_85_99: Total number of incidents, 1985–1999
- fatal_accidents_85_99: Total number of fatal accidents, 1985–1999
- fatalities_85_99: Total number of fatalities, 1985–1999
- incidents_00_14: Total number of incidents, 2000–2014
- fatal_accidents_00_14: Total number of fatal accidents, 2000–2014
- fatalities_00_14: Total number of fatalities, 2000–2014
Source: https://github.com/fivethirtyeight/data/blob/master/airline-safety/airline-safety.csv
Data can be normalised in relation data structure. Following is the structure of the relation data. The main detail table tblAirlinesIncident contains details of the incident and is related to master tables tblAirlines, tblIncidentTypeMst and tblYearRange using foreign key.
View SQL Queries: https://github.com/monuchacko/cuny_msds/blob/master/data_607/DATA607_FinalProject.sql
Data can be stored in scalable document sets in MongoDB. Every row is stored in json format as document. This approach can make this data scalable. Here we are inserting document for each row. For every row MongoDB creates an identifier _id. Airlines incident data is stored with all the fields and corresponding value.
Data can be extracted from CSV to data frame using R packages. This data can be cleaned and transformed. In the code below we are loading data directly from the source. The data is inspected and cleaned.
# Read from csv
dsAL <- read.csv(file="https://raw.githubusercontent.com/fivethirtyeight/data/master/airline-safety/airline-safety.csv", header=TRUE, sep=",", stringsAsFactors=FALSE)
# Display sample data
head(dsAL) %>% kable() %>% kable_styling()
airline | avail_seat_km_per_week | incidents_85_99 | fatal_accidents_85_99 | fatalities_85_99 | incidents_00_14 | fatal_accidents_00_14 | fatalities_00_14 |
---|---|---|---|---|---|---|---|
Aer Lingus | 320906734 | 2 | 0 | 0 | 0 | 0 | 0 |
Aeroflot* | 1197672318 | 76 | 14 | 128 | 6 | 1 | 88 |
Aerolineas Argentinas | 385803648 | 6 | 0 | 0 | 1 | 0 | 0 |
Aeromexico* | 596871813 | 3 | 1 | 64 | 5 | 0 | 0 |
Air Canada | 1865253802 | 2 | 0 | 0 | 2 | 0 | 0 |
Air France | 3004002661 | 14 | 4 | 79 | 6 | 2 | 337 |
# Remove asterisk
dsAL$airline <- stringr::str_replace(dsAL$airline, '\\*', '')
# Use this data to populate sql master tables
# Airlines Master
airlineMst <- unique(dsAL$airline)
head(airlineMst) %>% kable() %>% kable_styling()
x |
---|
Aer Lingus |
Aeroflot |
Aerolineas Argentinas |
Aeromexico |
Air Canada |
Air France |
# Incident Master
incidentMst <- c("incident", "accident", "fatalities")
head(incidentMst) %>% kable() %>% kable_styling()
x |
---|
incident |
accident |
fatalities |
# Year Range Master
yearRangeMst <- c("yr_85_99", "yr_00_14")
# View Data
head(yearRangeMst) %>% kable() %>% kable_styling()
