setwd("~/Dropbox/Research/Gerald/")
p<-read.csv ("AI Help Airport Pilot.csv", header=T, sep=",")
p<-read.csv ("AI Help Airport Study 1.csv", header=T, sep=",")


table(p$Condition)
## 
##    AI No AI 
##   196   194
#R feedback = round by round, End feedback = only feedback at the end
table(p$Feedback)
## 
## End   R 
## 188 202
#Constructing the DV - how many rounds people complete. Surprisingly some people actually complete many rounds without incentive. 
p[is.na(p)]<-0

p$DV<-(p$Q279 + p$Q286 + p$Q293 + p$Q300 + p$Q307+ p$Q314 + p$Q321 + p$Q328 + p$Q335 + 
         p$Q342 + p$Q349 + p$Q356 + p$Q363 + p$Q370 + p$Q377 + p$Q384+ p$Q391+p$Q398
          + p$Q405+p$Q412+p$Q419+p$Q426+p$Q440+p$Q447+p$Q454+p$Q461+p$Q468+p$Q475)

table(p$DV)
## 
##   0   1   2   3   4   5   6   7   8   9  10  11  13  14  15  16  17  18 
## 121  53  43  34  40  14  23  11  10   3   2   3   3   4   2   2   1   2 
##  20  21  24  25  28 
##   1   1   1   2  14
hist(p$DV)

p$DVnorm<-sqrt(p$DV)
hist(p$DVnorm)

