준비한 자료는 E. Saez 교수의 홈페이지에 있는 TabFig2017prel.xls
와 Tax Foundation에서 제공하는 자료를 손봐서 불러들인 것이다.
선형변환에 사용할 함수 작성 q = x
로 하면 변수의 관찰값 전체를 변환. q
는 그 중 일부의 변환된 값을 보고자 할 때 입력
z <- function(x, q, a = min(x), b = max(x)) {
(q - a) / (b - a)
}
#> 0애서 1사이의 범위로 변환
top_income_tax$P99_100_z <- top_income_tax$P99_100 %>%
z(., .)
top_income_tax$Marginal_z <- top_income_tax$Marginal %>%
z(., .)
kable(top_income_tax)
Year | P99_100 | Lowest | Marginal | P99_100_z | Marginal_z |
---|---|---|---|---|---|
1913 | 18.0 | 1.0 | 7 | 0.60 | 0.00 |
1914 | 18.2 | 1.0 | 7 | 0.62 | 0.00 |
1915 | 17.6 | 1.0 | 7 | 0.58 | 0.00 |
1916 | 19.3 | 2.0 | 15 | 0.69 | 0.09 |
1917 | 17.7 | 2.0 | 67 | 0.59 | 0.69 |
1918 | 16.0 | 6.0 | 77 | 0.47 | 0.80 |
1919 | 16.4 | 4.0 | 73 | 0.50 | 0.76 |
1920 | 14.8 | 4.0 | 73 | 0.40 | 0.76 |
1921 | 15.6 | 4.0 | 73 | 0.45 | 0.76 |
1922 | 17.1 | 4.0 | 58 | 0.54 | 0.59 |
1923 | 15.6 | 4.0 | 58 | 0.45 | 0.59 |
1924 | 17.4 | 2.0 | 46 | 0.57 | 0.45 |
1925 | 20.2 | 1.5 | 25 | 0.75 | 0.21 |
1926 | 19.9 | 1.5 | 25 | 0.73 | 0.21 |
1927 | 21.0 | 1.5 | 25 | 0.81 | 0.21 |
1928 | 23.9 | 1.5 | 25 | 1.00 | 0.21 |
1929 | 22.4 | 1.5 | 25 | 0.89 | 0.21 |
1930 | 17.2 | 1.5 | 25 | 0.55 | 0.21 |
1931 | 15.5 | 1.5 | 25 | 0.44 | 0.21 |
1932 | 15.6 | 4.0 | 63 | 0.44 | 0.64 |
1933 | 16.5 | 4.0 | 63 | 0.50 | 0.64 |
1934 | 16.4 | 4.0 | 63 | 0.50 | 0.64 |
1935 | 16.7 | 4.0 | 63 | 0.52 | 0.64 |
1936 | 19.3 | 4.0 | 79 | 0.69 | 0.83 |
1937 | 17.1 | 4.0 | 79 | 0.55 | 0.83 |
1938 | 15.8 | 4.0 | 79 | 0.46 | 0.83 |
1939 | 16.2 | 4.0 | 79 | 0.49 | 0.83 |
1940 | 16.5 | 4.0 | 79 | 0.51 | 0.83 |
1941 | 15.8 | 10.0 | 81 | 0.46 | 0.85 |
1942 | 13.4 | 19.0 | 88 | 0.30 | 0.93 |
1943 | 12.3 | 19.0 | 88 | 0.23 | 0.93 |
1944 | 11.3 | 23.0 | 94 | 0.16 | 1.00 |
1945 | 12.5 | 23.0 | 94 | 0.24 | 1.00 |
1946 | 13.3 | 20.0 | 91 | 0.29 | 0.97 |
1947 | 12.0 | 20.0 | 91 | 0.21 | 0.97 |
1948 | 12.2 | 20.0 | 91 | 0.22 | 0.97 |
1949 | 11.7 | 20.0 | 91 | 0.19 | 0.97 |
1950 | 12.8 | 20.0 | 91 | 0.26 | 0.97 |
1951 | 11.8 | 20.4 | 91 | 0.19 | 0.97 |
1952 | 10.8 | 22.2 | 92 | 0.13 | 0.98 |
1953 | 9.9 | 22.2 | 92 | 0.07 | 0.98 |
1954 | 10.8 | 20.0 | 91 | 0.13 | 0.97 |
1955 | 11.1 | 20.0 | 91 | 0.15 | 0.97 |
1956 | 10.7 | 20.0 | 91 | 0.12 | 0.97 |
1957 | 10.2 | 20.0 | 91 | 0.09 | 0.97 |
1958 | 10.2 | 20.0 | 91 | 0.09 | 0.97 |
1959 | 10.7 | 20.0 | 91 | 0.12 | 0.97 |
1960 | 10.0 | 20.0 | 91 | 0.08 | 0.97 |
1961 | 10.6 | 20.0 | 91 | 0.12 | 0.97 |
1962 | 9.9 | 20.0 | 91 | 0.07 | 0.97 |
1963 | 9.9 | 20.0 | 91 | 0.07 | 0.97 |
1964 | 10.5 | 16.0 | 77 | 0.11 | 0.80 |
1965 | 10.9 | 14.0 | 70 | 0.13 | 0.72 |
1966 | 10.2 | 14.0 | 70 | 0.09 | 0.72 |
1967 | 10.7 | 14.0 | 70 | 0.12 | 0.72 |
1968 | 11.2 | 14.0 | 70 | 0.16 | 0.72 |
1969 | 10.3 | 14.0 | 70 | 0.10 | 0.72 |
1970 | 9.0 | 14.0 | 70 | 0.01 | 0.72 |
1971 | 9.4 | 14.0 | 70 | 0.04 | 0.72 |
1972 | 9.6 | 14.0 | 70 | 0.05 | 0.72 |