x |
---|
yr_85_99 |
yr_00_14 |
## 'data.frame': 56 obs. of 8 variables:
## $ airline : chr "Aer Lingus" "Aeroflot" "Aerolineas Argentinas" "Aeromexico" ...
## $ avail_seat_km_per_week: num 3.21e+08 1.20e+09 3.86e+08 5.97e+08 1.87e+09 ...
## $ incidents_85_99 : int 2 76 6 3 2 14 2 3 5 7 ...
## $ fatal_accidents_85_99 : int 0 14 0 1 0 4 1 0 0 2 ...
## $ fatalities_85_99 : int 0 128 0 64 0 79 329 0 0 50 ...
## $ incidents_00_14 : int 0 6 1 5 2 6 4 5 5 4 ...
## $ fatal_accidents_00_14 : int 0 1 0 0 0 2 1 1 1 0 ...
## $ fatalities_00_14 : int 0 88 0 0 0 337 158 7 88 0 ...
# Rename column names (if necessary)
names(dsAL) <- c("airline", "avail_seat_km_per_week", "incidents_85_99", "fatal_accidents_85_99", "fatalities_85_99", "incidents_00_14", "fatal_accidents_00_14", "fatalities_00_14")
# Gather Data
dsALTransform01 <- gather(dsAL, "incident", "count", incidents_85_99)
dsALTransform02 <- gather(dsAL, "incident", "count", fatal_accidents_85_99)
dsALTransform03 <- gather(dsAL, "incident", "count", fatalities_85_99)
dsALTransform04 <- gather(dsAL, "incident", "count", incidents_00_14)
dsALTransform05 <- gather(dsAL, "incident", "count", fatal_accidents_00_14)
dsALTransform06 <- gather(dsAL, "incident", "count", fatalities_00_14)
# Extract Subset
dsALTransform01 <- subset(dsALTransform01, select = c(airline,avail_seat_km_per_week,incident,count) )
dsALTransform02 <- subset(dsALTransform02, select = c(airline,avail_seat_km_per_week,incident,count) )
dsALTransform03 <- subset(dsALTransform03, select = c(airline,avail_seat_km_per_week,incident,count) )
dsALTransform04 <- subset(dsALTransform04, select = c(airline,avail_seat_km_per_week,incident,count) )
dsALTransform05 <- subset(dsALTransform05, select = c(airline,avail_seat_km_per_week,incident,count) )
dsALTransform06 <- subset(dsALTransform06, select = c(airline,avail_seat_km_per_week,incident,count) )
# View Column Names of one sample DataSet
names(dsALTransform01)
## [1] "airline" "avail_seat_km_per_week"
## [3] "incident" "count"
# Combine Data into one DataSet
dsALTransformCombined <- rbind(dsALTransform01, dsALTransform02, dsALTransform03, dsALTransform04, dsALTransform05, dsALTransform06)
# Find the mean
al_seats_mean = mean(dsALTransformCombined$avail_seat_km_per_week)
al_seats_mean
## [1] 1384621305
# Create Columns from Existing
dsALTransformCombined <- dsALTransformCombined %>%
mutate(incident_type = ifelse(incident == "incidents_85_99", "incident", ifelse(incident == "fatal_accidents_85_99", "fatal_accident", ifelse(incident == "fatalities_85_99", "fatalities", ifelse(incident == "incidents_00_14", "incident", ifelse(incident == "fatal_accidents_00_14", "fatal_accident", ifelse(incident == "fatalities_00_14", "fatalities", ""))))))) %>%
mutate(incident_year = ifelse(incident == "incidents_85_99", "1999", ifelse(incident == "fatal_accidents_85_99", "1999", ifelse(incident == "fatalities_85_99", "1999", ifelse(incident == "incidents_00_14", "2014", ifelse(incident == "fatal_accidents_00_14", "2014", ifelse(incident == "fatalities_00_14", "2014", ""))))))) %>%
mutate(incident_ratio = ifelse(count == 0, round(avail_seat_km_per_week/1000000, 0), round((avail_seat_km_per_week/1000000)/count, 0) ))
head(dsALTransformCombined) %>% kable() %>% kable_styling()