p$DVbinary[p$DV==0]<-0
p$DVbinary[p$DV!=0]<-1


#Using condition (AI vs. no AI) and feedback timing to predict the DV 
summary(aov(DV ~ Condition * Feedback, p))
##                     Df Sum Sq Mean Sq F value  Pr(>F)   
## Condition            1     13    12.9   0.346 0.55649   
## Feedback             1    365   365.4   9.788 0.00189 **
## Condition:Feedback   1    116   115.7   3.099 0.07913 . 
## Residuals          386  14409    37.3                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(aov(DVnorm ~ Condition * Feedback, p))
##                     Df Sum Sq Mean Sq F value   Pr(>F)    
## Condition            1    0.5   0.460   0.260    0.610    
## Feedback             1   28.3  28.283  16.007 7.57e-05 ***
## Condition:Feedback   1    3.9   3.943   2.232    0.136    
## Residuals          386  682.0   1.767                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Poisson regression
summary(glm(DV ~ Condition * Feedback, p, family=poisson))
## 
## Call:
## glm(formula = DV ~ Condition * Feedback, family = poisson, data = p)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -3.365  -2.419  -1.150   0.326   9.042  
## 
## Coefficients:
##                          Estimate Std. Error z value Pr(>|z|)    
## (Intercept)               1.21876    0.05608  21.734  < 2e-16 ***
## ConditionNo AI           -0.25266    0.08481  -2.979  0.00289 ** 
## FeedbackR                 0.22470    0.07389   3.041  0.00236 ** 
## ConditionNo AI:FeedbackR  0.54263    0.10618   5.110 3.22e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 2643.2  on 389  degrees of freedom
## Residual deviance: 2521.0  on 386  degrees of freedom
## AIC: 3388.2
## 
## Number of Fisher Scoring iterations: 6
#Binary DV
summary(aov(DVbinary ~ Condition * Feedback, p))
##                     Df Sum Sq Mean Sq F value   Pr(>F)    
## Condition            1   0.18  0.1800   0.861 0.354000    
## Feedback             1   2.53  2.5290  12.096 0.000563 ***
## Condition:Feedback   1   0.05  0.0459   0.220 0.639613    
## Residuals          386  80.70  0.2091                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#No effect of condition
summary(lm(DV ~ Condition, p))
## 
## Call:
## lm(formula = DV ~ Condition, data = p)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.1907 -3.8265 -2.0086  0.8093 24.1735 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      3.8265     0.4425   8.648   <2e-16 ***
## ConditionNo AI   0.3642     0.6274   0.580    0.562    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.195 on 388 degrees of freedom
## Multiple R-squared:  0.0008677,  Adjusted R-squared:  -0.001707 
## F-statistic: 0.337 on 1 and 388 DF,  p-value: 0.5619
summary(lm(DVnorm ~ Condition, p))
## 
## Call:
## lm(formula = DVnorm ~ Condition, data = p)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.5093 -1.4406 -0.0608  0.7267  3.8509 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     1.44065    0.09691   14.87   <2e-16 ***
## ConditionNo AI  0.06869    0.13741    0.50    0.617    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.357 on 388 degrees of freedom
## Multiple R-squared:  0.0006437,  Adjusted R-squared:  -0.001932 
## F-statistic: 0.2499 on 1 and 388 DF,  p-value: 0.6174
#Poission
summary(glm(DV ~ Condition, p, family=poisson))
## 
## Call:
## glm(formula = DV ~ Condition, family = poisson, data = p)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.8951  -2.7664  -1.1106   0.3835   7.9440  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     1.34196    0.03651  36.751   <2e-16 ***
## ConditionNo AI  0.09091    0.05063   1.796   0.0725 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 2643.2  on 389  degrees of freedom
## Residual deviance: 2640.0  on 388  degrees of freedom
## AIC: 3503.1
## 
## Number of Fisher Scoring iterations: 6
#Obvious effect of feedback timing - round by round increases persistence. 
summary(lm(DV ~ Feedback, p))
## 
## Call:
## lm(formula = DV ~ Feedback, data = p)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.9406 -3.0053 -2.0053  0.9947 24.9947 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   3.0053     0.4464   6.732 6.05e-11 ***
## FeedbackR     1.9353     0.6203   3.120  0.00195 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.121 on 388 degrees of freedom
## Multiple R-squared:  0.02447,    Adjusted R-squared:  0.02196 
## F-statistic: 9.733 on 1 and 388 DF,  p-value: 0.001945
summary(lm(DVnorm ~ Feedback, p))
## 
## Call:
## lm(formula = DVnorm ~ Feedback, data = p)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.7344 -1.1959 -0.1959  0.7150  4.0956 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.19585    0.09701  12.327  < 2e-16 ***
## FeedbackR    0.53859    0.13479   3.996 7.72e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.33 on 388 degrees of freedom
## Multiple R-squared:  0.03952,    Adjusted R-squared:  0.03705 
## F-statistic: 15.97 on 1 and 388 DF,  p-value: 7.722e-05
summary(glm(DV ~ Feedback, p, family=poisson))
## 
## Call:
## glm(formula = DV ~ Feedback, family = poisson, data = p)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -3.1434  -2.4517  -1.3453   0.4609   8.6598  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  1.10038    0.04207  26.156   <2e-16 ***
## FeedbackR    0.49710    0.05265   9.442   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 2643.2  on 389  degrees of freedom
## Residual deviance: 2550.8  on 388  degrees of freedom
## AIC: 3413.9
## 
## Number of Fisher Scoring iterations: 6
#Breaking down the (non-significant) interaction 
rbr<-subset(p, Feedback=="R")
end<-subset(p, Feedback=="End")

