ggplot(diamonds, aes(cut,price)) + geom_boxplot()
ggplot(diamonds, aes(color,price)) + geom_boxplot()
ggplot(diamonds, aes(clarity,price)) + geom_boxplot()
ggplot(diamonds, aes(carat, price)) +
geom_hex(bins=50)
## Warning: package 'hexbin' was built under R version 3.5.2
diamonds2 <- diamonds %>%
filter(carat <= 2.5) %>%
mutate(lprice = log2(price), lcarat = log2(carat))
## Warning: package 'bindrcpp' was built under R version 3.5.2
ggplot(diamonds2, aes(lcarat, lprice)) +
geom_hex(bins=50)
mod_diamond <- lm(lprice ~ lcarat, data = diamonds2)
grid <- diamonds2 %>%
data_grid(carat = seq_range(carat, 20)) %>%
mutate(lcarat = log2(carat)) %>%
add_predictions(mod_diamond, "lprice") %>%
mutate(price = 2 ^ lprice)
ggplot(diamonds2, aes(carat, price)) +
geom_hex(bins = 50) +
geom_line(data = grid, color = "green", size = 1)
diamonds2 <- diamonds2 %>%
add_residuals(mod_diamond, "lresid")
ggplot(diamonds2, aes(lcarat, lresid)) +
geom_hex(bins = 50)
ggplot(diamonds2, aes(cut,lresid)) + geom_boxplot()
ggplot(diamonds2, aes(color,lresid)) + geom_boxplot()
ggplot(diamonds2, aes(clarity,lresid)) + geom_boxplot()
mod_diamond2 <- lm(
lprice ~ lcarat + color + cut + clarity, diamonds2
)
grid <- diamonds2 %>%
data_grid(cut, .model = mod_diamond2) %>%
add_predictions(mod_diamond2)
grid
## # A tibble: 5 x 5
## cut lcarat color clarity pred
## <ord> <dbl> <chr> <chr> <dbl>
## 1 Fair -0.515 G VS2 11.2
## 2 Good -0.515 G VS2 11.3
## 3 Very Good -0.515 G VS2 11.4
## 4 Premium -0.515 G VS2 11.4
## 5 Ideal -0.515 G VS2 11.4
ggplot(grid, aes(cut, pred)) +
geom_point()
diamonds2 <- diamonds2 %>%
add_residuals(mod_diamond2, "lresid2")
ggplot(diamonds2, aes(lcarat, lresid2)) +
geom_hex(bins = 50)
diamonds2 %>%
filter(abs(lresid2) > 1) %>%
add_predictions(mod_diamond2) %>%
mutate(pred = round(2^pred)) %>%
select(price, pred, carat:table, x:z) %>%
arrange(price)
## # A tibble: 16 x 11
## price pred carat cut color clarity depth table x y z
## <int> <dbl> <dbl> <ord> <ord> <ord> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1013 264 0.25 Fair F SI2 54.4 64 4.3 4.23 2.32
## 2 1186 284 0.25 Premium G SI2 59 60 5.33 5.28 3.12
## 3 1186 284 0.25 Premium G SI2 58.8 60 5.33 5.28 3.12
## 4 1262 2644 1.03 Fair E I1 78.2 54 5.72 5.59 4.42
## 5 1415 639 0.35 Fair G VS2 65.9 54 5.57 5.53 3.66
## 6 1415 639 0.35 Fair G VS2 65.9 54 5.57 5.53 3.66
## 7 1715 576 0.32 Fair F VS2 59.6 60 4.42 4.34 2.61
## 8 1776 412 0.290 Fair F SI1 55.8 60 4.48 4.41 2.48
## 9 2160 314 0.34 Fair F I1 55.8 62 4.72 4.6 2.6
## 10 2366 774 0.3 Very Good D VVS2 60.6 58 4.33 4.35 2.63
## 11 3360 1373 0.51 Premium F SI1 62.7 62 5.09 4.96 3.15
## 12 3807 1540 0.61 Good F SI2 62.5 65 5.36 5.29 3.33
## 13 3920 1705 0.51 Fair F VVS2 65.4 60 4.98 4.9 3.23
## 14 4368 1705 0.51 Fair F VVS2 60.7 66 5.21 5.11 3.13
## 15 10011 4048 1.01 Fair D SI2 64.6 58 6.25 6.2 4.02
## 16 10470 23622 2.46 Premium E SI2 59.7 59 8.82 8.76 5.25
In the plot of lcarat vs. lprice, there are some bright vertical strips. What do they represent?