airline | avail_seat_km_per_week | incident | count | incident_type | incident_year | incident_ratio |
---|---|---|---|---|---|---|
Aer Lingus | 320906734 | incidents_85_99 | 2 | incident | 1999 | 160 |
Aeroflot | 1197672318 | incidents_85_99 | 76 | incident | 1999 | 16 |
Aerolineas Argentinas | 385803648 | incidents_85_99 | 6 | incident | 1999 | 64 |
Aeromexico | 596871813 | incidents_85_99 | 3 | incident | 1999 | 199 |
Air Canada | 1865253802 | incidents_85_99 | 2 | incident | 1999 | 933 |
Air France | 3004002661 | incidents_85_99 | 14 | incident | 1999 | 215 |
## [1] 30.34524
## [1] 85.49267
## [1] 56 4
## [1] 336 7
ggplot(data=dsALTransformCombined, aes(x=count, y=incident_type)) + geom_point(aes(count, incident_type), color = "#FC4E07") + ylab("Incident Type") + xlab("Count") + ggtitle("Incident Type vs Count") +
theme(plot.title = element_text(hjust = 0.5))
ggplot(data=dsALTransformCombined, aes(x=count, y=incident_year)) + geom_point(aes(count, incident_year), color = "#FC4E07") + ylab("Incident Year") + xlab("Count") + ggtitle("Incident Year vs Count") +
theme(plot.title = element_text(hjust = 0.5))
ggplot(data=dsALTransformCombined, aes(x=count, y=incident_ratio)) + geom_line(aes(size=incident_ratio), color = "#FC4E07") + ylab("Incident Ratio") + xlab("Count") + ggtitle("Incident Ratio vs Count") +
theme(plot.title = element_text(hjust = 0.5))
#dsALTransformCombined_dnorm <- dnorm(dsALTransformCombined$count, mean=al_mean, sd=al_sd)
#plot(dsALTransformCombined$count, dsALTransformCombined_dnorm)
# Find the distribution
ggplot(data = dsALTransformCombined, aes(dsALTransformCombined$count)) +
stat_function(fun = dnorm, n = 101, args = list(mean=al_mean, sd=al_sd)) + ylab("") + xlab("Count") +
scale_y_continuous(breaks = NULL) + ggtitle("Distribution") +
theme(plot.title = element_text(hjust = 0.5))
dsALTransformModel <- dsALTransformCombined
dsALTransformModel <- data.frame(subset(dsALTransformCombined, select = c(airline,incident_type,count)))
head(dsAL)
## airline avail_seat_km_per_week incidents_85_99
## 1 Aer Lingus 320906734 2
## 2 Aeroflot 1197672318 76
## 3 Aerolineas Argentinas 385803648 6
## 4 Aeromexico 596871813 3
## 5 Air Canada 1865253802 2
## 6 Air France 3004002661 14
## fatal_accidents_85_99 fatalities_85_99 incidents_00_14
## 1 0 0 0
## 2 14 128 6
## 3 0 0 1
## 4 1 64 5
## 5 0 0 2
## 6 4 79 6
## fatal_accidents_00_14 fatalities_00_14
## 1 0 0
## 2 1 88
## 3 0 0
## 4 0 0
## 5 0 0
## 6 2 337
Passengers tend to avoid airlines that had major incident. They consider these airlines unsafe. We are going to use data to find out if this is true or based on fear. To find out we have a dataset of incidence, year the incident occurred and few other data.
After loading the data, we performed transformation. We put them in categories based on the incident type. We explored the data using the OSEMN workflow. After analyzing we did not see any pattern to suggest the airline that had major incident continued to be unsafe. The below heat map of airlines and incidence per year does not have a continuing pattern. These incidences appear to be independent. If we look at the distribution (see chart above), we cannot find a pattern of normal distribution suggesting that the incidences are not related to each other.