#Directional positive effect of AI in the round by round conditions - persistence is higher with No AI
summary(lm(DV ~ Condition, rbr))
## 
## Call:
## lm(formula = DV ~ Condition, data = rbr)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.6600 -4.2353 -2.2353  0.7647 23.7647 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      4.2353     0.6671   6.349 1.43e-09 ***
## ConditionNo AI   1.4247     0.9481   1.503    0.135    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.738 on 200 degrees of freedom
## Multiple R-squared:  0.01116,    Adjusted R-squared:  0.006219 
## F-statistic: 2.258 on 1 and 200 DF,  p-value: 0.1345
summary(lm(DVnorm ~ Condition, rbr))
## 
## Call:
## lm(formula = DVnorm ~ Condition, data = rbr)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8684 -0.8684 -0.1364  0.6330  3.6884 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      1.6031     0.1377  11.642   <2e-16 ***
## ConditionNo AI   0.2654     0.1957   1.356    0.177    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.391 on 200 degrees of freedom
## Multiple R-squared:  0.00911,    Adjusted R-squared:  0.004156 
## F-statistic: 1.839 on 1 and 200 DF,  p-value: 0.1766
summary(glm(DV ~ Condition, rbr, family = poisson))
## 
## Call:
## glm(formula = DV ~ Condition, family = poisson, data = rbr)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -3.3645  -2.4193  -1.2122   0.3612   7.6316  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     1.44345    0.04811  30.003  < 2e-16 ***
## ConditionNo AI  0.28997    0.06388   4.539 5.65e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 1427.4  on 201  degrees of freedom
## Residual deviance: 1406.6  on 200  degrees of freedom
## AIC: 1922.1
## 
## Number of Fisher Scoring iterations: 5
#Very small positive effect of AI in the Feedback at the End conditions
summary(lm(DV ~ Condition, end))
## 
## Call:
## lm(formula = DV ~ Condition, data = end)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.383 -2.628 -1.628  0.617 25.372 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      3.3830     0.5521   6.127 5.22e-09 ***
## ConditionNo AI  -0.7553     0.7808  -0.967    0.335    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.353 on 186 degrees of freedom
## Multiple R-squared:  0.005005,   Adjusted R-squared:  -0.000344 
## F-statistic: 0.9357 on 1 and 186 DF,  p-value: 0.3346
summary(lm(DVnorm ~ Condition, end))
## 
## Call:
## lm(formula = DVnorm ~ Condition, data = end)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.2644 -1.1273 -0.1273  0.7356  4.1642 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      1.2644     0.1300   9.730   <2e-16 ***
## ConditionNo AI  -0.1371     0.1838  -0.746    0.457    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.26 on 186 degrees of freedom
## Multiple R-squared:  0.002983,   Adjusted R-squared:  -0.002378 
## F-statistic: 0.5564 on 1 and 186 DF,  p-value: 0.4566
summary(glm(DV ~ Condition, end, family = poisson))
## 
## Call:
## glm(formula = DV ~ Condition, family = poisson, data = end)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -2.601  -2.292  -1.150   0.326   9.042  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     1.21876    0.05608  21.734  < 2e-16 ***
## ConditionNo AI -0.25266    0.08481  -2.979  0.00289 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 1123.4  on 187  degrees of freedom
## Residual deviance: 1114.4  on 186  degrees of freedom
## AIC: 1466.1
## 
## Number of Fisher Scoring iterations: 6
#How enjoyable was the task? No interaction between condition and Feedback timing
summary(aov(enjoyable ~ Condition * Feedback, p))
##                     Df Sum Sq Mean Sq F value Pr(>F)  
## Condition            1    2.6   2.621   2.017 0.1563  
## Feedback             1    7.0   7.043   5.421 0.0204 *
## Condition:Feedback   1    2.8   2.808   2.162 0.1423  
## Residuals          386  501.4   1.299                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#There's a directional effect of condition - people enjoy it more without AI 
summary(lm(enjoyable ~ Condition, p))
## 
## Call:
## lm(formula = enjoyable ~ Condition, data = p)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -3.06701 -0.90306  0.09694  0.93299  2.09694 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      2.9031     0.0820   35.41   <2e-16 ***
## ConditionNo AI   0.1640     0.1163    1.41    0.159    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.148 on 388 degrees of freedom
## Multiple R-squared:  0.005099,   Adjusted R-squared:  0.002535 
## F-statistic: 1.989 on 1 and 388 DF,  p-value: 0.1593
#Significant effect of timing, more enjoyable with round by round feedback
summary(lm(enjoyable ~ Feedback, p))
## 
## Call:
## lm(formula = enjoyable ~ Feedback, data = p)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.8457 -0.8457  0.1543  0.8861  2.1543 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.84574    0.08336  34.137   <2e-16 ***
## FeedbackR    0.26812    0.11583   2.315   0.0211 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.143 on 388 degrees of freedom
## Multiple R-squared:  0.01362,    Adjusted R-squared:  0.01108 
## F-statistic: 5.358 on 1 and 388 DF,  p-value: 0.02115
#Means by condition (Persistence DV)

AIr<-subset(rbr, Condition=="AI")
AIe<-subset(end, Condition=="AI")

NoAIr<-subset(rbr, Condition=="No AI")
NoAIe<-subset(end, Condition=="No AI")

mean(AIr$DV)
## [1] 4.235294
mean(AIe$DV)
## [1] 3.382979
mean(NoAIr$DV)
## [1] 5.66
mean(NoAIe$DV)
## [1] 2.62766