Sebelum memulai analisis, import library yang akan digunnakan terlebih dahulu
#Import Library
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 3.5.3
## -- Attaching packages ---------------------------------- tidyverse 1.2.1 --
## v ggplot2 3.0.0 v purrr 0.2.5
## v tibble 2.1.1 v dplyr 0.8.0.1
## v tidyr 0.8.1 v stringr 1.3.1
## v readr 1.3.1 v forcats 0.4.0
## Warning: package 'tibble' was built under R version 3.5.3
## Warning: package 'readr' was built under R version 3.5.3
## Warning: package 'dplyr' was built under R version 3.5.3
## Warning: package 'forcats' was built under R version 3.5.3
## -- Conflicts ------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
fifa <- read.csv(file.choose(), header = T, sep=",")
dim(fifa)
## [1] 17994 185
View(fifa)
perintah dim dapat dimanfaatkan untuk melihat dimensi dari dataset yang digunakan, sehingga dapat kita ketahui banyaknya baris dan kolom pada dataset
ggplot(fifa, aes(x= age, fill = age)) +
geom_density(stat="density") +
labs(title = "Plot Density dari Umur Para Pemain", x = "Umur", y = "Probablitas")
fifa %>%
group_by(nationality) %>%
summarise(n=n()) %>%
arrange(desc(n)) %>%
head(10) %>%
ggplot()+
geom_bar(aes(x = reorder(nationality, -n), y=n, fill = nationality),color ="darkblue", stat="identity") +
geom_label(aes(x = reorder(nationality, -n), y=n, label = n)) +
guides(fill = F) +
labs(title = "Top 10 Negara Dengan Pemain Terbanyak", x = "Negara", y = "Banyaknya Pemain")
fifa %>%
select(name, nationality, overall) %>%
arrange(desc(overall)) %>%
head(10) %>%
ggplot() +
geom_bar(aes(x= reorder(name, -overall), y=overall, fill=nationality),stat="identity")+
geom_label(aes(x = reorder(name, -overall), y=overall, label = overall)) +
labs(title = "Top 10 Pemain Terbaik dan Asal Negaranya", x = "Nama", y = "Nilai Skill")
fifa %>%
select(name, club, overall) %>%
arrange(desc(overall)) %>%
head(10) %>%
ggplot() +
geom_bar(aes(x= reorder(name, -overall), y=overall, fill=club),stat="identity")+
geom_label(aes(x = reorder(name, -overall), y=overall, label = overall)) +
labs(title = "Top 10 Pemain Terbaik dan Asal Clubnya", x = "Nama", y = "Nilai Skill")
fifa %>%
ggplot(aes(x = weight_kg, fill = factor(weight_kg))) +
geom_bar(color = "grey") + guides(fill = FALSE)+
labs(title="Berat Badan Pemain")
fifa %>%
ggplot(aes(x = height_cm, fill = factor(height_cm))) +
geom_bar(color = "grey") + guides(fill = FALSE)+
labs(title="Tinggi Bada Pemain")
fifa %>%
select(name, eur_value) %>%
arrange(desc(eur_value)) %>%
head(10) %>%
ggplot() +
geom_bar(aes(x= reorder(name, -eur_value), y=eur_value, fill= eur_value), stat="identity")+
geom_label(aes(x = reorder(name, -eur_value), y=eur_value, label= eur_value)) +
coord_flip() +
labs(title = "Top 10 Nilai Evaluasi Tertinggi", x = "Nama", y = "Nilai Evaluasi")
untuk menjawab pertanyaan ini, visualisasi yang cukup mudah yang dapat digunakan adalah scatter plot, atau plot 2 dimensi, dari scatter plot ini dapat kita liihat hubungan yang terjadi antara kedua variabel
ggplot(fifa, aes(x=overall, y= eur_value)) +
geom_point()+
geom_smooth() +
theme_light()
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
fifa %>%
group_by(club) %>%
summarise(total_eval = sum(eur_value)) %>%
top_n(10, total_eval) %>%
ggplot() +
geom_bar(aes(x= reorder(club, -total_eval), y=total_eval, fill=club),stat="identity")+
coord_flip() +
geom_label(aes(x = reorder(club, -total_eval), y=total_eval, label = total_eval)) +
labs(title = "Top 10 Nilai Evaluasi Club tertinggi", x = "Club", y = "Nilai Evaluasi")
Cukup sekian tutorialnya, jangan lupa dishare biar makin berkah. Semoga Bermanfaat :)