The table below shows the incidence type, year, incidence count and ratio to size for every airlines. After examining the data there is no correlation. We can therefore conclude that safety based on major airline incidence are influenced by fear rather than reality.
customGreen0 = "#DeF7E9"
customGreen = "#71CA97"
customRed = "#ff7f7f"
dsALTransformTable <- subset(dsALTransformCombined, select = c(airline,incident_type,incident_year,count,incident_ratio))
names(dsALTransformTable) <- c("Airlines","Incident Type","Year","Count","Ratio")
formattable(dsALTransformTable, align =c("l","c","c","c","c", "c", "c", "c", "r"), list(
`Indicator Name` = formatter("span", style = ~ style(color = "grey",font.weight = "bold")),
`Count`= color_tile(customGreen, customRed),
`Ratio`= color_tile(customGreen, customRed)
))
Airlines | Incident Type | Year | Count | Ratio |
---|---|---|---|---|
Aer Lingus | incident | 1999 | 2 | 160 |
Aeroflot | incident | 1999 | 76 | 16 |
Aerolineas Argentinas | incident | 1999 | 6 | 64 |
Aeromexico | incident | 1999 | 3 | 199 |
Air Canada | incident | 1999 | 2 | 933 |
Air France | incident | 1999 | 14 | 215 |
Air India | incident | 1999 | 2 | 435 |
Air New Zealand | incident | 1999 | 3 | 237 |
Alaska Airlines | incident | 1999 | 5 | 193 |
Alitalia | incident | 1999 | 7 | 100 |
All Nippon Airways | incident | 1999 | 3 | 614 |
American | incident | 1999 | 21 | 249 |
Austrian Airlines | incident | 1999 | 1 | 358 |
Avianca | incident | 1999 | 5 | 79 |
British Airways | incident | 1999 | 4 | 795 |
Cathay Pacific | incident | 1999 | 0 | 2582 |
China Airlines | incident | 1999 | 12 | 68 |
Condor | incident | 1999 | 2 | 209 |
COPA | incident | 1999 | 3 | 183 |
Delta / Northwest | incident | 1999 | 24 | 272 |
Egyptair | incident | 1999 | 8 | 70 |
El Al | incident | 1999 | 1 | 335 |
Ethiopian Airlines | incident | 1999 | 25 | 20 |
Finnair | incident | 1999 | 1 | 506 |
Garuda Indonesia | incident | 1999 | 10 | 61 |
Gulf Air | incident | 1999 | 1 | 301 |
Hawaiian Airlines | incident | 1999 | 0 | 494 |
Iberia | incident | 1999 | 4 | 293 |
Japan Airlines | incident | 1999 | 3 | 525 |
Kenya Airways | incident | 1999 | 2 | 139 |
KLM | incident | 1999 | 7 | 268 |
Korean Air | incident | 1999 | 12 | 145 |
LAN Airlines | incident | 1999 | 3 | 334 |
Lufthansa | incident | 1999 | 6 | 571 |
Malaysia Airlines | incident | 1999 | 3 | 346 |
Pakistan International | incident | 1999 | 8 | 44 |
Philippine Airlines | incident | 1999 | 7 | 59 |
Qantas | incident | 1999 | 1 | 1917 |
Royal Air Maroc | incident | 1999 | 5 | 59 |
SAS | incident | 1999 | 5 | 137 |
Saudi Arabian | incident | 1999 | 7 | 123 |
Singapore Airlines | incident | 1999 | 2 | 1188 |
South African | incident | 1999 | 2 | 326 |
Southwest Airlines | incident | 1999 | 1 | 3277 |
Sri Lankan / AirLanka | incident | 1999 | 2 | 163 |
SWISS | incident | 1999 | 2 | 396 |
TACA | incident | 1999 | 3 | 86 |
TAM | incident | 1999 | 8 | 189 |
TAP - Air Portugal | incident | 1999 | 0 | 619 |
Thai Airways | incident | 1999 | 8 | 213 |
Turkish Airlines | incident | 1999 | 8 | 243 |
United / Continental | incident | 1999 | 19 | 376 |
US Airways / America West | incident | 1999 | 16 | 153 |
Vietnam Airlines | incident | 1999 | 7 | 89 |
Virgin Atlantic | incident | 1999 | 1 | 1005 |
Xiamen Airlines | incident | 1999 | 9 | 48 |