They represent the categories of carat which is in fact an integer variable. But because we took log of the initial variable, so we get results different from integers.
If log(price) = a_0 + a_1 * log(carat), what does that say about the relationship between price and carat?
It says that the price of a diamond is completely dependent on the carat size iff the relationship is multiplicative or linear. Therefore, 1% increase in carat is associated with a 1% increase in price.
Extract the diamonds that have very high and very low residuals. Is there anything unusual about these diamonds? Are they particularly bad or good, or do you think these are pricing errors?
# Use this chunk to place your code for extracting the high and low residuals
diamonds2 <-
diamonds %>%
mutate(lprice = log2(price),
lcarat = log2(carat))
mod <- lm(lprice ~ lcarat + color + clarity + cut, data = diamonds2)
top <-
diamonds2 %>%
add_residuals(mod) %>%
arrange(resid) %>%
slice(1:10)
bot <-
diamonds2 %>%
add_residuals(mod) %>%
arrange(-resid) %>%
slice(1:10)
bind_rows(top, bot) %>%
select(price, carat, resid)
## # A tibble: 20 x 3
## price carat resid
## <int> <dbl> <dbl>
## 1 6512 3 -1.46
## 2 10470 2.46 -1.17
## 3 10453 3.05 -1.14
## 4 14220 3.01 -1.12
## 5 9925 3.01 -1.12
## 6 18701 3.51 -1.09
## 7 1262 1.03 -1.04
## 8 8040 3.01 -1.02
## 9 12587 3.5 -0.990
## 10 8044 3 -0.985
## 11 2160 0.34 2.81
## 12 1776 0.290 2.10
## 13 1186 0.25 2.06
## 14 1186 0.25 2.06
## 15 1013 0.25 1.94
## 16 2366 0.3 1.61
## 17 1715 0.32 1.57
## 18 4368 0.51 1.36
## 19 10011 1.01 1.31
## 20 3807 0.61 1.31
There is nothing unusual about these diamonds. And we don’t see any particularly bad or good at this point.
Does the final model, mod_diamonds2, do a good job of predicting diamond prices? Would you trust it to tell you how much to spend if you were buying a diamond and why?
# Use this chunk to place your code for assessing how well the model predicts diamond prices
# Add error calculation
diamonds2 <- diamonds2 %>%
add_predictions(mod) %>%
mutate(pred = round(2 ^ pred),
err = pred - price)
# Visualize error
diamonds2 %>%
ggplot(aes(err)) +
geom_histogram(bins = 50)
We’ll try exam the difference between the actual and predicted price by histgram. It shows the predictions centered around zero, however, it’s difficult to see the range of errors. To better characterize the error, we can review the distribution using quantile().
p <- c(0.005, 0.025, 0.25, 0.5, 0.75, 0.975, 0.995)
diamonds2$err %>% quantile(probs = p)
## 0.5% 2.5% 25% 50% 75% 97.5% 99.5%
## -2863.000 -1769.000 -198.000 0.000 155.000 1436.525 3559.915
median(diamonds2$price)
## [1] 2401
The model error (difference between actual and predicted price) is 95% of the time within [-$1769, $1436]. This is relatively high considering the median price is $2,401. Therefore, there is considerable variability in the predictions that should be weighed before using the model.