1973 | 9.2 | 14.0 | 70 | 0.02 | 0.72 |
1974 | 9.1 | 14.0 | 70 | 0.02 | 0.72 |
1975 | 8.9 | 14.0 | 70 | 0.00 | 0.72 |
1976 | 8.9 | 14.0 | 70 | 0.00 | 0.72 |
1977 | 9.0 | 0.0 | 70 | 0.01 | 0.72 |
1978 | 8.9 | 0.0 | 70 | 0.01 | 0.72 |
1979 | 10.0 | 0.0 | 70 | 0.07 | 0.72 |
1980 | 10.0 | 0.0 | 70 | 0.08 | 0.72 |
1981 | 10.0 | 0.0 | 70 | 0.08 | 0.72 |
1982 | 10.8 | 0.0 | 50 | 0.13 | 0.49 |
1983 | 11.6 | 0.0 | 50 | 0.18 | 0.49 |
1984 | 12.0 | 0.0 | 50 | 0.21 | 0.49 |
1985 | 12.7 | 0.0 | 50 | 0.25 | 0.49 |
1986 | 15.9 | 0.0 | 50 | 0.47 | 0.49 |
1987 | 12.7 | 11.0 | 38 | 0.25 | 0.36 |
1988 | 15.5 | 15.0 | 28 | 0.44 | 0.24 |
1989 | 14.5 | 15.0 | 28 | 0.37 | 0.24 |
1990 | 14.3 | 15.0 | 28 | 0.36 | 0.24 |
1991 | 13.4 | 15.0 | 31 | 0.30 | 0.28 |
1992 | 14.7 | 15.0 | 31 | 0.39 | 0.28 |
1993 | 14.2 | 15.0 | 31 | 0.36 | 0.28 |
1994 | 14.2 | 15.0 | 40 | 0.36 | 0.37 |
1995 | 15.2 | 15.0 | 40 | 0.42 | 0.37 |
1996 | 16.7 | 15.0 | 40 | 0.52 | 0.37 |
1997 | 18.0 | 15.0 | 40 | 0.61 | 0.37 |
1998 | 19.1 | 15.0 | 40 | 0.68 | 0.37 |
1999 | 20.0 | 15.0 | 40 | 0.74 | 0.37 |
2000 | 21.5 | 15.0 | 40 | 0.84 | 0.37 |
2001 | 18.2 | 15.0 | 39 | 0.62 | 0.37 |
2002 | 16.9 | 10.0 | 39 | 0.53 | 0.36 |
2003 | 17.5 | 10.0 | 35 | 0.57 | 0.32 |
2004 | 19.8 | 10.0 | 35 | 0.72 | 0.32 |
2005 | 21.9 | 10.0 | 35 | 0.87 | 0.32 |
2006 | 22.8 | 10.0 | 35 | 0.93 | 0.32 |
2007 | 23.5 | 10.0 | 35 | 0.97 | 0.32 |
2008 | 20.9 | 10.0 | 35 | 0.80 | 0.32 |
2009 | 18.1 | 10.0 | 35 | 0.61 | 0.32 |
2010 | 19.9 | 10.0 | 35 | 0.73 | 0.32 |
2011 | 19.6 | 10.0 | 35 | 0.72 | 0.32 |
2012 | 22.8 | 10.0 | 35 | 0.93 | 0.32 |
2013 | 20.0 | 10.0 | 40 | 0.74 | 0.37 |
2014 | 21.5 | 10.0 | 40 | 0.84 | 0.37 |
2015 | 21.6 | 10.0 | 40 | 0.84 | 0.37 |
2016 | 20.7 | 10/0 | 40 | 0.79 | 0.37 |
2017 | 21.5 | 10.0 | 37 | 0.84 | 0.34 |
M_tbl <- top_income_tax %>%
select(c("Year", "P99_100_z", "Marginal_z")) %>%
as_tibble %>%
gather(key = "Variables", value = "Values", -Year) %>%
mutate(Variables = factor(Variables, levels = c("P99_100_z", "Marginal_z")))
str(M_tbl)
## Classes 'tbl_df', 'tbl' and 'data.frame': 210 obs. of 3 variables:
## $ Year : int 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 ...
## $ Variables: Factor w/ 2 levels "P99_100_z","Marginal_z": 1 1 1 1 1 1 1 1 1 1 ...
## $ Values : num 0.603 0.617 0.578 0.693 0.589 ...
M_melt <- melt(data.frame(top_income_tax[c("Year", "P99_100_z", "Marginal_z")]),
id.vars = "Year",
measure.vars = c("P99_100_z", "Marginal_z"),
variable.name = c("Variables"),
value.name = "Values")
str(M_melt)
## 'data.frame': 210 obs. of 3 variables:
## $ Year : int 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 ...
## $ Variables: Factor w/ 2 levels "P99_100_z","Marginal_z": 1 1 1 1 1 1 1 1 1 1 ...
## $ Values : num 0.603 0.617 0.578 0.693 0.589 ...
save.image(file = "US_top_income_shares_vs_tax_rates_2017.RData")