Aer Lingus | fatal_accident | 1999 | 0 | 321 |
Aeroflot | fatal_accident | 1999 | 14 | 86 |
Aerolineas Argentinas | fatal_accident | 1999 | 0 | 386 |
Aeromexico | fatal_accident | 1999 | 1 | 597 |
Air Canada | fatal_accident | 1999 | 0 | 1865 |
Air France | fatal_accident | 1999 | 4 | 751 |
Air India | fatal_accident | 1999 | 1 | 869 |
Air New Zealand | fatal_accident | 1999 | 0 | 710 |
Alaska Airlines | fatal_accident | 1999 | 0 | 965 |
Alitalia | fatal_accident | 1999 | 2 | 349 |
All Nippon Airways | fatal_accident | 1999 | 1 | 1841 |
American | fatal_accident | 1999 | 5 | 1046 |
Austrian Airlines | fatal_accident | 1999 | 0 | 358 |
Avianca | fatal_accident | 1999 | 3 | 132 |
British Airways | fatal_accident | 1999 | 0 | 3180 |
Cathay Pacific | fatal_accident | 1999 | 0 | 2582 |
China Airlines | fatal_accident | 1999 | 6 | 136 |
Condor | fatal_accident | 1999 | 1 | 418 |
COPA | fatal_accident | 1999 | 1 | 550 |
Delta / Northwest | fatal_accident | 1999 | 12 | 544 |
Egyptair | fatal_accident | 1999 | 3 | 186 |
El Al | fatal_accident | 1999 | 1 | 335 |
Ethiopian Airlines | fatal_accident | 1999 | 5 | 98 |
Finnair | fatal_accident | 1999 | 0 | 506 |
Garuda Indonesia | fatal_accident | 1999 | 3 | 204 |
Gulf Air | fatal_accident | 1999 | 0 | 301 |
Hawaiian Airlines | fatal_accident | 1999 | 0 | 494 |
Iberia | fatal_accident | 1999 | 1 | 1173 |
Japan Airlines | fatal_accident | 1999 | 1 | 1574 |
Kenya Airways | fatal_accident | 1999 | 0 | 277 |
KLM | fatal_accident | 1999 | 1 | 1875 |
Korean Air | fatal_accident | 1999 | 5 | 347 |
LAN Airlines | fatal_accident | 1999 | 2 | 501 |
Lufthansa | fatal_accident | 1999 | 1 | 3427 |
Malaysia Airlines | fatal_accident | 1999 | 1 | 1039 |
Pakistan International | fatal_accident | 1999 | 3 | 116 |
Philippine Airlines | fatal_accident | 1999 | 4 | 103 |
Qantas | fatal_accident | 1999 | 0 | 1917 |
Royal Air Maroc | fatal_accident | 1999 | 3 | 99 |
SAS | fatal_accident | 1999 | 0 | 683 |
Saudi Arabian | fatal_accident | 1999 | 2 | 430 |
Singapore Airlines | fatal_accident | 1999 | 2 | 1188 |
South African | fatal_accident | 1999 | 1 | 652 |
Southwest Airlines | fatal_accident | 1999 | 0 | 3277 |
Sri Lankan / AirLanka | fatal_accident | 1999 | 1 | 326 |
SWISS | fatal_accident | 1999 | 1 | 793 |
TACA | fatal_accident | 1999 | 1 | 259 |
TAM | fatal_accident | 1999 | 3 | 503 |
TAP - Air Portugal | fatal_accident | 1999 | 0 | 619 |
Thai Airways | fatal_accident | 1999 | 4 | 426 |
Turkish Airlines | fatal_accident | 1999 | 3 | 649 |
United / Continental | fatal_accident | 1999 | 8 | 892 |
US Airways / America West | fatal_accident | 1999 | 7 | 351 |
Vietnam Airlines | fatal_accident | 1999 | 3 | 208 |
Virgin Atlantic | fatal_accident | 1999 | 0 | 1005 |
Xiamen Airlines | fatal_accident | 1999 | 1 | 430 |
Aer Lingus | fatalities | 1999 | 0 | 321 |
Aeroflot | fatalities | 1999 | 128 | 9 |
Aerolineas Argentinas | fatalities | 1999 | 0 | 386 |
Aeromexico | fatalities | 1999 | 64 | 9 |
Air Canada | fatalities | 1999 | 0 | 1865 |
Air France | fatalities | 1999 | 79 | 38 |
Air India | fatalities | 1999 | 329 | 3 |
Air New Zealand | fatalities | 1999 | 0 | 710 |
Alaska Airlines | fatalities | 1999 | 0 | 965 |
Alitalia | fatalities | 1999 | 50 | 14 |
All Nippon Airways | fatalities | 1999 | 1 | 1841 |
