Describe in words and sketch the level curves for the given c values.
\[ f(x,y) = x-y^2; c=-2, 0, 2 \]
Consider \(c=0\). Then \(f(x,y) = x-y^2 = c = 0\), so \(y = \pm\sqrt{x}\).
The horizontal plane at \(c=0\) will intersect the surface following a parabola that is facing right.
With \(c=-2\), \(y=\pm\sqrt{x+2}\) and with \(c=2\), \(y=\pm\sqrt{x-2}\), so the intersection will have the same shape (parabola) just shifted by 2.
Demonstarting through 3 level plot
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.5.3
x <- seq(-5,20,0.05)
y <- seq(-5, 5,0.05)
xy <- data.frame(expand.grid(x=x, y=y))
z <- xy$x-xy$y^2
f <- data.frame(xy, z)
ggplot(f, aes(x, y, z=z))+
geom_raster(aes(fill=z))+
geom_contour(breaks=c(-2,0,2), colour="white")+
xlab("x")+ylab("y")
myColorRamp <- function(colors, values) {
v <- (values - min(values))/diff(range(values))
x <- colorRamp(colors)(v)
rgb(x[,1], x[,2], x[,3], maxColorValue = 255)
}
cols <- myColorRamp(c("red", "blue"), f$y)
plot3d(f$x, f$y, f$z, xlab="x", ylab="y", zlab="", col = cols)
You must enable Javascript to view this page properly.