American | fatalities | 1999 | 101 | 52 |
Austrian Airlines | fatalities | 1999 | 0 | 358 |
Avianca | fatalities | 1999 | 323 | 1 |
British Airways | fatalities | 1999 | 0 | 3180 |
Cathay Pacific | fatalities | 1999 | 0 | 2582 |
China Airlines | fatalities | 1999 | 535 | 2 |
Condor | fatalities | 1999 | 16 | 26 |
COPA | fatalities | 1999 | 47 | 12 |
Delta / Northwest | fatalities | 1999 | 407 | 16 |
Egyptair | fatalities | 1999 | 282 | 2 |
El Al | fatalities | 1999 | 4 | 84 |
Ethiopian Airlines | fatalities | 1999 | 167 | 3 |
Finnair | fatalities | 1999 | 0 | 506 |
Garuda Indonesia | fatalities | 1999 | 260 | 2 |
Gulf Air | fatalities | 1999 | 0 | 301 |
Hawaiian Airlines | fatalities | 1999 | 0 | 494 |
Iberia | fatalities | 1999 | 148 | 8 |
Japan Airlines | fatalities | 1999 | 520 | 3 |
Kenya Airways | fatalities | 1999 | 0 | 277 |
KLM | fatalities | 1999 | 3 | 625 |
Korean Air | fatalities | 1999 | 425 | 4 |
LAN Airlines | fatalities | 1999 | 21 | 48 |
Lufthansa | fatalities | 1999 | 2 | 1713 |
Malaysia Airlines | fatalities | 1999 | 34 | 31 |
Pakistan International | fatalities | 1999 | 234 | 1 |
Philippine Airlines | fatalities | 1999 | 74 | 6 |
Qantas | fatalities | 1999 | 0 | 1917 |
Royal Air Maroc | fatalities | 1999 | 51 | 6 |
SAS | fatalities | 1999 | 0 | 683 |
Saudi Arabian | fatalities | 1999 | 313 | 3 |
Singapore Airlines | fatalities | 1999 | 6 | 396 |
South African | fatalities | 1999 | 159 | 4 |
Southwest Airlines | fatalities | 1999 | 0 | 3277 |
Sri Lankan / AirLanka | fatalities | 1999 | 14 | 23 |
SWISS | fatalities | 1999 | 229 | 3 |
TACA | fatalities | 1999 | 3 | 86 |
TAM | fatalities | 1999 | 98 | 15 |
TAP - Air Portugal | fatalities | 1999 | 0 | 619 |
Thai Airways | fatalities | 1999 | 308 | 6 |
Turkish Airlines | fatalities | 1999 | 64 | 30 |
United / Continental | fatalities | 1999 | 319 | 22 |
US Airways / America West | fatalities | 1999 | 224 | 11 |
Vietnam Airlines | fatalities | 1999 | 171 | 4 |
Virgin Atlantic | fatalities | 1999 | 0 | 1005 |
Xiamen Airlines | fatalities | 1999 | 82 | 5 |
Aer Lingus | incident | 2014 | 0 | 321 |
Aeroflot | incident | 2014 | 6 | 200 |
Aerolineas Argentinas | incident | 2014 | 1 | 386 |
Aeromexico | incident | 2014 | 5 | 119 |
Air Canada | incident | 2014 | 2 | 933 |
Air France | incident | 2014 | 6 | 501 |
Air India | incident | 2014 | 4 | 217 |
Air New Zealand | incident | 2014 | 5 | 142 |
Alaska Airlines | incident | 2014 | 5 | 193 |
Alitalia | incident | 2014 | 4 | 175 |
All Nippon Airways | incident | 2014 | 7 | 263 |
American | incident | 2014 | 17 | 308 |
Austrian Airlines | incident | 2014 | 1 | 358 |
Avianca | incident | 2014 | 0 | 397 |
British Airways | incident | 2014 | 6 | 530 |
Cathay Pacific | incident | 2014 | 2 | 1291 |
China Airlines | incident | 2014 | 2 | 407 |
Condor | incident | 2014 | 0 | 418 |
COPA | incident | 2014 | 0 | 550 |
Delta / Northwest | incident | 2014 | 24 | 272 |
Egyptair | incident | 2014 | 4 | 139 |
El Al | incident | 2014 | 1 | 335 |
Ethiopian Airlines | incident | 2014 | 5 | 98 |
Finnair | incident | 2014 | 0 | 506 |
Garuda Indonesia | incident | 2014 | 4 | 153 |
Gulf Air | incident | 2014 | 3 | 100 |
Hawaiian Airlines | incident | 2014 | 1 | 494 |
Iberia | incident | 2014 | 5 | 235 |
Japan Airlines | incident | 2014 | 0 | 1574 |
Kenya Airways | incident | 2014 | 2 | 139 |
KLM | incident | 2014 | 1 | 1875 |
Korean Air | incident | 2014 | 1 | 1735 |
LAN Airlines | incident | 2014 | 0 | 1002 |
Lufthansa | incident | 2014 | 3 | 1142 |
Malaysia Airlines | incident | 2014 | 3 | 346 |
Pakistan International | incident | 2014 | 10 | 35 |
Philippine Airlines | incident | 2014 | 2 | 207 |
Qantas | incident | 2014 | 5 | 383 |
Royal Air Maroc | incident | 2014 | 3 | 99 |
SAS | incident | 2014 | 6 | 114 |
Saudi Arabian | incident | 2014 | 11 | 78 |
Singapore Airlines | incident | 2014 | 2 | 1188 |
South African | incident | 2014 | 1 | 652 |
Southwest Airlines | incident | 2014 | 8 | 410 |
Sri Lankan / AirLanka | incident | 2014 | 4 | 81 |
SWISS | incident | 2014 | 3 | 264 |
TACA | incident | 2014 | 1 | 259 |
TAM | incident | 2014 | 7 | 216 |
TAP - Air Portugal | incident | 2014 | 0 | 619 |
Thai Airways | incident | 2014 | 2 | 851 |
Turkish Airlines | incident | 2014 | 8 | 243 |
United / Continental | incident | 2014 | 14 | 510 |
US Airways / America West | incident | 2014 | 11 | 223 |
Vietnam Airlines | incident | 2014 | 1 | 625 |
Virgin Atlantic | incident | 2014 | 0 | 1005 |
Xiamen Airlines | incident | 2014 | 2 | 215 |
Aer Lingus | fatal_accident | 2014 | 0 | 321 |
Aeroflot | fatal_accident | 2014 | 1 | 1198 |
Aerolineas Argentinas | fatal_accident | 2014 | 0 | 386 |
Aeromexico | fatal_accident | 2014 | 0 | 597 |
Air Canada | fatal_accident | 2014 | 0 | 1865 |
Air France | fatal_accident | 2014 | 2 | 1502 |
Air India | fatal_accident | 2014 | 1 | 869 |
Air New Zealand | fatal_accident | 2014 | 1 | 710 |
Alaska Airlines | fatal_accident | 2014 | 1 | 965 |
Alitalia | fatal_accident | 2014 | 0 | 698 |
All Nippon Airways | fatal_accident | 2014 | 0 | 1841 |
American | fatal_accident | 2014 | 3 | 1743 |
Austrian Airlines | fatal_accident | 2014 | 0 | 358 |
Avianca | fatal_accident | 2014 | 0 | 397 |
British Airways | fatal_accident | 2014 | 0 | 3180 |
Cathay Pacific | fatal_accident | 2014 | 0 | 2582 |
China Airlines | fatal_accident | 2014 | 1 | 813 |
Condor | fatal_accident | 2014 | 0 | 418 |
COPA | fatal_accident | 2014 | 0 | 550 |
Delta / Northwest | fatal_accident | 2014 | 2 | 3263 |
Egyptair | fatal_accident | 2014 | 1 | 558 |
El Al | fatal_accident | 2014 | 0 | 335 |
Ethiopian Airlines | fatal_accident | 2014 | 2 | 244 |
Finnair | fatal_accident | 2014 | 0 | 506 |
Garuda Indonesia | fatal_accident | 2014 | 2 | 307 |
Gulf Air | fatal_accident | 2014 | 1 | 301 |
Hawaiian Airlines | fatal_accident | 2014 | 0 | 494 |
Iberia | fatal_accident | 2014 | 0 | 1173 |
Japan Airlines | fatal_accident | 2014 | 0 | 1574 |
Kenya Airways | fatal_accident | 2014 | 2 | 139 |
KLM | fatal_accident | 2014 | 0 | 1875 |
Korean Air | fatal_accident | 2014 | 0 | 1735 |
LAN Airlines | fatal_accident | 2014 | 0 | 1002 |
Lufthansa | fatal_accident | 2014 | 0 | 3427 |
Malaysia Airlines | fatal_accident | 2014 | 2 | 520 |
Pakistan International | fatal_accident | 2014 | 2 | 174 |
Philippine Airlines | fatal_accident | 2014 | 1 | 413 |
Qantas | fatal_accident | 2014 | 0 | 1917 |
Royal Air Maroc | fatal_accident | 2014 | 0 | 296 |
SAS | fatal_accident | 2014 | 1 | 683 |
Saudi Arabian | fatal_accident | 2014 | 0 | 860 |
Singapore Airlines | fatal_accident | 2014 | 1 | 2377 |
South African | fatal_accident | 2014 | 0 | 652 |
Southwest Airlines | fatal_accident | 2014 | 0 | 3277 |
Sri Lankan / AirLanka | fatal_accident | 2014 | 0 | 326 |
SWISS | fatal_accident | 2014 | 0 | 793 |
TACA | fatal_accident | 2014 | 1 | 259 |
TAM | fatal_accident | 2014 | 2 | 755 |
TAP - Air Portugal | fatal_accident | 2014 | 0 | 619 |
Thai Airways | fatal_accident | 2014 | 1 | 1703 |
Turkish Airlines | fatal_accident | 2014 | 2 | 973 |
United / Continental | fatal_accident | 2014 | 2 | 3570 |
US Airways / America West | fatal_accident | 2014 | 2 | 1228 |
Vietnam Airlines | fatal_accident | 2014 | 0 | 625 |
Virgin Atlantic | fatal_accident | 2014 | 0 | 1005 |
Xiamen Airlines | fatal_accident | 2014 | 0 | 430 |
Aer Lingus | fatalities | 2014 | 0 | 321 |
Aeroflot | fatalities | 2014 | 88 | 14 |
Aerolineas Argentinas | fatalities | 2014 | 0 | 386 |
Aeromexico | fatalities | 2014 | 0 | 597 |
Air Canada | fatalities | 2014 | 0 | 1865 |
Air France | fatalities | 2014 | 337 | 9 |
Air India | fatalities | 2014 | 158 | 6 |
Air New Zealand | fatalities | 2014 | 7 | 101 |
Alaska Airlines | fatalities | 2014 | 88 | 11 |
Alitalia | fatalities | 2014 | 0 | 698 |
All Nippon Airways | fatalities | 2014 | 0 | 1841 |
American | fatalities | 2014 | 416 | 13 |
Austrian Airlines | fatalities | 2014 | 0 | 358 |
Avianca | fatalities | 2014 | 0 | 397 |
British Airways | fatalities | 2014 | 0 | 3180 |
Cathay Pacific | fatalities | 2014 | 0 | 2582 |
China Airlines | fatalities | 2014 | 225 | 4 |
Condor | fatalities | 2014 | 0 | 418 |
COPA | fatalities | 2014 | 0 | 550 |
Delta / Northwest | fatalities | 2014 | 51 | 128 |
Egyptair | fatalities | 2014 | 14 | 40 |
El Al | fatalities | 2014 | 0 | 335 |
Ethiopian Airlines | fatalities | 2014 | 92 | 5 |
Finnair | fatalities | 2014 | 0 | 506 |
Garuda Indonesia | fatalities | 2014 | 22 | 28 |
Gulf Air | fatalities | 2014 | 143 | 2 |
Hawaiian Airlines | fatalities | 2014 | 0 | 494 |
Iberia | fatalities | 2014 | 0 | 1173 |
Japan Airlines | fatalities | 2014 | 0 | 1574 |
Kenya Airways | fatalities | 2014 | 283 | 1 |
KLM | fatalities | 2014 | 0 | 1875 |
Korean Air | fatalities | 2014 | 0 | 1735 |
LAN Airlines | fatalities | 2014 | 0 | 1002 |
Lufthansa | fatalities | 2014 | 0 | 3427 |
Malaysia Airlines | fatalities | 2014 | 537 | 2 |
Pakistan International | fatalities | 2014 | 46 | 8 |
Philippine Airlines | fatalities | 2014 | 1 | 413 |
Qantas | fatalities | 2014 | 0 | 1917 |
Royal Air Maroc | fatalities | 2014 | 0 | 296 |
SAS | fatalities | 2014 | 110 | 6 |
Saudi Arabian | fatalities | 2014 | 0 | 860 |
Singapore Airlines | fatalities | 2014 | 83 | 29 |
South African | fatalities | 2014 | 0 | 652 |
Southwest Airlines | fatalities | 2014 | 0 | 3277 |
Sri Lankan / AirLanka | fatalities | 2014 | 0 | 326 |
SWISS | fatalities | 2014 | 0 | 793 |
TACA | fatalities | 2014 | 3 | 86 |
TAM | fatalities | 2014 | 188 | 8 |
TAP - Air Portugal | fatalities | 2014 | 0 | 619 |
Thai Airways | fatalities | 2014 | 1 | 1703 |
Turkish Airlines | fatalities | 2014 | 84 | 23 |
United / Continental | fatalities | 2014 | 109 | 65 |
US Airways / America West | fatalities | 2014 | 23 | 107 |
Vietnam Airlines | fatalities | 2014 | 0 | 625 |
Virgin Atlantic | fatalities | 2014 | 0 | 1005 |
Xiamen Airlines | fatalities | 2014 | 0 | 430 |